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Abstract: The distributed high temperature measurement of an optical fiber subjected to electric
arc discharges based on optical frequency-domain reflectometry is experimentally demonstrated.
The distributed temperature profile is attained in an open glow regime of a few milliamps with
maximum detectable temperature up to 2100 ± 20 ◦C. The discharge arc-induced softened length of
the fiber and mechanical stress are measured and statistically analyzed in terms of the correlation of
the Rayleigh spectra. The large wavelength scanning range of OFDR enables much higher accuracy
for the delay time measurement with a minimum measured delay of 40 fs. The delay shift over the
entire heating range for a single discharge duration is statistically calculated by using a temporal
correlation method. The reliability of the thermal sensitivity coefficient as 10 pm/◦C for telecom single
mode fiber (SMF, @1550 nm) is quantitatively analyzed and evaluated by the correlation coefficient.
Lastly, a spectral mapping method is employed in spectrum monitoring for discharge dynamic impact
on the optical path length (OPL) and local Rayleigh scatter.

Keywords: optical fiber sensors; optical frequency-domain reflectometry; Rayleigh backscattering;
distributed temperature sensing

1. Introduction

Optical frequency-domain reflectometry (OFDR) provides both the high sensitivity and high
spatial resolution necessary to acquire the localized Rayleigh scatter pattern. It has been widely
applied to distributed temperature and strain measurement [1,2]. The basic working principle is
based on the assumption that the amplitude and phase pattern of local Rayleigh spectra have a static
random property over the fiber length, which can be modelled as a long, weak fiber Bragg grating
(FBG) with a random period [3]. Several research works have been reported regarding high splicing
temperature measurement in electric arc discharges. I. Hatakeyama et al. used a microradiation
thermometer to obtain the fiber core temperature up to 2000 ◦C while investigating the fusion splices
for single mode fiber [4]. By relating the internal stress relaxation to the temperature and annealing
time of optical fibers, Y. Mohanna estimated the electric arc temperature at around 1450 ◦C, with a
Gaussian distribution [5]. G. Rego et al. used blackbody radiation to determine the temperature of
a small piece of fiber exposed to an electric arc discharge at 1450 ◦C [6]. Afterwards, they used an
electrically insulated Type S thermocouple to measure the temperature of an optical fiber while being
heated through electric arc discharges at 1400 ± 50 ◦C [7]. The difficulty in estimating extremely high
temperatures within a narrow spatial region, such as the heating environment created by the splicing
arc of sub-mm makes the OFDR sensor to be the best candidate for distributed high temperature
measurement in an open thermal equilibrium system. The temperature in the fiber during the electric
arc discharge is an important parameter, as it is related to splicing loss, fabrication of gratings with
different reflection, and hence, optimization of the fusion splicer. It would be interesting to have an

Sensors 2020, 20, 6407; doi:10.3390/s20226407 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2325-1198
http://www.mdpi.com/1424-8220/20/22/6407?type=check_update&version=1
http://dx.doi.org/10.3390/s20226407
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 6407 2 of 15

insight of the distributed thermal radiation and convection generated by the electric discharge on the
fiber by taking advantage of the high spatial/temporal resolution of OFDR.

