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Simple Summary: The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development
and it is commonly dysregulated in many diseases, including cancer. This highly concerted series
of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is
involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in
cancer is most often through a non-canonical method of activation, independent of ligand binding.
This review is intended to summarize our current understanding of the Hh/GLI signaling, non-
canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic
strategies targeting this cascade.

Abstract: The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator
of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and
Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling
regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2,
SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not
long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in
human disease. Activation of this signaling pathway is observed in many types of cancer, including
basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often,
the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism.
However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling
component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors
can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist
whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell
cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize
each component of the signaling cascade, non-canonical modes of pathway activation, and the
implications in human disease, including cancer.

Keywords: hedgehog; cancer; GLI; SUFU; canonical and non-canonical activation; Hh pathway in-
hibitors

1. The History of Hedgehog

The first identified components of the Hh/GLI signaling pathway were fused and
cubitus interruptus, the Drosophila homologue of the GLI family of transcription factors [1,2].
In 1980, Nusslein-Volhard and Wieschaus discovered the Hh ligand as part of their search
for embryonic lethal mutants in Drosophila. The pair discovered 15 genetic loci implicated in
segment patterning in Drosophila. When mutated, each locus produced distinct alterations
in larvae patterning. The mutation in the Hh locus produced denticles on the body of the fly
that were oriented in the opposite direction of non-mutants, indicating the importance of
Hh in polarity and development in larvae. The resemblance of these mutants to a hedgehog
inspired the name of this genetic locus. This study by Nusslein-Volhard and Wieschaus
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was foundational for the later characterization of the Hh signaling pathway, as they not
only identified the Hh ligand but also identified Ptch1 as another Hh-related locus crucial
for development [3].

Within the next two decades, scientists had thoroughly detailed the full DNA sequence
of the Hh gene in Drosophila [4–6]. From this work, researchers found a remarkable
sequence homology between the Drosophila Hh gene and that of vertebrates. First, the Sonic
Hedgehog (Shh) ligand was characterized in chick embryos, and not long after, the three
vertebral homologues, Shh, Indian Hedgehog (Ihh), and Desert Hedgehog (Dhh), were
discovered [7,8]. It was not until the late 1990s that the GLI family of transcription factors
was thought to be involved in the Hh signaling pathway [9–13]. Out of these discoveries
came the thorough characterization of the Hh/GLI signaling cascade that we are most
familiar with. GLI’s major negative regulator, suppressor of fused (SUFU), had already been
discovered at this point, but its direct interaction with the GLI family of transcription factors
was still unknown. In his study, Préat et al. investigated the phenotypic effects of the fused
protein and potential suppressors of this phenotype. This investigational team discovered
SUFU as the mitigator of the fused mutant phenotype. The fused mutant Drosophila have
alterations in segment patterns and often have ovarian tumors, but overexpression of SUFU
abrogated these phenotypes [14]. By the early 2000s, many components of the signaling
cascade had been discovered, and their interactions with each other were becoming known.

Along with the increasing understanding of the Hh/GLI signaling pathway compo-
nents came insights into its role in physiology. From the outset, alterations in segment
patterning in Drosophila caused by aberrant Hh/GLI signaling indicated a significant role of
the Hh/GLI pathway in development [1–3,14]. Nusslein-Volhard and Wieschaus observed
that mutations in Hh caused loss of ventral and bilateral patterning in larvae [3]. Mutations
in the Hh/GLI signaling pathway leading to disruptions in patterning which ultimately
affected normal development were confirmed by Préat in his study of fused [14]. Continued
studies into the role of Hh/GLI signaling in development confirmed that this pathway was
conserved in vertebrates, highlighting the importance of this signaling pathway, particularly
the necessity for highly regulated and timed activation of this signaling pathway to facilitate
normal embryonic development. The first indications of the involvement of the Hh/GLI
signaling pathway in the development of vertebrates were in studies of the morphogenesis
of the craniofacial complex. Mutations in Shh caused midline patterning defects in develop-
ing embryos that led to holoprosencephaly and cyclopia. Further studies into the role of
the Hh/GLI pathway in the development of the head uncovered this pathway as essential
for development of the frontonasal and maxillary processes. Even transient loss of Shh
in this context is sufficient to cause cleft lip/palate and mold holoprosencephaly [15–18].
In addition to craniofacial development, the broader role of the Hh/GLI signaling pathway
in embryonic development was being discovered. Aberrations in this signaling pathway
were now being linked to defects in the brain, spinal cord, skeleton, and limbs [18,19].

Evidence for a role of the Hh/GLI signaling pathway in human disease was not
defined until the late 1990s. The first implication was in basal cell nevus syndrome in
1996 [20,21]. Characteristics of this syndrome include formation of basal cell carcinomas
and developmental abnormalities usually involving the skin, further emphasizing the
importance of this signaling cascade in development [20–24]. Though this syndrome is
associated with the development of tumors, the direct implication of the Hh/GLI signaling
pathway in cancer came later. At this point, the Hh/GLI signaling pathway was implicated
mostly in non-cancer diseases, such as holoprosencephaly and other craniofacial devel-
opmental defects, abnormal skeletal development, aberrations in the nerve sheath, and
infertility [25–27]. More recently, this signaling cascade has been characterized as a major
contributor to a wide variety of cancers, such as basal cell carcinoma, medulloblastoma,
colorectal, prostate, pancreatic, and others [28–35].

By the early 2000s, researchers were beginning to appreciate the complexity of the
Hh/GLI signaling pathway, not only on a molecular level, but also in terms of disease
relevance. The pathway consists of a highly concerted series of interactions between lig-
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ands, receptors, transducers, co-regulators, and transcription factors, with the potential to
function both as an autocrine and paracrine signaling cascade. Further, the vast network of
target genes suggested a degree of responsiveness to cellular context inherent to this signal-
ing pathway. From the outset, there was a considerable degree of complexity to the Hh/GLI
signaling pathway that left some wondering whether this cascade should be considered as
part of a network instead of an isolated signaling pathway [36,37]. To date, there have been
40 genes identified as involved in the Hh/GLI signaling pathway in Drosophila, while there
are 56 Hh/GLI signaling pathway genes in mammalians [38]. Pathway components are
continuing to be discovered as we learn more about the mechanisms and functions of this
pathway and its complex nature.

2. Hh/GLI Signaling Pathway Components

The Hh/GLI signaling pathway is a highly regulated, concerted cascade of extracel-
lular ligands, receptor proteins, cytoplasmic signaling molecules, transcription factors,
co-regulators, and target genes (Figure 1). The interactions between components of this
signaling pathway are spatiotemporally regulated to ensure activation of the pathway only
in proper cellular and tissue context. Typically, the Hh/GLI signaling pathway remains
in the off state in mature, adult cells. The activation of this signaling cascade is required
for tissue development and homeostasis, and has a significant role in the maintenance of
pluripotent and somatic stem cell populations in the skin, mammary tissue, prostate epithe-
lium, neural tissue, exocrine pancreas, and lung epithelium [39–44]. Hh/GLI signaling is
also temporarily activated in wound healing and tissue repair, where stem cell populations
are actively contributing to tissue production [45]. This pathway is tightly regulated and
repressed in developed tissues, and dysregulation can lead to developmental disorders
and disease.

