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High energy proton micro-bunches 
from a laser plasma accelerator
Ashutosh Sharma & Christos Kamperidis

Recent advances on laser-driven ion accelerators have sparked an increased interest in such energetic 
particle sources, particularly towards the viability of their usage in a breadth of applications, such as 
high energy physics and medical applications. Here, we identify a new ion acceleration mechanism 
and we demonstrate, via particle-in-cell simulations, for the first time the generation of high energy, 
monochromatic proton micro-bunches while witnessing the acceleration and self-modulation of the 
accelerated proton beam in a dual-gas target, consisting of mixed ion species. In the proposed ion 
acceleration mechanism due to the interaction of an ultra-short, ultra-intense (2 PW, 20 fs) laser pulses 
with near-critical-density partially ionized plasmas (C & H species), we numerically observed high 
energy monochromatic proton microbunches of high quality (peak proton energy 350 MeV, laser to 
proton conversion efficiency ~10−4 and angular divergence <10 degree), which can be of high relevance 
for medical applications. We envisage that through this scheme, the range of attained energies and 
the monochromaticity of the accelerated protons can be increased with existing laser facilities or allow 
for laser-driven ion acceleration investigations to be pursued at moderate energies in smaller scale 
laser laboratories, hence reducing the size of the accelerators. The use of mixed-gas targets will enable 
high repetition rate operation of these accelerators, free of plasma debris and electromagnetic pulse 
disruptions.

Laser-ion acceleration has been promptly developing field with the growing installation of PW class lasers. The 
striking characteristics of laser accelerated ion stimulated a eclectic choice of applications in nuclear1 and medical 
physics2–4. The prerequisite of a reproducible, high-repetition rate ion beam with fine energy spread and better 
efficiency is a challenging mission irrespective of extensive efforts5, primarily due to target behaviour with the 
interaction with modern high-repetition rate laser systems. Laser driven ion acceleration mechanism6–31 includes 
the target normal sheath acceleration (TNSA)6–8, radiation pressure acceleration (RPA)9–17, breakout afterburner 
(BOA)18, collisionless shockwave acceleration (CSA)19–21 and magnetic vortex acceleration (MVA)22–25.

TNSA6–8 is one of the most stable and well-understood mechanism, which necessitates long pulse durations 
and thin solid targets to approach high cut-off energies. By employing the solid-density planar target geome-
tries32, the highest proton beam quality has been observed with TNSA mechanism and highest proton energies 
experimentally reported with TNSA are 85 MeV33. These ion beams have an inherently broad, thermal energy dis-
tribution whereas many potential applications of these compact sources require some degree of spectral control. 
This is motivating to investigate the new approaches to control the ion energy distribution at the source. Utilising 
foil targets at high repetition rates raises significant challenges with debris, electromagnetic pulse generation 
(EMP), target insertion accuracy at the laser focus and unwanted secondary radiation such as bremsstrahlung. 
Thus, the target choice also needs to avoid or suppress build-up of debris on optical elements in the target cham-
ber to facilitate continuous use for extended periods of time.

In contrast to distinctive ion acceleration from laser-thin solid foil interaction, efficient ion acceleration has 
also been realized in near critical density (NCD) plasmas from high density gas jets26 which are measured to have 
gain of higher laser-plasma coupling. NCD targets which can be compatible to high repetition lasers may advance 
the acceleration mechanism to experience the high-energy ions at high repetition rate. Recently investigations 
where MVA mechanism has been studied theoretically22–25 and experimentally27,28 and concerned a excessive 
agreement owing to its estimation for attaining relativistic electron and proton beams.

Gas jet targets bid the opportunity for high repetition rates29,30, but so far they have been limited to low particle 
energies and yields27. Recently31 liquid targets have also shown a number of attractive features for meeting real 
world needs and can be rapidly delivered into the interaction region, and mitigate debris. In our former simula-
tion research25, proton acceleration with tightly focused linearly polarised (CP) PW laser pulses (2 PW-20 fs) was 
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realised in NCD plasmas (~1.0nc). The simulation consequences were obtained in a preionized near critical and 
above critical density hydrogen plasma which is still challenging to accomplish practically.