In this study, we present a feasibility study inside a fusion splicer using telecom fiber based on
OFDR with a high spatial resolution of 8µm over a less than 10-mm length of the fiber by measuring
the thermal-induced wavelength shift in the reflected spectrum of the Rayleigh backward scattering
(RBS) [3]. The results presented herein demonstrate the capability of the distributed ultrahigh
temperature measurement based on OFDR, with the possibility of maximum detectable temperature
for optical fiber up to 2100 ◦C created by an electrical arc. The 10 pm/◦C as temperature sensitivity
coefficient is maintained at an ultrahigh temperature gradient with a Gaussian-like profile. Based on [8]
the viscosity, the vitreous silica determines the softening and annealing temperature of the material.
By referring to the variation of viscosity as a function of temperature, we can evaluate transient
temperature near the phase changing condition. The temperature is quantitatively evaluated by
zero-mean normalized cross-correlation (ZNCC), which compares the similarity of Rayleigh spectra of
the same fiber location under heating and cooling conditions. In addition, internal stress induced by the
high temperature gradient of discharge is statistically analyzed at different arc currents. The thermally
induced group delay shift of the Rayleigh pattern is observed by correlating reference and measurement
traces in time domain based on OFDR. We attribute this to the thermal energy transferred from ARC
current flow to the material of vitreous silica via ultraviolet absorption and thermal convection,
which initially leads to the transition of electrons from ground state to excited state and the thermal
motion of the lattice, and hence changed the optical path length (OPL). A multiple delay shift induced
by coexisting phase modes was also determined by employing this method, which provides a new
assessment tool on the relative delay of the scattering response. Lastly, dynamic monitoring of the
discharge impact on the OPL and intensity change in the Rayleigh spectra with time over 1 s is
presented using OFDR. Different from OTDR with time sampling due to the repetition rate which
missed some time dependent information, wavelength scanning in OFDR is superior for dynamic
ARC measurement, which enabled continuous measurement of delay time induced by the refractive
index change of the fiber melting in the ARC process. Combined with a spectral mapping method,
it provides continuous tracking for intensity change over spatial and spectral dimension. The OTDR
technique recovers phases over small wavelength change while the refractive index change over small
wavelength range can be neglected, often a few pm range, and hence accuracy of the relative time
delay change is limited to a fraction of the pulse width (a few ns). However, the refractive index
change over wavelength range of 100 nm with OFDR enables much higher accuracy for the delay time
measurement with minimum measured delay shift of about 40 fs, when the rest of the fiber has no
change in refractive index, one can attribute the measured delay to the arc process in the sub-mm
region, which increases time resolution for dynamic measurement.

2. Principle and Experimental Setup

The experiment setup designed for distributed high temperature measurement in a commercial
fusion splicer (Ericsson, Sweden) is shown in Figure 1. Initially, a tunable laser source (TLS, New-Focus-
Venturi-TLB-6600, Newport Corporation, Irvine, CA, USA) was coupled into the fiber and split the
light into two parallel branches of Mach-Zehnder interferometer, one of which functioned as the
auxiliary interferometer (AUI), circled by a dash square. The output of AUI played as an external clock
for data acquisition, a known frequency-sampling method and widely adopted for its accuracy and
convenience in coping with the nonlinearity of the laser tuning [9]. Another branch named as main
interferometer (MI), was used for the interrogation of the fiber under test by splitting the injected light
into reference and probe arms. In this setup, light propagating in the probe arm was further guided
by a circulator and returned in the form of the backward Rayleigh scattering, delayed and encoded
with dynamic discharge action. Reflected probe fields then recombined with the reference fields and
created detectable beat patterns as interference signal, eventually recorded by photodetectors and
digitalized for post data processing. A polarization beam splitter (PBS) and a polarization controller
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(PC) were used to balance the reference light evenly allocated into two orthogonal polarization states,
labeled as S state and P state. This polarization diversity technique is used in OFDR to mitigate
signal fading due to polarization misalignment of the interfering measurement and local-oscillator
fields [10]. Considering the wavelength tuned linearly by the laser, light propagating in the reference
arm arrives at the photodetector prior to that in the probe arm, which leads to a delay between the
two arms and hence the generation of the beat frequency corresponding to the delay. Essentially,
for a single wavelength, the delay of the light propagating in a single mode fiber (SMF) depends on
the ratio of the speed of light in vacuum to the product of local refractive index n and its physical
length L. The dispersion in a short length of SMF can be negligible over a small range of wavelength,
the local refractive index of SMF can be replaced by a global constant to locate the position under high
temperature. The spatial resolution in Rayleigh scattering measurement is determined by the spectral
bandwidth of the tuning range according to:

∆z =
λsλe

2ng∆λ

where ng is the group index of the fiber under test, holding with an assumed constant value of 1.47.
λi and λ f are the initial and final wavelengths, ∆λ is the total scanned wavelength range in the
measurement. In this setup, the laser scanned from 1520 nm to 1620 nm, which corresponds to a
spatial resolution ∆z approximate to 8 µm. However, the thermal-induced refractive index change
and fiber expansion makes the former approximation of refractive index no longer valid considering
the locally nonuniform change in OPL under arc. The 1D Maxwell equation in an inhomogeneous
and time varied medium due to the relative permittivity changing with position and time along the
propagation direction can be written as:
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Figure 1. Schematic of the optical frequency-domain reflectometry (OFDR) system for electrical arc
discharge measurement applied with different currents.