Figure 1. Activation of the Hh/GLI signaling pathway. Left panel: In the absence of ligand binding, PTCH exerts repressive
effects on SMO. GLI transcription factors are sequestered by SUFU and phosphorylated by PKA, CK1, and GSK3β, marking
them for proteolytic cleavage. The cleavage of the C-terminal domain creates GLIr, the repressor form of the transcription
factor. GLIr then translocates into the nucleus and represses the transcription of Hh/GLI target genes. Right panel: Hh
ligand binding to the extracellular domain of PTCH inhibits the receptor, relieving the repressive effects on SMO. SMO
then inhibits the sequestration by SUFU and phosphorylation by PKA, CK1, and GSK3β, sparing GLI from proteolytic
cleavage. The full-length form of GLI is a transcriptional activator that translocates into the nucleus and promotes the
transcription of Hh/GLI target genes such as PTCH1, GLI1, BCL2, Cyclin D1, IGFL1, HOXD8, and WNT. The canonical
Hh/GLI signaling pathway is most typically restricted to the primary cilium, however aberrant activation of this pathway
may occur in alternate cellular compartments such as the cell membrane.
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2.1. Extracellular Ligands

In vertebrates, the Hh/GLI signaling pathway can be activated by Shh, Ihh, or Dhh.
These extracellular ligands are lipid-modified proteins which, although they share high N-
terminal sequence identity (76–91%), carry out different developmental functions [46]. Dhh
had the lowest sequence identity to either Shh or Ihh. Its function is typically associated
with development of gonad tissue, specifically ovarian granulosa cells and testicular sertoli
cells [47–49]. Shh and Ihh, which exhibit the highest sequence homology, have some
shared functions in several tissues, yet their role in developmental regulation is mostly
unique. Ihh is a major regulator of skeletal development, particularly in endochondral
ossification [8,50,51]. Shh is critical in patterning in development, specifically implicated in
dorsal-ventral neural tube patterning, anterior-posterior limb patterning, and brain, teeth,
and foregut development [52–57]. Though similar, each ligand promotes tissue-specific
and highly regulated activation of the Hh/GLI signaling pathway.

Perhaps the most unique characteristic of the Hh ligands is the post-translational
modifications, including the addition of a cholesterol molecule to the N-terminal domain
which is required for activation and transport of the ligand between cells [58–60]. The Hh
ligands are originally produced as precursor molecules [60–62]. First, approximately 25
amino acids are cleaved from the N-terminal domain of the 46 kDa precursor molecule,
removing the signal peptide. Then, the remaining protein is further cleaved into the 19
kDa N-terminal fragment (N-Hh) and the 25 kDa C-terminal fragment (C-Hh) [25,62].
This cleavage is mediated by an internal, autoproteolytic mechanism [25,61,62]. The C-
terminal fragment has catalytic activity, whereby a cystine residue initiates a neutrophilic
attack on the neighboring glycine residue in the N-terminal fragment. This leaves a thioester,
which is then attacked by a cholesterol, resulting in the covalent attachment of a cholesterol
group to the C-terminal domain of N-Hh [25,58]. The cholesterol modification associates
with the lipid in the cell membrane, tethering N-Hh to the outside of the cell [25,58,59].
This association with the cell membrane facilitates the final processing step of the N-Hh
ligand: palmitoylation of the N-terminal domain by skinny Hedgehog acyltransferase
(Ski) [58,63,64]. Not only is the cholesterol group important in facilitating the palmitoylation
modification, but it has also been implicated in stabilizing N-Hh and facilitating long-range
transport of N-Hh for paracrine signaling [65–68]. Now that N-Hh is dually modified, it is
a fully activated signaling molecule. However, it is still tethered to the cell membrane of
the secreting cell. The protein, Dispatched (Disp), is responsible for releasing the tethered
ligand from the cell membrane as the final step in secreting the Hh ligand for activation of
the signaling cascade [25,58,69,70].

Though the fully modified ligand has been secreted, the simple release of the tethered
ligand is not enough to create the highly regulated morphogen gradient that is required for
N-Hh to regulate development. For this, additional proteins and enzymes are required to
chaperone the diffusion of the ligand. The heparan-sulfate-synthesizing enzyme, EXT, is
required for the movement of N-Hh [25,58,71–75]. Heparan sulfate proteoglycan (HSPG)
can by synthesized by EXT and localize to the cell surface, which can interact with N-
Hh and lipoprotein lipophorin to facilitate the loading of Hh into soluble lipoproteins to
facilitate the trafficking of the ligand [76,77]. An additional enzyme involved in mediating
the release of N-Hh from the cell surface is Sulfatase1 (SULF1). Through its desulfation
activity, SULF1 can disrupt the interaction between HSPGs at the cell surface. This can
work to both repress or facilitate Hh/GLI signaling. SULF1 activity on the cell surface of
the secreting cell will facilitate the release of N-Hh to stimulate signaling, whereas SULF1
activity on the cell surface of the receiving cell will disrupt ligand binding and repress
the Hh/GLI signaling pathway [77,78]. N-Hh is characterized as the signaling domain,
and through its interactions with various proteoglycans, enzymes, and lipoproteins, it will
ultimately bind the cell surface receptors of the receiving cell to initiate Hh/GLI signaling.
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2.2. Receptor Complex

The Hh/GLI signaling pathway receptors are localized to the primary cilia (PC) in
most tissues. This microtubule-based organelle emerges from the cell surface and is impli-
cated in mediating and interpreting mechanical, chemical, and thermal signaling [79–81].
The role of the PC as the Hh/GLI signaling transduction hub is conserved from inverte-
brates to vertebrates [61–64]. The transmembrane Hh ligand receptor, Patched (Ptch), is
located at the base of the PC [82]. In vertebrates, there are two homologs of this receptor,
Patched 1 (PTCH1) and 2 (Ptch2). In the absence of Hh ligand binding, these two recep-
tors are responsible for repressing the activity of Smoothened (SMO), a transmembrane
signaling protein [83]. PTCH1 extracellular domain contains a sterol-sensing domain (SSD)
which interacts with the cholesterol modification of the Hh ligands [84]. When Hh lig-
ands are bound to PTCH1, the receptor is internalized and trafficked to the lysosome for
degradation, thereby relieving its repressive effects on SMO [85,86].