In this article, we demonstrate for the first time the generation of self-modulated high energy proton 
micro-bunches, of high energy and monochromaticity, driven by high-intensity short laser pulses from a novel 
plasma target of mixed ion species34, specifically a gas target consisting of C and H atoms. Such plasma states can 
occur from the effectively instantaneous molecular dissociation and above barrier ionization35 of CH4 or other sim-
ple alkane gases, due to the high intensity of the prepulse for PW-class lasers. Hence, in our simulations, we consider 
a pre-ionized plasma (consisting of C and H fully ionized nuclei). Due to transverse (radial) field components of the 
plasma field in the generated plasma channel, micro-bunching of proton beams has been observed. These micro-
bunches are naturally spaced at the plasma wavelength which may also favour the generation of a strong plasma 
wake. These observations could also contribute significantly to the advanced proton-driven plasma wakefield accel-
eration research (AWAKE project36) which has recently demonstrated proton-driven plasma wakefields.

Our simulation results illustrate the generation of high-quality proton micro-bunches, of vital relevance for 
various applications such as proton cancer therapy, via a new laser-driven acceleration regime, which utilizes 
few-cycle (20 fs) high power (2 PW) laser pulses and gaseous targets. Such laser pulses are expected to become 
available, in the near future, at upcoming large scale facilities, such as the ELI project37, while the use of gaseous 
targets holds great potential for high-repetition rate operation of the laser-driven accelerator, free from plasma 
debris which can disrupt the laser focusing optics and from EMP generation which can disrupt major optome-
chanical components, such diagnostic electronics and motorized stages for target handling. It has also been seen 
that the interactions between two or more ion species during plasma expansion can significantly modify the final 
ion spectral distribution17,34. The specific changes to the spectra depend on the ions spatial distribution within 
the plasma and this provides an approach to achieving spectral control. The acceleration mechanism considered 
here seems to be a combination of ponderomotive acceleration, shock acceleration38,39, and multispecies expan-
sion40,41. However, these mechanisms were not able to observe or show such microbunching or density modula-
tion of proton beam. We emphasize in our simulation investigation of collimated proton microbunches of high 
energy which favours strong potential of utilising such mechanism for AWAKE kind of project.

Laser-Plasma Interaction
In this work, we numerically model the interaction of an ultra-short, ultra-intense (2 PW, 20 fs) laser field with 
near-critical-density partially ionized plasmas, via multidimensional PIC simulations using the PIConGPU 
code42. The laser pulse has 800 nm wavelength, a Gaussian intensity profile in space and time and is considered 
linearly polarized along the y-axis. The focused laser beam diameter on the C and H target is 5 μm (FWHM) and 

Figure 1.  High energy proton micro bunches generated from the laser – plasma acceleration. (a) Schematic 
illustrations of laser-plasma setup for proposed ion acceleration mechanism from C & H target. (b) simulation 
output showing the generated proton micro bunches along the laser propagation direction (x-axis) at different 
time instants due to the interaction of an ultra-short, ultra-intense (2 PW, 20 fs) laser field with near-critical-
density partially ionized plasmas (C & H species).
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the laser pulse duration is 20 fs. The peak laser intensity is ~1022 W/cm2, and correspondingly, the normalized 
laser field is aL = 68. Irradiation of a high-power laser pulse, the target is assumed to be partly pre-ionized due to 
realistic laser contrast and pre-pulses to C and H ions, while being slightly expanded on its surfaces (modelled as 
exponential density slope). The C and H plasma target is of slab shape with a thickness of 50 μm and is assumed to 
be non-magnetized, partially pre-ionized with the initial density of the fully ionized plasma to be 1nc, where nc is 
the critical density for 800 nm light. The laser pulse is propagating along the x-axis and is focused onto the C and 
H target at normal incidence (as shown by Fig. 1). Figure 1 shows the generation of proton microbunches from C 
& H target at different time instants during the acceleration.

In Fig. 2, the evolution of the laser field (a, c, e) and the longitudinal electric field (b, d, f) is illustrated at different 
time instants (t = 37.8 fs, 75.6 fs, 151.2 fs). Time instant t = 0, corresponds to time when the front part of the laser 
pulse hits the C and H plasma at its front surface in the XY plane. Initially, the intense (aL = 68) laser pulse pushes 
drives the critical density surface (due to radiation pressure) forward at the hole boring velocity causing the creation 
of an ion density spike as it is shown later. Electrons (followed by protons) are pushed inwards by the radial pon-
deromotive force of the laser, along the laser propagation direction. After the initial laser hole boring stage, there is 
acceleration of plasma particles in the transverse and longitudinal directions. Subsequently, we observe the longi-
tudinal field due to the shielded Coulomb repulsion where protons are accelerated by the electron-shielded carbon 
ions behind the protons. The transverse field in the plasma channel starts acting on the proton beam and modulates 
it. The modulation has a period very close to the plasma wavelength. Figure 2 demonstrates the wakefield structure 
generated behind the laser pulse which modulates the accelerated proton beam in microbunches.