If we further consider a spatial nonuniformity and assume static waveguide, ∂ε/∂t = 0, and ignore
the time and wavelength dependence on the local refractive index change, which is valid for an open
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thermal equilibrium state over a small range, we can simplify the refractive index as a function of
position, and thermally induced optical path length Γ̃(z) on Rayleigh scattering response at position z as:

Γ̃(z) =
∫ z

0

√
ε+ δε(̃z)d̃z

where ε and δε are the average relative permittivity and its spatial fluctuation, respectively. Basically,
the delay information is the result of a spatially resolved interference pattern via Fourier transformation.
Note a delay shift of Rayleigh pattern occurs under the arc condition due to the increased OPL that
was measured in reference to room temperature.

3. Experimental Results and Data Analysis

3.1. Distributed Temperature Profile Varied with Currents

In the splicer used, the electrode gap length and fusion time were fixed and the arc current
varied, which determined the overall glow heating temperature. A stripped fiber held in embossed
grooves was aligned and clamped on the fusion stage and we ensured that it was immobile during
the multiple discharges without any external pulling or pushing forces applied. Changes caused by
an external stimulus (such as strain or temperature) in turn gave rise to shifts in the locally reflected
spectrum of the Rayleigh scattering. As the spectrum shift was proportional to the stimulus applied
on the fiber, these local spectral shifts could then be calibrated and applied to a distributed strain or
temperature measurement. To begin with, the measurement of the Rayleigh scattering signature was
accomplished at almost the last second of the discharge by artificially controlling the commencement of
data collection, then followed by measuring the signature at room temperature, which was taken as a
reference. By correlating the Rayleigh spectra measured at two different thermal conditions, the related
wavelength shift was then determined and hence relative temperature variations.

In our setup, the tuning rate of the light source was set to 100 nm/s, hence the auxiliary
interferometer equipped with a 24.3 m length of delay fiber generated a sampling rate of 1.55 MHz for
Digital Acquisition (DAQ). Every single trace, either for S or P polarization state, took up to 1.03 s,
being detected by photodetector (Thorlabs-PDB130C) and eventually generated into a 1.6 mega-sample
of raw data by digital acquisition card (NI-PCI6115). The splicer with electric current between 4.0 mA
to 6.0 mA was applied to the fiber. It was noted that a discharge of a total of 7 s duration was set to
guarantee an open thermal equilibrium system so that the heating area could be reached prior to the
initiation of measurement and all data collections were accomplished before the end of discharge.

The interference pattern was digitized in the frequency domain and post data processing involved
three specific steps for both measurement and reference trace, which are displayed in Figure 2. Firstly,
fast Fourier transform (FFT) was performed to convert both traces from frequency domain into time
domain and obtain the scattering response as a function of time delay, which referred to Rayleigh
pattern versus position. Secondly, applying an appropriate window in the transformed domain to
extract the spectrum response of interest via inverse fast Fourier transform (IFFT). Finally, determining
the wavelength shift by using ZNCC between two spectra separately from reference (room temperature)
and measurement (glow heating).
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Figure 2. Demonstration of general method of calculating a thermal shift.