In the absence of PTCH1, SMO is phosphorylated by CK1α and G protein-coupled
receptor kinase 2 (GRK2). This activates SMO and promotes its translocation into the
PC [87,88]. SMO translocation is mediated by β-arrestin and Kinesin-like protein Kif3A,
which interact with kinesin family member 7 motor protein (Kif7) for transport [89–91].
The SMO-β-arrestin complex inhibits both cAMP-dependent PKA and CK1, blocking the
phosphorylation and proteolytic cleavage of GLI2/3. The full-length GLI proteins are
active and will translocate into the nucleus to promote transcription of Hh/GLI target
genes [92–95]. Additional studies have shown that SMO is the source of an additional
signal through engaging GTP-binding regulatory proteins (G protein) [96–99]. SMO can
activate the Gi family of G proteins, which, in some cellular contexts, is required for
the activation of GLI transcription factors [96,98,99]. The involvement of G proteins in
activating GLI transcription factors provides a partial explanation as to how Hh/GLI
signaling can regulate such a wide variety of cellular functions. In recent years, SMO has
also been shown to bind cholesterol, which activates the receptor and contributes to the
Hh/GLI signal activation [100,101]. It is yet to be uncovered whether cholesterol binding is
required for canonical activation of the Hh/GLI signaling pathway or if this is yet another
mode through which Hh/GLI signaling can be activated, independent of the ligands.

PTCH1 is primarily expressed in mesenchymal cells, with Shh produced in neigh-
boring epithelial cells, while Ptch2 is expressed mainly in testicular and skin epithelial
cells [102,103]. Though both PTCH1 and Ptch2 are capable of binding all three Hh ligands,
PTCH1 is considered to be the primary receptor [104]. Additionally, co-receptors have
been identified that can modulate the activity of the Hh/GLI pathway. Boc, Cdon, and
Growth-arrest-specific-1 (Gas1) can interact with the Hh ligands to ultimately activate the
Hh/GLI signaling pathway [105–107]. On the other hand, co-receptors such as Hedgehog-
interacting protein (Hhip) can negatively regulate the Hh/GLI signaling pathway. Hhip is
a membrane glycoprotein that can bind all the Hh ligands, which prevents their interaction
with PTCH1 and ultimately attenuates the signal [108]. Hhip is a target of the Hh/GLI sig-
naling pathway and serves as part of the negative feedback loop, maintaining the balance of
Hh/GLI signal activity [35,108]. Together, these receptors can increase or decrease Hh/GLI
signaling, and are thought to regulate the level of activation of the Hh/GLI signaling
cascade [109].

2.3. The GLI Family of Transcription Factors

Triggering of the Hh/GLI signaling pathway results in the activation of the GLI family
of transcription factors to translate the extracellular ligand binding into a gene expression
response. The GLI family of transcription factors can interact with each other and a variety
of co-regulators to regulate specific subsets of gene targets based on those interactions.
Though GLI1–3 have high sequence homology, they exhibit differences in tissue expression,
transcriptional regulation, and binding partners. Not only does this increase the complexity
of the signaling cascade, it also helps to explain how a single signaling cascade can have
such a wide variety of transcriptional responses based on cellular and tissue context.



Cancers 2021, 13, 3410 6 of 26

The GLI family of transcription factors are a subfamily of the Krüppel family of
transcription factors, which share a highly conserved zinc-finger domain for DNA bind-
ing [94,110,111]. GLI1–3 contain a 5-finger domain towards the center of each protein.
Fingers 2–5 will recognize and bind the GACCACCCA motif, contacting the major groove
and wrapping around the DNA. Finger one does not contact the DNA [112]. It is thought
that the zinc fingers may also mediate protein–protein interactions [113]. Additionally,
each of the GLI proteins has a nuclear localization signal (NLS), a nuclear export signal
(NES), and SUFU binding domains [94]. GLI1 contains a single activation domain in
the C-terminus and GLI2/3 contain 2 activation domains in the C-terminus, which inter-
act with transcriptional activators to propagate the transcriptional activation effects of
the GLI family of transcription factors (Figure 2) [94,114,115]. While GLI1–3 all contain
C-terminal transactivation domains [94,116], only GLI2/3 contain an N-terminal repres-
sion domain, which contributes to their activity as transcriptional repressors [10,94,114].
The GLI proteins exhibit predominantly nuclear localization [111,117], and utilize both
NLS-dependent and independent mechanisms. GLI2/3 each contain two NLS, one which is
dependent on nuclear import machinery importin α/β, while the other NLS is independent
of this machinery and instead interacts with importin β2 [94,118,119]. The SUFU binding
domain, SYGH, is common amongst GLI1–3 and is required for negative regulation by
SUFU [118,120–122]. SUFU binding to this motif prevents recognition of the NLS on GLI,
supporting the cytoplasmic sequestration of GLI [118,120–122].

Figure 2. GLI1–3 regulatory and protein-interacting domains, post-translational modification sites, and interactions with
co-regulators. (A) GLI1–3 proteins and their relevant regulatory sequences and protein-interacting domains. RD (blue)
represents the repressor domain, D (orange) represents degron sequence, SB (cyan) represents the SUFU binding site, ZF
(green) represents the zinc finger domain, NLS (purple) represents the nuclear localization signal, NES (yellow) represents
the nuclear export signal, and TAD (red) represents the transcriptional activator domain. (B) GLI1 protein amino acids
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required for post-translation modifications. Serine 84 is recognized and phosphorylated by mTOR (pink). Serine 102,
Serine 408, and Threonine 1074 are recognized and phosphorylated by AMPK (red). Threonine 374 is recognized and
phosphorylated by PKA (blue). Serine 408 is also recognized and phosphorylated by DYRK1A (green). MEKK1 (yellow)
recognizes and phosphorylates a series of amino acids between Serine 461 and Threonine 1014. (C) GLI1 protein-interacting
domains for several co-regulators. SUFU (blue) binds the SUFU binding domain. GLI2 (purple) and STAT3 (green) can
complex and bind to the zinc finger domain. PCAF (orange) and SMAD2/4 (red) can bind near the degron. SMARCA2
(yellow) can bind in the trans-activator domain.