Mechanism of Ion Acceleration by Intense Laser Field
To better understand our observations, we start by describing the interaction of a linearly polarized laser with a 
partially pre-ionized plasma medium, such as our C and H mixed gas target. The irradiation of the front surface of 
the target causes the electrons in the skin depth from the front surface to be accelerated by the ponderomotive force

Figure 2.  Spatio-temporal evolution of electric field of PW laser (Ey) and plasma field (Ex) at time instants 
37.8 fs (a,b), 75.6 fs (c,d) and 151.2 fs (e,f) after the laser enters the target (t = 0). Sub-figures (a, c, e) show the 
spatio-temporal evolution of the laser field propagating in the C and H plasma and (b,d,f) the spatio-temporal 
evolution of the accelerating longitudinal field induced by the laser pulse in the generated plasma channel. 
The colour bar shows the variation of the laser field (in a, c, e) and the accelerating field (in b, d, and f) and is 
represented in TV/m.
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where a = b = 1 (linearly polarised case), and a = 2, b = 0 (circularly polarised case), EL is the electric field of laser, 
w is the frequency of field oscillation, e is the electron charge and me is the electron mass and t is the time. The 
time-averaged component produces the steepening of the density profile, which applies a steady pressure to the 
target front surface and piles up the electrons into a compressed layer, inducing an intense charge separation field, 
which is responsible for the proton acceleration. The oscillating term causes heating and there is significant 
absorption of the laser field. The quasi-static electric field generated at the front surface of the target propagates 
with the hole boring (HB) velocity v c c/ /(1 ) 0 1 ,HB

1/2 1/2Π Π= + = .  where Z A n n m m a( / )( / )( / )c e e p LΠ =  and 
ω=a eE m c/L L e  here nc is critical plasma density, Z is the charge state and A is the atomic number. The ions reflect-

ing from the potential at HB surface acquire the velocity into the target as = + ≈v v v c v2 /(1 / ) 2i HB HB HB
2 2 , which 

is known as hole boring. In near critical density targets the hole boring velocity is larger than the ion sound speed 
c Zk T m( / )s B e i= , and it is equivalent to condition aL > ne/nc.

We show in Fig. (2) the initial stage of laser interactions with near-critical density target where laser radiation 
pressure pushes electrons at the plasma surface, which sets up an electrostatic field originating from the charge 
separation that ultimately accelerates protons and carbon ions in the forward direction. Initially, the heavier 

Figure 3.  Illustration of the plasma valley (channel) formed by the PW laser pulse. Density distribution of (a) 
electrons, (b) protons and, (c) carbon ions are shown at time instant 151.2 fs when laser pulse exits from the rear 
side of plasma.
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carbon ions are left behind the lighter protons and electrons, and a triple layer system of propagating ions, protons 
and electrons is formed. The laser pulse proceeds to push the plasma surface, which has the critical density target, 
into the C and H target which is known as laser hole boring.

Plasma Valley of Electrons, Protons and Carbon Ions
We show in Fig. 3, the density distribution of the electrons (a), protons (b) and carbon ions (c) at the time instant 
when the depleted laser pulse transmits from the rear side of the C and H plasma target. By this time, the laser 
pulse has been passed through the NCD plasma target and has formed a valley (channel) from which the elec-
trons, protons and ions are expelled in the transverse direction to the laser propagation direction. Besides the 
longitudinal accelerating field, we also illustrated in this investigation the key role of the transversal variation of 
the accelerating electrostatic field as shown by Fig. (4).

Spatio-temporal Evolution of Accelerating Field and High Energy Acceleration of 
Self-Modulated Proton Micro Bunches
The primary interaction of electrons in near critical density plasma with the electromagnetic field of laser pulse 
allows the acceleration of electrons and gain in electron energy. As an intense laser pulse propagates in near critical 
density plasma which provide favourable conditions for electron acceleration well beyond the ponderomotive poten-
tial, as laser pulse propagates with phase velocity (vph) close to the speed of light. With a higher intensity laser pulse, 

Figure 4.  Evolution of accelerating field along the longitudinal and transverse direction of propagation. 
Snapshots in left panel (a,c,e,g) shows the variation of accelerating field (Ex) along the longitudinal direction 
of propagation (ie. along the direction of laser propagation) and plots in right panel (b,d,f,h) illustrates the 
variation of accelerating field (Ex) in transverse (radial) direction. Plots (a,b), (c,d), (e,f) and (g,h) corresponds 
to time instant of 37.8 fs, 113.4 fs, 151.2 fs and 189.0 fs respectively.
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electrons are expelled from regions of highest intensity and, if the ponderomotive force persists to balance the elec-
tric field acting to return the electrons, a cavitated channel can form which has two discontinuous sharp boundaries. 
In this regime, direct laser acceleration39 (DLA) assisted by quasi-static transverse (as shown by Fig. 4 right panel) 
and longitudinal (as shown by Fig. 4 left panel) electric fields of the channel may become the dominant mechanism 
generating an electron population with characteristic energies many times greater than ponderomotive energy.