The thermal sensitivity coefficient of vitreous silica fiber is estimated at 10.0 pm/◦C for temperature
calibration at telecom band [11,12]. As the reference trace was logged at room temperature around
22 ◦C, the estimated distributed high temperature profile as a function of fiber position are given in
Figure 3, which varied with five applied currents and were shaped in Gaussian-like distributions.
As to the straying dots in the results of 6.0 mA, they resulted from increasing errors of ZNCC derived
from the thermal expansion and material transition occurring in the vitreous silica, which as a result
deteriorated the correlation of the Rayleigh spectra between reference and measurement. It is noticeable
that with the high density of released energy, the discharge created a great temperature gradient in the
dimension of the sub-mm scale, which expanded as the applied current added up. The heat transferred
to the fiber was primarily dissipated to the surroundings via radiation and thermal conduction down
the length of the fiber. The maximum detectable value for the higher temperature measurement was
up to 2100 ◦C and limited by the internal variation of Rayleigh spectra induced by the time-varying
structure in the discharge duration, which was dominantly determined by the viscosity of the vitreous
silica at different temperatures [8]. The result to some extent, coincided with the previous report on an
optimum heating temperature of 2000 ◦C, near which, the surface tension and melted silica viscosity
played roles in recovering fiber alignment so that less splice was obtained [4].
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Figure 3. Distributed temperature profile varied with five selected currents along the fiber.
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A moving window for retrieving RBS from the heating area contained 31 points, which corresponded
to a spatial resolution of about 250 µm. The length of the heating area was up to 6 mm with a total of
10 mm converted by the moving window. Basically, the length of window used in IFFT for retrieving
Rayleigh spectra of interest from reference and measurement determined the weight of contribution from
local Rayleigh pattern. When a window of small length was applied, limited local contribution led to
the insufficient spectral resolution to confirm the wavelength shift. Inversely, a larger length of window
would average the detailed information derived from local spectrum. Generally, the straying dots in
the result of 6.0 mA implied the little similarity of the two spectra in terms of correlation coefficient,
which meant a great change occurred in between, for example, a softening and solidifying process.

Figure 4 indicates the relationship between the maximum temperature values of equivalent
wavelength shifts and varied currents applied in multiple measurements, marked by black dots. A red
dot represents a mean value for one current, with a standard error of mean for 20 individual tests
(only 7 tests for 6.0 mA). Note that the plotted values were the ones with a correlation coefficient of
wavelength shift above 50%, which ruled out the higher ones with less reliability than 50%. Detailed
analysis of the correlation coefficient will be discussed later.
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Figure 4. Relationship between wavelength shift (temperature) and applied discharge currents.

In summary, we demonstrated a new method for distributed high temperature measurement
in a commercial fusion splicer based on optical frequency-domain reflectometry. The distributed
temperature profile was attained by ZNCC between reference and measurement. The detectable peak
temperature for optical fiber was equivalent up to 2100 ◦C at a nearly open thermal equilibrium system
with approximate 6 mm length of thermal conduction area. It is, to our best knowledge, the first
demonstration of the OFDR capability of ultrahigh temperature sensing with an upper limit of 2000 ◦C
with the use of single mode fiber. Potential applications of this technique are measurement of rapidly
changed temperature with sub-mm spatial resolution over 2000 ◦C for telecom fiber.

3.2. Statistical Analysis of Internal Stress Induced by Electrical Arc

Generally, a conventional static large strain test may not significantly change the Rayleigh
scattering pattern as the discharge does. As the discharge process involved the heat transfer of
high energy density from electrode to vitreous silica fiber, the measured reflected spectrum should
have been affected consequently, which might give rise to optical loss and mechanical stress [13,14].
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It probably came from the refractive index change arising from the optical absorption of localized
electrons via ultraviolet radiation and thermal convection, energy transfer from electron motion to
electron potential, thermal motion of lattice, thermal diffusion of dopants as well as phase transition
from solid to liquid, and in between. Measuring the viscosity of the pure vitreous silica as a function of
changing temperature might help to understand.

To investigate the internal stress arising from the great temperature gradient with natural cooling,
multiple discharge tests were implemented at different currents. Local spectra of interest were extracted
from mea#1, ref#1, mea#2, ref#2, mea#3, ref#3, . . . , mea#i, ref#i, . . . , mea#n, ref#n in order, in which
the notation ‘mea#i’ represents the ith trace under discharge and ‘ref#i’ refers to the trace after the ith
discharge. ZNCC was adopted in calculating the wavelength shift between spectra before and after
discharge, such as ref#2⊗ref#1, ref#3⊗ref#2, ref#4⊗ref#3 . . . , where symbol ⊗ refers to ZNCC operation
on aforesaid spectra in the frequency domain, which was equivalent to internal formed stress. Note that
none of the spectra was a fresh one without enduring the process of heating and cooling. The strain
sensitivity coefficient was estimated to be 1 pm/µε as a common value for @1550 µm telecom single
mode fiber [11,15]. A statistical method was applied to evaluate the stress induced by the repeated
heating and cooling process. We found that high temperatures above the softening point followed with
natural cooling could result in an irreversible or permanent deformation in structure, which meant
internal stress came into being as a product of nonuniform energy distribution and dissipation.