GLI protein activity is regulated through various mechanisms. Internal regulatory
sequences, post-translational modifications, and co-regulatory proteins all have a role in
modulating GLI activity (Figure 2). GLI2/3 contain destruction signals, one localized
to each terminus, that promote the rapid degradation of the protein and prevent cyto-
plasmic accumulation. The rapid turnover of the proteins prevents GLI transcriptional
activation [123]. A specific set of post-translational modifications (PTMs) mark GLI2/3 for
proteasomal degradation. In the Hh-off state, GLI2/3 will be phosphorylated by PKA on
the P1-6 domain, which allows CK1 and GSK3β to recognize and further phosphorylate
the proteins [94,114,123–126]. The phosphorylated GLIs can then be bound by βTrCP,
which facilitates ubiquitination by SCFβTrCP and promotes proteasomal degradation.
The C-terminal end of GLI2/3 is cleaved, removing the activation domain and facilitat-
ing the transition into the repressor form [10,30,124,125,127]. When Hh/GLI signaling is
active, GLI2/3 are not phosphorylated in this domain and are spared from proteasomal
degradation. The proteolytic processing of GLI2 is not as efficient as it is for GLI3, therefore
GLI2 is typically found in its full-length form [124]. GLI3 be found in the full-length form
contributing to tumorigenesis, however not as often as GLI2 [128]. Similarly, GLI1 is not
majorly regulated by proteasomal degradation. Instead, GLI1 activity is regulated at the
transcriptional level and by cytoplasmic sequestration [10,116]. GLI1 is typically not ex-
pressed in Hh-off cells, but when the signal is perpetuated by GLI2/3, in their active forms,
it can induce the expression of GLI1 to amplify the effects of Hh signaling [94,116,127].
Given that the proteolytic cleavage is most efficient in GLI3, it is not surprising that GLI3 is
typically seen as the transcriptional repressor, while GLI1/2 are suggested to be the main
transcriptional activators of the pathway [114,116].

In addition to proteasomal degradation, GLI proteins can also be regulated through
protein–protein interactions (Figure 2). GLI1–3 can bind with a variety of proteins, cytosolic
and nuclear, which can affect their transcriptional activity. The most common mechanism
of GLI repression is through SUFU binding. This negative regulator is thought to sequester
GLI1–3 in the cytoplasm to prevent nuclear translocation and further transcriptional activa-
tion of Hh/GLI signaling pathway target genes [129]. Similarly, MEKK1 can phosphorylate
the C-terminal domain of GLI1, promoting its association with 14-3-3, a cytoplasmic pro-
tein, thereby sequestering it in the cytoplasm and inhibiting nuclear translocation [130].
Another GLI protein interaction is with Missing in Metastasis (MIM), which can interact
with the SUFU-GLI complex and facilitate the release of GLI1–3, enhancing transcriptional
activation [131,132]. Additional proteins such as aPKC can bind with GLI-bound MIM
complex and can further phosphorylate GLI1, leading to maximal DNA binding affinity
and therefore maximizing the transcriptional activation via GLI1 [131]. Similarly, mTOR
can promote GLI1 dissociation from SUFU by phosphorylating it, which simultaneously
promotes nuclear translocation and enhances GLI1 activity [133]. The GLI proteins can
also interact with other nuclear proteins to enhance transcriptional activation. GLI2/3 can
interact with CBP/p300 via their C-terminal domain to promote transcription [134–136].
The histone acetyltransferase, PCAF, can interact with GLI1 in the promoter of target
genes to promote open chromatin conformations and help facilitate transcription [137].
This PCAF–GLI1 interaction has also been observed in TGFβ signaling with the addition
of SMAD2/4 to the complex [138]. Interestingly, PCAF may also negatively regulate the
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activity of GLI1 through its ubiquitin ligase activity. PCAF interaction with non-DNA-
bound GLI1 will result in ubiquitination of GLI1, ultimately targeting it for proteasomal
degradation and inactivation [139,140]. SMARCA2 is yet another known co-activator of
GLI1. The direct protein–protein interaction can facilitate an open chromatin conformation
to promote transcriptional accessibility of target genes [141]. Similarly, SMARCA4 has been
shown to interact with GLI1/3 to activate gene transcription and to interact with GLI3R to
repress gene transcription through mediating an open or closed chromatin conformation,
respectively [142]. Through their transactivation domain, GLI1/2 can interact with TAF9, a
transcriptional co-activator, to enhance their transcriptional activity [143,144]. GLI1 has
also been shown to interact with DYRK1A, which can enhance GLI1 transcriptional activity
through two different mechanisms. First, DYRK1A can retain GLI1 in the nucleus [145],
and DYRK1A may also phosphorylate GLI1, positively regulating its transcriptional ac-
tivity [94,116]. DYRK2 carries out the opposite effect on GLI2, where phosphorylation of
GLI2 targets the protein for proteasomal degradation, producing the repressor form of
GLI2 [94]. Similarly, AMPK can phosphorylate GLI1 and target the protein for degradation,
thereby inhibiting transcriptional activity. Within the nucleus, when GLI2/3 bind DNA in
a repressive form, they can recruit histone deacetylases (HDAC) to the N-terminal domain
to promote chromatin remodeling and gene silencing in that region [94]. Interestingly,
GLI interactions with HDACs have also been shown to mediate GLI induction of target
genes as well, acting as positive regulators of GLI function [142,146]. GLI1 and GLI3 can
interact with SOX9 in the promoters of genes involved in chondrocyte differentiation, and
this interaction can both activate or repress target gene transcription based on cellular con-
text [147]. In addition to the aforementioned interactions with co-activators and repressors,
the GLI family of transcription factors can form dimers to regulate the transcription of a
subset of Hh-responsive genes. GLI1 and GLI2 have been shown to physically interact,
and depletion of GLI1 can inhibit GLI2 occupancy in some promoters (BCL2, MYCN, and
CCND1), indicating that this interaction may be required for activation of a subset of GLI-
regulated genes [148]. The protein interactions and PTMs are numerous, each impacting
GLI activity in a unique way and supporting the adaptability of this signaling pathway to
cellular context.