Here, the two-dimensional particle-in-cell simulations show one of the dominant energy transfer mecha-
nisms into the high-energy tail is mediated by the evolving longitudinal electric fields within the main plasma 
volume favouring the ions to experience huge, rapid acceleration via this mechanism. This is in stark contrast to 
previously identified DLA mechanisms43 that have either occurred in the very underdense region or essentially in 
vacuum with the overdense region serving as a source of electrons.

Phase Space Distribution of Protons
Figure 5(a–d) shows the phase space distribution of protons where longitudinal (px) and transverse momentum (py) 
is depicted along the direction of laser beam propagation and in transverse (radial) direction. The large populations 
of protons are seen to be accelerated along the propagation direction. In Fig. 5(a), several shock structures can be seen 
which confirms the generation of proton micro bunches and their acceleration to higher energies due to the dominant 
longitudinal field over the transverse plasma field (as depicted in Fig. 4). The transverse (radial) momentum of ions 
along the propagation direction shows the radial acceleration of ions as well as shown in Fig. 5(b). Figure 5(c) shows 
the longitudinal momentum distribution (px) in y-direction (transversal to longitudinal direction of propagation). 
The central axis of propagation lies around y = 5 micron and the boundaries of plasma channel formed by the laser 
lies around 2.5 micron (y < 5 micron) and 7.5 micron (y > 5 micron). Near the boundaries of plasma channel there are 
ions accelerated in forward and backward direction. However large populations of ions, distributed along the central 
axis of propagation (y = 5 micron) which are mainly accelerated in forward direction as can be seen clearly now from 
Fig. 5(c). Figure 5(d) shows the transverse momentum distribution (py) along the y-direction (transversal direction to 
the longitudinal direction of propagation). The variation of transverse momentum (py) along the longitudinal direction 
(x-axis) shows that large populations of ions are accelerated along the central axis of propagation. Previous investiga-
tion39 has shown that at high density, plateau is seen in energy distribution of ions however results demonstrated here 
shows modulation in energy spectrum at near critical density due to periodic longitudinal field of shocks.

Figure 5.  Illustration of ion phase space distribution at time instant 151.2 fs. (a,c): longitudinal momentum 
distribution (px) and; (b,d): transverse (radial) momentum distribution (py) of protons along the laser 
propagation direction (x-axis) and transverse to it along the y-axis. Color bar shows the variation of product 
of spatial dimension and momentum component and expressed in arbitrary units. Proton momentum is 
normalised with the mpc.
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Energy Distribution of Proton Beam
We conclude here the ion beam quality obtained from the simulation results. We demonstrate in Fig. 6(a) the 
energy distribution of proton beam where we numerically observe the high energy protons at the rear side of 
target after plasma-vacuum interface. The energy spectrum of protons shows the maximum proton energy at 
350 MeV. These high energy protons are accelerated in forward direction and large populations of these protons 
are distributed around the laser axis. Further, the proton beam is characterised (as shown in Fig. 6(b)) by showing 
the energy and spatial density distribution at the time instant of maximum acceleration. Figure 6(b) shows the 
spatial density distribution of the focused proton beam, where high-energy protons are concentrated in very 
small areas (micro-bunching). A spectral peak at 175 MeV has been shown in proton energy spectrum (as in 
Fig. 6(a)). To observe the directionality of proton beam we depicted in Fig. 6c the angular divergence of proton 
beam which shows that large populations of high energy protons are directed along the propagation axis of laser.

The efficiency of ion acceleration mechanism investigated in this report can be estimated from the energy trans-
formation from laser to protons. The number of protons in the energy 100 MeV–350 MeV are more than 108. The 
employed laser energy on target is 40 J. Thus, laser to proton energy transformation efficiency can be estimated as ~10−4.