The standard deviation of wavelength shift as a function of currents ranging from 4.0 mA to
6.0 mA are shown in Figure 5a. It transpired that the fused area involved the formation of internal
stress in which the wavelength shift arose gradually as current increased and showed a dramatic
increase as the current added up to 5.5 mA. Figure 5b statistically exhibits the distribution of the
correlation coefficients in a fused range that vary as a function of maximum wavelength shift under
different currents, which indicated the similarity between the two Rayleigh spectra before and after
discharge. In principle, the decrease in correlation coefficient is proportional to the displacement of
two indistinguishable correlated Rayleigh spectra, which is plotted as an ideal case in dash-dot line.
It is noted that as the current added up to 5.5 mA, this similarity began to collapse for the reason
of being largely fused and dropped dramatically with increased wavelength shift, which conversely
verified the deformation of fused silica due to the high temperature distribution. It was a real reflection
of a large amount of stress modes being formed over a nonuniform temperature gradient within a
small region over a short time. Hence the corresponding Rayleigh scatterings fluctuated at different
positions with different wavelength dependence. Therefore, repeat discharge tests were implemented
to illustrate the different situations of this nonuniform temperature distribution. As it was a random
process, a Gaussian distribution was verified by this evolution process.
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In summary, we proposed a correlation method to statistically analyze the stress that was induced
near the softening point with respect to the wavelength shift of spectra. Stress under different levels
of current were compared from repeated heating and cooling processes and it was noticed that
negligible structure deformation occurred at 4.0 mA while accompanied with significant change above
5.5 mA. Using this method, we detected the irreversible deformation that confirmed the occurrence
of phase transition in a fused range. Switching from the frequency domain into the time domain,
other meaningful information that could be extracted in terms of delay shift, such as the irreversible
expansion of the fiber length after repeated discharge, we discuss next.

3.3. Thermal Impact on Optical Path Length Indicated by Delay Shift

Ignore the dispersion effect of the ultrahigh temperature gradient in the silica fiber over the scanned
range of OFDR, which is responsible for a very small change in the fiber section. The thermal-induced
refractive index change and thermal expansion led to the changed optical path length over the heating
range. The scattering response could be converted to the time delay compared with no arc condition.
Theoretically, OPL reflects the delay of the scattering response in the time domain [16]. For OFDR in
distributed temperature and strain measurement, accumulated delay shift is measured via correlation
between changed and nonchanged measurement [12,15]. In practice, the spectral bandwidth of 100 nm
imposed the delay shift accuracy at sub-picosecond. To improve it, the original signal was treated by
zero padding prior to Fourier transformation into the time domain. Combining with ZNCC performing
on the two Rayleigh patterns of interest between reference and measurement, the time resolving ability
was enhanced by at least one order more than before. Detailed results are shown in Figure 6.
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Figure 6. (a) Variation of delay shift with different current; (b) relationship between delay shift
(equivalent change of OPL) and applied discharge currents.

Delay shift is a scattering response of measurement compared to the reference in terms of delay
time. We generally ascribe the delay shift to two contributions: the negative growth derived from the
melt-induced reduction of the refractive index and the positive growth built up by the thermal-induced
refractive index change and material expansion, which lead to the different scattering responses in
between. Both factors are temperature dependent and provide different contributions to the overall
delay. Note that there was a narrow delay interval centered around 18.11 ns, in which the delay
shift dropped below the reference level and after it rose to a stationary level, as shown in Figure 6a.
Compared with the previous result from the temperature profile in Figure 3, a deviation was noted
between the time that maximum temperature and minimum delay shift approached. It could be the
reason that the transition of localized electrons in silica occurred ahead of the thermal expansion of
material as heat transferred from glow discharge to fused silica fiber. As a result, the weight center of
negative growth moved ahead of the weight center of positive growth. Overall, the converted delay
shift using the zero padding method fluctuated around ±20 fs, indicating the intrinsic fluctuation
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of system. Accordingly, the delay shift over the entire heating range for a single discharge was
statistically calculated by the average value at both ends, which is shown in Figure 6b. It was
noted that the relationship between delay shift for a single discharge and the applied currents was
approximately linear.