The major negative regulator of the GLI family of transcription factors, SUFU, is a
484 amino acid protein that acts as a negative regulator of GLI1–3 [149]. SUFU can act as
an adaptor protein, binding GLI1–3 and interacting with additional components of the
cytoskeleton to sequester GLI or interacting with kinases to promote PTMs of GLI. It has
also been suggested that SUFU acts as a chaperone in GLI1–3 nuclear translocation. Taken
together, SUFU has a determining role in the cellular localization of GLI1–3, and this is
the main mechanism through which SUFU carries out its regulatory effects on the GLI
proteins [150]. Increasing evidence to support both theories suggests that SUFU may act
through different mechanisms to regulate GLI activity [118,151–153]. SUFU localizes to
both the cytoplasm and nucleus, and a recent study showed two of the mechanisms by
which SUFU represses GLI1/2. For GLI1, SUFU piggybacks off of the CMR1-mediated
nuclear export of GLI1 to promote cytoplasmic localization of GLI1 and repress its activity.
For GLI2, SUFU uses a cytoplasmic tethering mechanism [154]. The latest characterization
of the full-length SUFU demonstrated that this protein can alternate between an open and
closed state, which is influenced by the presence or absence of GLI binding. The alternation
between these states is conserved between human and Drosophila SUFU protein, indicating
that this behavior is important for SUFU function. The N- and C-terminal domains of SUFU
will come together to “sandwich” GLI and promote a stable interaction. It is suggested that
GLI might mediate SUFU’s conformational change from the open to closed state, interacting
with both the N- and C-terminal domains and dragging them together. The closed state
predominates when SUFU is negatively repressing GLI activity, and this conformation is
inhibited when Hh/GLI signaling is active. GLI dissociation is promoted by Hh signaling,
and SUFU takes on the open conformation, yet the mechanistic details of this dissociation
are still unknown [153].
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SUFU is an adaptor protein and interacts with both cytoplasmic and nuclear pro-
teins. Most of the SUFU protein–protein interactions are with other negative regulators of
transcription, however, there have been a few reports of SUFU interacting with positive
regulators of transcription, though the nature of those interactions has not been fully charac-
terized. SUFU can interact with SAP18, a component of the Sin3 co-repressor complex that
recruits HDACs to remodel chromatin in promoter regions and decrease gene expression.
SUFU, SAP18, and Sin3 cannot bind the DNA, but require the SUFU–GLI interaction to be
recruited to GLI-responsive promoters [154–156]. SUFU can also interact with an E3 ligase,
Skp1-Cul1, and an F-box protein, Fbxl17, which ubiquitinate SUFU upon Hh signaling and
facilitate SUFU degradation within the nucleus [157]. This relieves SUFU repression of
GLI and promotes transcriptional activation. SUFU interaction with PKA and GSK3β can
prevent its nuclear degradation and stabilize Hh/GLI signaling. It was recently discovered
that SUFU can interact with protein phosphatase 4 regulatory subunit 2 (Ppp4r2) to dephos-
phorylate it, leaving it susceptible to degradation via Skp1-Cul1 and Fbxl17, driving the
turnover of SUFU in the nucleus [150]. Lastly, Galectin 3, a partner of pCIP, was identified
as another SUFU-interacting protein, suggesting that SUFU might be involved in mRNA
maturation [154]. pCIP also has acetyl transferase activity and can interact with CBP and
p300, indicating that SUFU may also be involved in the recruitment of proteins which facil-
itate gene transcription [138,154]. Nuclear SUFU can also interact with various regulatory
proteins, including p66β and Mycbp, which can negatively and positively regulate the
functions of SUFU, respectively [158]. SUFU can interact with a variety of proteins which
can influence its role as a repressor in the Hh/GLI signaling pathway.

The various degrees of cooperation between GLI1, 2, and 3 create a network of inter-
action commonly referred to as the GLI code. The interactions between these proteins are
largely dictated by cellular context, and the repressor and activators can work together
to create a spectrum of transcriptional responses [32,127]. Isoforms of each GLI protein
have been characterized, and like GLI1–3, some of these isoforms exhibit additional tissue
specificity. This contributes further to the various roles and cellular responses of Hh/GLI
signaling, and promotes unique downstream effects based on tissue type or cellular con-
text [128,159,160]. The GLI network is not yet fully understood, but there are a few contexts
in which the interactions have been characterized relating to frog neuronal networks. Early
studies of different combinations of GLI activity required for appropriate embryo pattern-
ing revealed that only GLI1 can induce floor plate differentiation, while only GLI2/3 were
involved in skeletal patterning [114,161]. Further, GLI2/3 can inhibit GLI1 induction in the
ventral forebrain and floor plate in developing frog embryos [162], while GLI3 can inhibit
motoneuron induction by GLI2 in a different context [161]. These examples illustrate the
context-dependence cooperation of GLIs that can ultimately affect GLI activity. The notion
of a GLI network can help to explain some of the contradictory findings of GLI activity
that we can otherwise not explain. This includes GLI3 having an alternate subset of gene
targets in the presence or absence of GLI1, or GLI2/3 cooperation having opposite effects
on GLI1 activity compared to GLI3 alone [32,127]. Further, GLI1 and 2 have some common
targets, yet also have distinct subsets of gene targets, further supporting the idea of GLI
cooperation ultimately affecting the transcriptional activity on target genes [163].

Another subfamily of the Krüppel family of proteins is the GLI-similar (GLIS) tran-
scription factors. GLIS1–3 contain zinc-finger domains and are closely related to GLI1–
3 [111,164,165]. Apart from the highly conserved zinc-finger domain, GLIS1–3 have rela-
tively low sequence homology [164,166–169]. These proteins are localized to the primary
cilium and can undergo nuclear translocation after activation via PTMs, similar to GLI1–3.
Once inside the nucleus, GLIS1–3 can bind DNA through the zinc-finger domain and
regulate transcription. GLIS can recognize and bind the GLI binding motif, which suggests
the potential for interaction between these two subfamilies of Krüppel proteins [111,170].
When co-expressed, GLIS2 can inhibit reporter activity of GLI1 [170]. GLIS can act both as
transcriptional activators and repressors, and have been shown to interact with CtBP1 to
recruit histone modifiers and promote transcriptional repression [164]. GLIS are involved in
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a wide variety of cellular processes, including cell proliferation, apoptosis, differentiation,
and development. The potential for crosstalk between GLIS1–3 and GLI1–3 increases the
network of interaction described in the GLI code.

2.4. Hh/GLI Signaling Pathway Target Genes

The Hh/GLI signaling pathway is implicated in development, and typically, the
target genes of this pathway are cell-type- and context-dependent. Many of the general
gene targets of this pathway are developmental regulators, such as FGF4, Pax6-9, ABCG2,
and Hhip, cell cycle regulators such as CCND2 and CCNE1, apoptosis regulator, BCL2,
transcription factors FOXM1 and N-myc, and Wnt pathway proteins, JAG1, SFRP1, and
Wnt [4,108,171–176]. In stem cells, Hh/GLI signaling can induce genes such as BMI1,
LGR5, CD44, and CD133 through crosstalk with other signaling pathways such as Wnt.
To promote epithelial-to-mesenchymal transition (EMT), the Hh/GLI signaling pathway
can upregulate genes such as SNAI1, SNAI2, ZEB1, ZEB2, TWIST2, and FOXC2 [177].
Additionally, the Hh/GLI signaling pathway can induce the transcription of PTCH1 and
Ptch2 as a form of pathway regulation [178]. Through direct induction of gene expression
and interaction with various pathways, the Hh/GLI signaling pathway has a wide range
of gene targets that can regulate cell cycle, promote differentiation and proliferation, EMT,
and many more functions.

3. Non-Canonical Activation of the Hh/GLI Signaling Pathway

Typically, canonical pathway activation refers to extracellular ligand (Shh/Dhh/Ihh)
binding PTCH1 and relieving repression of SMO to activate the downstream signaling
cascade [179,180]. Though vitally important in development, canonical pathway activation
is not widely implicated in disease. Instead, a non-canonical activation of the Hh/GLI
signaling pathway, whereby SMO is bypassed, is a typical driver in disease. Non-canonical
Hh/GLI pathway activation typically refers to SMO-independent activation, but sometimes
more broadly includes ligand-independent pathway activation [180]. While Ptch1 is
considered the primary Hh ligand binding target, other targets include Boc, Cdon, and
Gas1. These interactions can activate the Hh/GLI signaling pathway independent of the
Ptch1 receptor, as mentioned in the previous section. In addition, these receptors also play
a critical role in other signaling pathways, such as myogenesis, axon guidance, CREB, ERK,
GPCR, and apoptotic pathways, just to name a few [105–107]. While these binding targets
can be considered part of the non-canonical activation of the Hh/GLI signaling pathway,
there are two main mechanisms by which the signaling cascade can be activated to induce
non-canonical Hh/GLI signaling. Type I is a SMO-independent mechanism and type II is a
SMO-dependent mechanism that bypasses the GLI family of transcription factors.