Figure 6.  Portrayal of high energy – high quality proton microbunches. Proposed ion acceleration mechanism 
predicts here in shown simulation results (a) the energy distribution of proton beam with maximum proton 
energy 350 MeV, (b) density distribution of accelerated and self-modulated proton microbunches, and (c) 
the angular divergence of proton beam at time instant 200 fs. The colour bar shows in (b) corresponds to the 
variation in energy density of proton bunches which is in arbitrary units.
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Simulations conducted with the same laser parameters and plasma density profile, but with a pure hydrogen 
plasma, show that the spectrum of accelerated protons is similar to the case of a C and H plasma. This illustrates 
(as shown by Fig. 7) that the presence of multiple ion species does not significantly affect the maximum proton 
energies achieved, however the proton energy spectrum (with a C and H target) shows multiple peaks towards the 
higher energy tail which indicate the novel ion acceleration mechanism of high energy proton micro-bunches due 
to self-modulation of the proton beam in partially pre-ionized plasmas. This acceleration mechanism is of high rele-
vance to the AWAKE experiment36, where a proton beam propagating in plasma self modulates into a series of micro-
bunches. In the AWAKE experiment the proton bunch and laser propagate in a long rubidium (Rb) vapour where the 
laser pulse singly ionises the Rb vapour to form a plasma. The ionised Rb plasma then interacts with the proton beam 
and modulates the long proton beam into a series of microbunches which drives a strong wakefield in the plasma.

Outlook
The present work is the first simulation demonstration, for the generation of energetic, laser-driven proton 
micro-bunches, while monitoring the acceleration and self-modulation of the proton beam. The new mechanism 
employs intense and short laser pulses interacting with gas targets of mixed ion species (C & H). Through this 
acceleration mechanism we observed high energy monochromatic proton microbunches of high quality (peak 
proton energy 350 MeV, laser to proton conversion efficiency ~10−4 and angular divergence <10 degree), which 
can be of high importance for medical applications. The simulation findings open up a new direction to the 
advanced proton-driven plasma wakefield acceleration research (AWAKE project) which has recently demon-
strated proton-driven plasma wakefield by self-modulated proton microbunches. Understanding of such particle 
acceleration mechanism is of high impact to the development of laser-driven ion acceleration, given that many of 
the promising schemes employ near solid density target.

This computational study outlines the laser-plasma parameters necessary for the experimental demonstration 
of such high-repetition rate, laser-driven proton sources, free of plasma debris and EMP disruptions due to the 
gaseous nature of the target. The proposed plasma density window is preferred in order to get experimental access 
of near critical density gas targets25–31, which allows for the high flux of ions by employment of high-repetition 
rate, PW-class laser systems44. Currently, few PW-class laser systems44 are already in operation and advanced laser 
facilities such as, Extreme Light Infrastructure, will be able to provide laser pulses with several PW at the unprec-
edented operational repetition rate of 10 Hz. The choice of laser-plasma parameters in this proposed scheme is 
based on the upcoming, ultra-short, high repetition rate, PW laser systems, such as the HF-PW laser system to 
be installed at ELI-ALPS37.

Thus, the results are not only of fundamental importance to understand the ion acceleration mechanism and 
generation of high energy proton microbunches from near solid density dual species gas target but it also involves the 
ultrashort – ultraintense laser pulses, which could profoundly affect the development of laser-driven particle sources.

Methods
Particle-in-cell simulations.  In this report we performed simulations using the relativistic 2D3V PIC code, 
PIConGPU42, to illustrate the mechanism of ion acceleration and explore further the new acceleration mecha-
nism involved in it. In the proposed simulation linearly polarized PW laser pulses (800 nm wavelength laser) 
propagates along the x-direction through the simulation box. The transverse and spatial dimensions of simulation 
box is 10 × 80 µm2. The laser pulse incidents on target from the left side of simulation box. We consider here the 
spatial-temporal profile of laser beam as a Gaussian distribution. The laser beam of pulse duration 20 fs (FWHM), 
and it is focused to a bean size of 5 µm (FWHM). aL = 68 (corresponding to focused laser intensity) is the normal-
ised laser field amplitude. The simulations were performed for longer time duration of 300 fs to ensure the com-
plete dynamics of laser pulse through the target.

CH target considered in each simulation run is representing C and H plasma of density 1.0nc (critical density 
nc = 1.74 × 1021 cm−3). In longitudinal and transverse direction, we considered 100 cells per wavelength. The time 
step is 19.0 asec in this 2D3V simulations. For each species we considered the eight computational particles per cell.

Figure 7.  Comparison of ion energy distribution curves for target of mixed ion species (C & H) and pure H. 
Ion energy distribution curves are shown at time instant 200 fs (time when laser pulse propagates away from the 
target and ions are passed from rear side of plasma-vacuum interface).
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