For further investigation by using this temporal correlation method, as shown in Figure 7a, a multiple
delay shift was initially observed from the measurement under relative weak glow heating, in which a
new fiber was translated horizontally biased from the heating center with 4.5 mA current. The maximum
value was near 1300 ◦C inferred from the converted temperature profile as shown in Figure 7b, which is
below the softening point of fused silica. It was interesting to identify multiple scattering response shifts
after light being through the heating center. Considering the chemical composition in Germanium-doped
silica fiber at ultraviolet absorption band, the multiple delay shift could be derived from the Ge-dopant
melted in the heating center while silica was still solid at this temperature range, which played a role of
small-cavity leading to the multiple reflection of scattering light [17].Sensors 2020, 20, x FOR PEER REVIEW 9 of 15 
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Figure 7. (a) Multiple delay shifts corresponding to the (b) converted temperature distribution biased
from the heating center.

Basically, the selection of the reference for comparison determined what we observed from the
variation of delay shifts. In the previous result, the delay shift was calculated in pairs, in which reference
was not fixed but recorded subsequently after each measurement. As we expected, the thermal impact
from the previous discharge on the fiber was reduced properly. Instead, fixing a reference at one
current allows us to note the cumulative effect in terms of delay shift. As shown in Figure 8, vitreous
silica fiber may remain close to an elastic solid or maintain low expansion properties below the melting
temperatures corresponding to discharge current around 4.0 mA, 4.5 mA, since the corresponding
delay shift fluctuated within the computational error after enduring repeated heating and cooling.
Conversely, in the cases of 5.5 mA and 6.0 mA, the delay shift was accumulated as the number of the
discharges increased, which was exactly implied by the standard deviation of wavelength shift shown
in Figure 5a. It was also plausible if referring to the viscosity of vitreous silica above softening point at
1670 ◦C whereby the weight of the fiber itself and external impact from discharge probably played
roles in deformation or elongation of the fiber [8].
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Figure 8. Cumulative delay shift varied with the number of discharges for different currents.

In summary, based on temporal correlation between scattering response in reference and
measurement, distinct variation of the delay shift induced by the phase transition of fused silica was
observed in the duration of discharge. It also showed an advantage over the spectral correlation,
such as the detection of multiple delay shifts due to the coexisting phase modes that could not be
conferred from wavelength shift. Lastly, a cumulative delay shift was extracted from the repeated
discharge tests by using this method, which indicated the extent of OPL that may raise errors in the
spectral correlation method.

3.4. Analysis of the Correlation Coefficient

The correlation coefficient indicated the similarity between two spectra in comparison, and the
reliability of the value of the wavelength shift or delay shift we obtained by the ZNCC method.
By comparing the coefficient, we found an assessment to quantitatively evaluate how reliable the values
were for converted temperature or delay shift. Therefore, a coefficient above 0.9 represented strong
similarity of two spectra or patterns while below 0.5 could mean high deformation of one of the spectra
or patterns due to the transition of fused silica. The percentages of the coefficient above 50 or 60% were
calculated accordingly, the value of which generally gave the reliability of the temperature and delay
shift measurement at different currents, as shown in Figure 9c,d for temperature measurement and
Figure 10b for delay shift measurement.