In type I non-canonical Hh/GLI pathway activation, PTCH1 does not interact with
the SMO receptor. Instead, PTCH1 is involved in the regulation of cell cycle and apop-
tosis through the caspase protein, and Shh ligand binding to the extracellular domain
of PTCH1 can influence these interactions. In the unbound state, PTCH1 interacts with
phosphorylated cyclin B1 [181,182]. PTCH1 can also recruit caspase-3, which will cleave a
portion of the C-terminal domain of PTCH1. This cleavage will release caspase recruitment
domain family member 8 (CARD) and adaptor protein found and a half LIM domains 2
(FHL2)/DRAL. This leads to the activation of caspase-9, which ultimately triggers apop-
tosis. When Shh binds to the extracellular domain of PTCH1, it inactivates the receptor
and prevents this caspase-mediated apoptosis [182]. Moreover, cyclin B1 is released from
the intracellular domain of the PTCH1 receptor and facilitates cell proliferation [181,182].
Type II non-canonical pathway activation is SMO-dependent, but does not rely on the GLI
family of transcription factors to propagate its effects. In addition to promoting the active
form of the GLI family of transcription factors, SMO also has functional G-protein coupled
receptor (GPCR) properties with selectivity to heterotrimeric Gi proteins, through which
it carries out this type II non-canonical pathway activation [96,182]. When the Hh ligand
binds and inactivates PTCH1, SMO is activated. SMO uses these Gi proteins to activate
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phosphoinositide 3-kinase (PI3K) kinase, small GTPases Ras homologous family member
A (RhoA), and Ras-related C3 botulinum toxin substrate 1 (Rac1) [183]. The SMO-Rho
cellular response is rapid and leads to the reconstruction of actin cytoskeleton along with
stress fiber formation, tubulogenesis, and tumor-dependent angiogenesis [184]. In addition
to activating PI3K, RhoA, and Rac1, Gi proteins also promote Ca2+ influx into the cytosol.
The Shh-SMO-Gi protein cascade activates phospholipase C (PLC) production, which
increases PI3K and promotes opening of calcium channels in the smooth endoplasmic
reticulum membrane, leading to a cytosolic spike in Ca2+ [185]. This Ca2+ influx affects
differentiation, proliferation, apoptosis, and the migration of both neural and neuronal
precursor cells [186,187]. Additionally, partial SMO agonists have demonstrated the ability
to uncouple the SMO-Ampk-Ca2+ signaling axis from the Hh/GLI signaling pathway and
drive metabolic changes favoring the Warburg effect [188]. Together, the effects of type II
non-canonical Hh/GLI signaling pathway activation can lead to cytoskeletal reconstruction,
angiogenesis, and proliferative effects, contributing to the progression of cancer.

Crosstalk between other signaling pathways is another way in which the Hh/GLI
pathway can be activated independent of ligand binding. There are many reports of the
TGFβ, KRAS, and Wnt/β-catenin pathways activating the downstream constituents of
the Hh/GLI pathway (Figure 3) [189–201]. The TGFβ signaling pathway is one of the
most well-characterized pathways to interact with the Hh/GLI signaling. This cascade
consists of a family of ligands which bind to TGFβ receptor II and facilitate its dimerization
and recruitment of the TGFβ receptor I dimer to form an active tetramer. This complex
phosphorylates their intracellular domains to activate kinase activity, recruits the reg-
ulatory SMADs, and phosphorylates and activates them. The regulatory SMADs then
dissociate from the receptor complex and bind co-SMADs, which then translocate into
the nucleus to promote transcription of TGFβ target genes (Figure 3) [198]. The TGFβ
signaling pathway has dual roles in cancer depending on cellular context, acting as ei-
ther a tumor suppressor or tumor supporter. In its role as a tumor suppressor, it can
activate genes involved in cell cycle arrest and apoptosis through a SMAD4-dependent
mechanism [199]. As a tumor supporter, this pathway can activate genes involved in
immune suppression, angiogenesis, and EMT. Vimentin and cadherins can be induced to
promote EMT, and genes such as VEGF and MMP9 are consistently upregulated by the
TGFβ signaling pathway to promote angiogenesis [189,193,197,202,203]. Activation of the
TGFβ signaling pathway will also lead to recruitment of inflammatory cells [189,193,197].
Through release of paused RNAPII [204–212], the TGFβ signaling pathway can induce
the transcription of the GLI family of transcription factors and thereby increase their ac-
tivity, leading to non-canonical activation of the Hh/GLI signaling pathway [196,204,213].
GLI1–3 have been well-characterized as direct transcriptional targets of the canonical,
SMAD-dependent TGFβ signaling pathway [138,179,190,191,214]. This regulation of the
GLI transcription factors is independent of SMO [190,215]. In addition to regulation at the
transcriptional level, it has been shown that the TGFβ signaling pathway can interfere with
PKA phosphorylation of GLI1–3, modulating their activity by preventing their proteasomal
degradation [216]. Additionally, the GLI family of transcription factors can interact with the
SMAD transcription factors, both increasing their activity and promoting transcription of
an additional cohort of tumorigenic genes [138]. The crosstalk between the TGFβ signaling
pathway and the Hh/GLI signaling pathway may be essential for the TGFβ signaling
pathway to carry out its full, tumor-supportive effects [217–219]. Further, the interaction
between these two pathways seems to be cyclical in that the activation of the Hh/GLI
pathway by TGFβ can ultimately promote the expression of genes that activate the TGFβ
signaling pathway [220,221].
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Figure 3. Non-canonical activation of the Hh/GLI pathway. TGFβ Signaling: Ligand binding in the extracellular domain
induces the catalytic activity of the receptor on the intracellular domain. R-SMADs can be phosphorylated and complex
with co-SMADs, then translocate into the nucleus. Inside the nucleus, SMADs can recruit and bind with GLI1 to activate the
transcription of Hh/GLI target genes. KRAS signaling: Constitutively active KRAS will phosphorylate Raf, which in turn
phosphorylates MEK, which then phosphorylates ERK. Activated ERK will then translocate into the nucleus and activate a
variety of transcription factors, including GLI1/2. Wnt/β-catenin: Extracellular Wnt ligand binding promotes sequestration
of the Axin complex to the intracellular side of the receptor. This inhibits phosphorylation of β-catenin, allowing for its
nuclear translocation and recruitment of additional transcription factors, including GLI1, for transcriptional activation.
Figure created with BioRender.

The KRAS signaling pathway is another pathway that exhibits crosstalk with and
activation of the Hh/GLI signaling cascade [180,200]. KRAS is a GTPase signal transducer
protein that is commonly mutated in pancreatic ductal adenocarcinomas (PDACs), resulting
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in a constitutively active form of the protein. As such, KRAS is continually inducing the
downstream signaling cascade Raf/MEK/ERK and promoting transcription of target genes
(Figure 3). Active KRAS will recruit, phosphorylate, and activate RAF, which in turn will
phosphorylate MEK. Active MEK can then bind and phosphorylate ERK to activate it
and promote nuclear translocation. Inside the nucleus, ERK will activate transcription
factors such and Jun or Fos to induce transcription of target genes [222–224]. Studies
have shown that the constitutive activation of the KRAS signaling pathway can lead to
increased GLI1 transcriptional activity [192,194,196]. Further investigations showed that
MEK can activate GLI1 activity, promoting Hh/GLI signaling [225]. Additionally, GLI1
and GLI2 are transcriptional targets of the KRAS signaling pathway, similar to the TGFβ
signaling pathway. Increased mRNA transcription will lead to increased protein translation
and further accumulation of the proteins in the cytoplasm, eventually increasing their
transcriptional activity [196,201].

The Wnt/β-catenin signaling pathway is a non-canonical activator of the Hh/GLI
pathway through transcriptional regulation and protein–protein interactions. When Wnt
signaling is off, cytoplasmic β-catenin is degraded through a similar mechanism as the
GLI family of transcription factors. The Axin complex, which contains CK1 and GSK3β,
will phosphorylate β-catenin in the absence of Wnt signaling, promoting the proteasomal
degradation of β-catenin. The turnover of β-catenin in the cytoplasm prevents nuclear
translocation, inhibiting the transcription of Wnt target genes. When Wnt binds to the
Frizzled receptor, the receptor complexes with LRP6, and together, the complex recruits and
sequesters the Axin complex, inhibiting its kinase activity. β-catenin can then accumulate
in the cytoplasm, translocate into the nucleus, and bind either TCF or LEF to activate target
genes (Figure 3) [226–228]. GLI2 transcription can be induced by β-catenin in a similar
manner as the TGFβ signaling pathway [190,229]. Not only are GLI1/2 transcriptionally
activated by β-catenin, but they can also form complexes with β-catenin in a similar manner
as with the SMAD transcription factors [230]. Hh/GLI and Wnt/β-catenin pathways also
share similar regulatory molecules, including SUFU, CK1, and GSK3β, indicating another
mode for interaction [195,230]. There is some evidence to show that these two pathways
may also interact in a cyclical manner, given that Wnt transcription can be activated by the
GLI transcription factors [177,178]. Further, GLI3 can act in an inhibitor manner of some
β-catenin targets, emphasizing that the interaction between these two pathways can be
complex and bidirectional [231].

4. The Hh/GLI Signaling Pathway in Disease

The Hh/GLI signaling pathway is essential for regulating many developmental pro-
cesses. It comes as no surprise that mutations, loss of function, or aberrant activation of
the pathway can lead to developmental defects and disease [33,34,180,194]. For example,
according to the Human Gene Mutation Database (HGMD), there are over two-hundred
mutations (missense/nonsense, splicing, insertions/deletions, rearrangements, etc.) that
can occur in the SHH gene that lead to deleterious effects. One of the most common
diseases associated with mutations in the SHH gene is a developmental malformation
known as holoprosencephaly [232]. In this disease, the brain is unable to divide properly
into the right and left hemisphere. Severity of the disease can vary widely among effected
individuals, with symptoms ranging from hypotelorism, microcephaly, hydrocephalus
(causing macrocephaly) cleft palate, cyclopia, and proboscis [233]. Unsurprisingly, the
physical distortion due to holoprosencephaly leads to other impairments, such as develop-
mental delay, intellectual disability, seizures, inability to regulate temperature, and feeding
difficulties, just to name a few [233]. Other developmental malformations due to Hh ligand
mutations include radial hemimelia, polydactyly, cleft lip, bone development disease, and
osteochondrodysplasia. Mutations in other pathway components such as PTCH1, SMO,
and SUFU can lead to developmental malformations, including brachydactyly, Curry-Jones
Syndrome, and Ellis-Can Creveld Syndrome, respectively [234].
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While mutations play a crucial role in the aberrant Hh pathway leading to a plethora
of developmental malformations, they can also lead to cancer. The pathway activators
(Hh ligands, SMO, and GLI1–3) are considered proto-oncogenes due to their ability to
upregulate the pathway and promote tumorigenesis. There are different mechanisms
whereby the canonical Hh/GLI pathway can by dysregulated, leading to unwarranted
activation. Ligand-independent activation of the signaling cascade increases the activity
of GLI1–3, upregulating the expression of Hh/GLI pathway target genes. This type of
pathway activation is commonly seen in Gorlin Syndrome, which is associated with the
development of medulloblastomas, basal cell carcinomas, and rhabdomyosarcomas [20,235].
Additional mechanisms of aberrant pathway activation can be ligand-dependent, autocrine
activation of the pathway, whereby cancer cells can upregulate the synthesis of the Shh
ligand and stimulate Hh/GLI pathway activation. This type of pathway activation is
common in prostate cancer, hepatocellular carcinoma, pancreatic cancer, and non-small cell
lung cancer [236–240]. The Shh ligand can also be secreted by tumor cells and can participate
in paracrine signaling, activating the Hh/GLI signaling pathway in both tumor and stromal
cells, often seen in pancreatic and prostate cancers [34,235,241,242]. Lastly, tumor stroma
can secrete the Shh ligand in a reverse paracrine mechanism, whereby the ligand will
activate the Hh/GLI signaling pathway within tumor cells [243]. In some contexts, this
paracrine signaling from the stroma can have a role in restraining tumor progression, further
complicating the role of Hh/GLI signaling in cancer progression [241,242]. Each mechanism
outlined above involves changes in the activity of Hh/GLI pathway constituents, classifying
these as canonical mechanisms of pathway activation.