In former temperature measurements, the wavelength shift between the two Rayleigh spectra
were calculated by ZNCC and converted into a temperature value with an assumed thermal coefficient,
which is shown in Figure 3. Since we had already obtained the wavelength shift and corresponding
correlation coefficient from multiple tests, statistical analysis was followed by grouping the coefficients
with respect to different currents as a function of wavelength shift. Intuitively, since high energy density
generated by electrical discharge gives rise to absorption in the ultraviolet band of vitreous silica,
the light propagation and scattering response should be influenced directly by the local refractive index
change and thermal expansion. For contrast, the averaged correlation coefficient versus wavelength
shift was separated into two groups corresponding to different spatial areas of the heated fiber region:
left-hand side, shown in Figure 9a and right-hand side, shown in Figure 9b. On the one hand, it denoted
that the similarity between two spectra descended concussively with ascending temperature, which was
characterized by wavelength shift. On the other hand, inferred from the size of the error bar between
the two sides, the variability of the coefficient at the right-hand side behaved more divergently than that
of the left-hand side. It presumably indicated the increase of the optical path length variability of the
fiber section through which the light was propagating, induced by the electric discharge. Similar data
processing was done for statistical analysis of delay shift measurement, which is shown in Figure 10a.
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Figure 9. Statistical analysis of the coefficient versus wavelength shift and percentage of coefficient
versus current: (a) coefficient versus wavelength shift at left-hand side; (b) coefficient versus wavelength
shift at right-hand side; (c) percentage of coefficient of wavelength shift above 50% for different currents;
(d) percentage of coefficient of wavelength shift above 60% for different currents.
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Figure 10. (a) Coefficient varied with maximum delay shift and (b) percentage of coefficients above 50%.

In summary, we gave an assessment of the coefficient obtained by the ZNCC method and
quantitatively evaluated the reliability of wavelength shift and delay shift based on the percentage of
the coefficient above 50 or 60% at different currents.

3.5. Dynamic Impact on OPL and Local Rayleigh Spectrum

Optical fiber fusion splicing involves a series of basic tasks and processes, which have been
discussed in [18]. Here, we proposed a spectral mapping method for monitoring the dynamic impact
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on the OPL as well as local Rayleigh scattering responses. By sacrificing the temporal resolution that the
length of moving window determined, we could achieve spectrum monitoring in terms of scattering
response within a single scan. Compared with the real-time monitoring of OTDR, this approach
was not limited by the repetition rate of pulses since Rayleigh spectra retrieved by IFFT exclusively
assembled the amplitude and phase components that different weights of the local Rayleigh pattern
held within the selected window at each moving step. Continuous variation of intensity in terms of
local reflection or scattering response were monitored by comparing to the reference one.

The dynamic impact of measurement on OPL was assisted by monitoring the fiber end in terms of
its transmission and delay time that accumulated from the discharge area. Regardless of the wavelength
dependence of the refractive index over the wide range of temperature, we could generally ascribe
this dynamic impact to the radiation-induced dynamic change of the refractive index, heat transfer
and thermal expansion of silica fiber. High reflection of the fiber end helped improve the contrast of
time-varying information, which inversely denoted the time-varying OPL that mostly derived from
the discharge impact. The processes which involved different durations of discharge are shown in
Figure 11a−d. There was a large fluctuation in Rayleigh scattering signal around melting temperature,
in which ∂ε(z)/∂t , 0 due to a large change in the refractive index among softening and solid regions
of fused silica over a short time. As a result, the noncontinuous changed transmission was measured
as expected, as it represented a rapid electronic response to the radiation of the arc that happened at
much faster speed than the response time of OFDR. For the following gradual variation of transmission
relaxing to a stationary level of delay time, it might refer to the relaxation time of phase transition
that was taking place during the heat transfer or diffusion process, which led to the expansion and
contraction of the material.
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Splicing mode involved prefusion cleaning, fusion splicing, refusion. In our test, push action
was set to be silenced and every single scan was accomplished in the duration that critical moment
happened. As shown in Figure 11a, two actions were involved by the order in which predischarge
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and normal discharge were implemented. For decomposing and vaporizing any debris attached to
the fiber, it first created a relatively high temperature environment that lasting for 0.2 s within a small
space, then followed by an extremely high temperature that normal discharge built up in order to rise
to the softening point.