The repressors of the pathway (SUFU and PTCH1) are considered tumor suppressors,
as their loss of function upregulates the Hh/GLI signaling activity to drive tumorige-
nesis [31,35,116,244,245]. It was not until recently that SUFU mutations were noted as
potential drivers of disease. However, in a short time span, it has become increasingly clear
that SUFU mutations have a significant impact in causing disease [23,24,30,244,246–249].
The involvement of the Hh signaling pathway in Gorlin Syndrome has been established
previously, however, it was not until a study in 2018 that the contributions of SUFU muta-
tions to this syndrome were brought to light. Gorlin Syndrome predisposes individuals
to the development of basal cell carcinomas. Mutations in PTCH1 are linked to 85% of
cases of Gorlin Syndrome, however a subset of 5% of cases exhibit deleterious mutations in
SUFU. These mutations arise from an abnormal splice site which leads to loss of function
of SUFU. Individuals with this mutation exhibit many characteristics of Gorlin Syndrome,
but they also experience palmar sclerotic fibromas, which seems to be unique to this subset
of patients. Further investigation into this subset of patients has revealed that SUFU gene
mutations may actually cause a distinct cutaneous cancer predisposition syndrome that,
while extremely similar to, is different from Gorlin Syndrome. Additional studies would be
required in order to validate this observation [244]. Meningiomas resultant of Gorlin Syn-
drome or Familial multiple meningioma and childhood medulloblastomas have also been
associated with SUFU mutations [244,246]. Additional studies in meningiomas identified a
germline point mutation in SUFU present in a subset of patients. This mutation impacted
the tertiary structure of SUFU, thereby impacting its tumor-suppressor function [246].
A nonsense mutation in SUFU was discovered in a subset of patients with nevoid basal
cell carcinomas (as in Gorlin Syndrome). This mutation decreased the tumor-suppressor
function of SUFU, similar to that in the subset of meningiomas previously described [23].
A similar cancer subtype, Merkel cell carcinoma, has been associated with SUFU mutation
as a contributor to disease progression [30].

A study of patients with multiple hereditary infundibulocystic basal cell carcinoma
syndrome was conducted to determine the role of SUFU mutations in disease progression.
Individuals with the germline splice mutation resulted in not only the abolishment of
SUFU protein, but it was also enough to place the individuals at higher risk for hereditary
infundibulocystic basal cell carcinoma syndrome [24]. Another study determined the effects
of both germline and somatic mutations in SUFU, and found that children with a splice
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mutation (causing a deletion of exon 6) presented with facial papules and dysmorphology
due to this non-functioning SUFU protein [247]. In pancreatic cancer, a germline mutation
in SUFU was found associated with intraductal papillary mucosal neoplasms (IPMNs)
and elevated risk of pancreatic carcinomas. Given the correlation of increased IPMNs
subsequently leading to PDAC, researchers found that patients with IPMNs in addition
to a subset of germline mutations, including this SUFU mutation, were at higher risk of
further developing pancreatic carcinomas than those with IPMNs and none of the identified
germline mutations [248]. Lastly, a transcript variant of SUFU that contained a new and
additional protein coding exon was identified in patients with PDAC. This mutation was
correlated with increased metastasis in these PDAC patients [249].

In addition to the canonical activation of the Hh/GLI signaling pathway, non-canonical
mechanisms of pathway activation have been implicated in disease. As previously de-
scribed, the KRAS signaling pathway can result in overexpression of Hh/GLI target genes
through interaction with and activation of GLI transcription factors. This non-canonical
Hh/GLI pathway activation has been observed in many types of disease, including pancre-
atic ductal adenocarcinoma, melanoma, gastric cancer, colon cancer, lung cancers, multiple
myelomas, and many more [192,196,201,250–254]. The TGFβ signaling pathway can simi-
larly induce the expression of Hh/GLI target genes through SMAD transcription factor
association with and activation of GLI transcription factors. Additionally, GLI1/2 tran-
scription are induced by the TGFβ signaling pathway, ultimately leading to increased
expression of Hh/GLI target genes. This TGFβ-mediated pathway activation is noted
in pancreatic cancer, gastric cancer, and colon cancer, to name a few [138,190,255,256].
Lastly, we discussed the role of Wnt/β-catenin in promoting the transcription of Hh/GLI
pathway target genes. This type of pathway activation is common in basal cell carcinomas,
intestinal cancer, colon cancer, leukemia, brain tumors, ovarian cancer, and many more
cancer subtypes [178,198,219,228,230,257,258].

This profound effect in tumor biology has triggered the development of Hh/GLI
inhibitors for cancer treatment. Presently, most therapies in targeting the Hh pathway
have been focused on developing SMO inhibitors (SMOi). Some of the therapeutics include
sonidegib, vismodegib, saridegib, BMS-833923, taladegib, and glasdegib [259,260]. There has
been some success in treating basal cell carcinoma, myeloid malignancies, medulloblastoma,
and a few other advanced solid tumors using SMOi therapeutics [261–266]. Unfortunately,
the rapid accumulation of mutations in cancer has created a resistance to SMOi treatments,
typically through acquisition of the D437H mutation in SMO [267,268]. This acquired
SMOi resistance has given rise to research investigating other oncogenic drivers as potential
therapeutic targets. This redirection of research led to downstream Hh activators such
as GLI as potential therapeutic targets. In 2007, Lauth et al. showed via in vitro and
in vivo models that molecules GANT61 and GANT58 were able to block DNA binding
of GLI and therefore reduce proliferation and tumor growth [269]. Another molecule,
Glabrescione B, was also tested and found to interfere with GLI1 ability to bind to DNA,
and therefore inhibited the growth of Hedgehog-dependent tumors [270]. Researchers
also explored Hedgehog pathway inhibitors (HPIs), such as HPI1, HPI2, HPI3, HPI4, and
arsenic trioxide (ATO) [271–273]. Interestingly, each of the HPI’s were observed to target
different mechanisms of the pathway, with HPI1 inhibiting endogenous and exogenous
GLI1/GLI2 activity [271], while HPI2 and HPI3 were observed blocking the ability of full-
length GLI2 conversion into transcription activators [271], leaving HPI4 to target the cilia,
ultimately disrupting ciliogenesis from occurring, which inhibits proper ciliary progression
and trafficking that is required for Hh/GLI function [271]. Lastly, ATO was observed to
inhibit GLI1 protein function in the nucleus, while also reducing GLI2 ability to traffic and
accumulate to the cilia, resulting in reduced Hh activity [272,273]. Despite GLI inhibitors
demonstrating reduced proliferation or tumor growth through their interference of DNA
binding, trafficking, processing, accumulation, or activation of GLI, they were unfortunately
short-lived due to significant cytotoxicity observed in in vitro studies. Research is now
turning to alternative pathways that focus on the non-canonical GLI activation molecules.
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Combinations of SMOi and additional pathway constituent inhibitors provide the most
hope of impairing Hh/GLI pathway activation in solid tumors and preventing acquired
resistance [260].

5. Concluding Remarks

The Hh/GLI signaling pathway is a highly regulated complex cascade of ligands, re-
ceptors, transcriptional effectors, and regulatory proteins. Its initial discovery in Drosophila
provided the first insights into its role in regulating development. Aberrations in the
Hh/GLI signaling pathway can lead to developmental defects and disease, including
cancer. Further studies into the pathway have demonstrated that not only mutations lead
to increased Hh/GLI signaling observed in disease, but there is also an additional subset
of pathway interactions and non-canonical mechanisms of pathway activation that are
significant contributors to the altered activity observed in disease.
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