For the duration of predischarge, the OPL decreased as the electric arc released, in which radiation
absorption led to the fast transition of electrons from ground state to excited state and hence the drop
of refractive index. It could be possible that delay time reached 27.275 ns as a minimum before the
thermal motion of the lattice began to dominate, which led to the expansion of the physical length
gradually, and extended the initial delay time from 27.305 ns to 27.310 ns. Followed by the predischarge
with 0.5 s gap, the arc of normal discharge created an extremely high temperature such that the
refractive index dropped instantly due to the rapid response of the electrons by radiation absorption,
and the delay reached the minimum. Inferred from the relaxation time of delay from minimum to
equilibrium, a tenth of a second is presumably required to transfer heat from the outside to the inside
of the fiber and establish a uniform temperature field. For the case of the redischarge process shown in
Figure 11b, the thermodynamics process was similar to the previous action modes. The only difference
was that without predischarge, it raised two discontinuities in terms of delay time, which might
involve an obverse and reverse phase transition between local solid and local liquid. In the duration of
discharge, shown in Figure 11c, a dynamic equilibrium state was maintained in an open thermal system.
Compared with the result obtained at room temperature, it was almost 0.2 ps longer, which confirmed
the delay shift discussed before. After termination of discharge, a discontinuity shown in Figure 11d
represented the phase transition from local liquid to solid accompanied with a relaxation time.

Corresponding to the variation of OPL in the duration of redischarge in Figure 12a, the monitoring
of dynamic impact on the Rayleigh scattering response is shown in Figure 12b. It was noted that
inside the red dot lines a distinct rise of intensity was observed from the local Rayleigh spectrum by
simply subtracting the monitoring result of measurement from reference. Presumably, it could be the
generation of the solid−liquid boundary that a high reflection condition was exactly formed as instant
release of arc kicking on the heating center, which severely brought down the refractive index locally
and led to the spark of Rayleigh scattering. The delay of spark also responded forwardly due to the
reduction of OPL, while the area inside the black dotted lines was the trace that multiple discharges
left before. Generally, the spark could indicate the softening of fused silica, which helped testify to the
limited current used for perfect splicing.
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In summary, we proposed a spectral mapping method for investigating the dynamic impact of
arc on the fiber with respect to the OPL and local scattering responses at different stages of discharge,
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which showed a spectral monitoring ability. It was noted that, based on the monitoring results obtained
by this method, the delay induced by the change of refractive index had tradeoffs with that induced
by thermal expansion under an open thermal equilibrium of discharge, and to some extent, delayed
response of the fiber end as a function of time indicated the relaxation time of phase transition, which
lasted tenths of seconds. Analysis on the discontinuity of phase transition in the release and extent of
the arc were also given. In addition, dynamic impact on the Rayleigh scattering pattern was found at
the beginning of the redischarge, this phenomenon disclosed the melting or softening of vitreous silica
at a certain moment.

4. Conclusions

Generally, we provided a feasible method for distributing ultrahigh temperature measurements
in a dimension of sub-mm scale based on OFDR, and investigated the thermal impacts starting from
initiation, duration, and termination of discharge by using a fused single mode fiber. The distributed
temperature profile was obtained by an assumed thermal coefficient of 10 pm/◦C @1550nm,
with maximum detectable temperature for fused silica up to 2100 ◦C under a nearly open thermal
equilibrium state. The effects on the statistical analysis of the internal stress induced by electrical arc
at different currents presumably gave a general estimation of the mechanical strength induced by
repeated discharge. It is interesting to note that by correlating the Rayleigh patterns in time domain,
the delay shift under discharge was observed accordingly at different currents with ±20 fs of system
fluctuation, which may provide a promising method on the group birefringence measurement, an
exploration of phase transition in materials. Evaluation of the reliability of the measurements has
been explored by statistically analyzing the correlation coefficient, indicating the limitation of OFDR
on the high temperature measurement. In the end, by adjusting the temporal resolution of Rayleigh
scattering response in time domain, a spectral mapping method is proposed for spectral monitoring of
the dynamic impact on OPL and local Rayleigh scattering response, which displayed a good advantage
over the real time monitoring of OTDR by not being limited by the repetition rate of pulse.
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