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Abstract: The Internet of Things is integrating information systems, places, users and
billions of constrained devices into one global network. This network requires secure
and private means of communications. The building blocks of the Internet of Things are
devices manufactured by various producers and are designed to fulfil different needs. There
would be no common hardware platform that could be applied in every scenario. In such
a heterogeneous environment, there is a strong need for the optimization of interoperable
security. We present optimized elliptic curve Cryptography algorithms that address the
security issues in the heterogeneous IoT networks. We have combined cryptographic
algorithms for the NXP/Jennic 5148- and MSP430-based IoT devices and used them to
created novel key negotiation protocol.
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1. Introduction

The future will strongly benefit from emerging technologies, such as the Internet of Things (IoT) [1,2].
Billions of highly-constrained devices with limited computing capabilities and wireless communication
interfaces will form a major part of the IoT [3]. The newly-formed web of things will positively impact
our lives [4,5], but at the same time will introduce new security and privacy threats [6,7].

Many efforts have been taken by the research community addressing security issues in IoT networks.
The Internet Engineering Task Force (IETF) Datagram Transport Layer Security for the Internet
of Things (DTLS-IoT) [8] working group has been adapting the Transport Layer Security (TLS)
protocol for the needs of the constrained IoT devices [9]. The recently-established Authentication and
Authorization for Constrained Environments (ACE) IETF working group has focused on the definition
of highly-secure and privacy-oriented standards for authorization and authentication in the IoT [10].

The IoT introduces many problems regarding the overwhelming number of the deployed devices, no
maintenance times, limited battery life and limited computing capabilities of the devices. There are
significant differences between IoT devices’ computing capabilities. The most constrained IoT devices
have only several dozen kilobytes of ROM, a few kilobytes of RAM and a few megahertz of CPU. The
more powerful devices have tens, hundreds and even thousands more resources.

In such an environment, the IoT devices need to operate robustly and to provide an adequate level of
security. The security mechanisms should be constructed to work efficiently on very constrained devices
with possibly the highest protection. The elliptic curves cryptography (ECC)-based solutions are ideal
for such scenarios, due to the security equivalence of the Rivest, Shamir and Adleman (RSA) public-key
cryptosystem. public key scheme, but with significantly smaller keys and computational requirements.
The public key cryptography approach has the best applicability for the IoT because it does not require
the device operator to set up any security credentials (like passwords) to be able to securely communicate.
This approach requires significant human intervention during large-scale deployments of the IoT.

The fact that ECC provides a very high level of security with reduced resource requirements has
attracted the research community. Since Version 1.2 of the TLS and the DTLS protocols, the support
for the ECC has been introduced. The ECC has been embedded into the IEEE 802.15.4 standard using
a hardware solution as presented in [11]. Furthermore, the authentication protocols for wireless sensors
networks in [12,13], or [14] have been based on the ECC primitives to provide a high level of security
with possibly the smallest resources requirements.

Many usage scenarios of the IoT solutions require different network topologies. We have assumed
that one of the most common and cost-effective topologies will be the star or extended star topology. In
such a setup, the more powerful (expensive) device will be working as a connection point to which the
less powerful (cheaper) devices will be connecting. In our experimental environment, the MSP430-based
devices are the end points connecting to the more powerful NXP/Jennic 5148 device. The MSP430 is
16-bit processor with 50 kB of ROM and 8 kB of RAM, and the NXP/Jennic 5148 has a 32-bit processor
with 128 kB of ROM and RAM.

In this context, at first, we have optimized ECC algorithms for the NXP/Jennic 5148 processors. Then,
we have designed a novel authentication and key negotiation protocol based on the Schnorr signature
scheme. The new protocol has been integrated with the Extensible Authentication Protocol (EAP) for
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the IEEE 802.15.4 framework [15,16]. The new solution has been evaluated for a heterogeneous IoT
network consisting of NXP/Jennic 5148 and MSP430 devices. The results have been compared to other
EAP-based authentication and key negotiation methods.

The remainder of this paper is structured as follows: Section 2 presents the motivation behind this
paper and describes the selected heterogeneous IoT topologies, the secure bootstrapping problematic
and our approach. Section 3 is devoted to the theoretical presentation of the ECC optimization, followed
by Section 4, where the description and discussion about the Schnorr signature scheme are presented.
Section 5 presents the Schnorr signature scheme-based authentication and key negotiation protocol. In
Section 6, we discuss the result that we have achieved during the research and state the benefits of
our approach from the networking perspective. The paper ends with Section 7, which concludes the
research presented.

2. Motivation

In this section, we present the motivation behind this research. We start from the definition and
discussion about the heterogeneous IoT and the network topologies that will be dominating the IoT.
After, we outline the problematic related to the secure bootstrapping in the IoT and our approach to it.

2.1. Heterogeneous Internet of Things

The IoT will consist of billions of devices that will be designed and manufactured by hundreds of
different producers. The multitude of application domains of the IoT will force device customization
from the manufacturers and its adaptation for particular solutions. This implies that the IoT will
not be homogeneous from the perspective of the hardware platform. The heterogeneous IoT will
be a combination of different processors with different computing capabilities in different application
scenarios and a few standardized communication mechanisms. From this perspective, there is a clear
need for a solution that is both optimal and standard compliant.

Due to its simplicity, the most common network topology in the IoT will be the star or extended-star
topology. Such a communication setup is simple to organize, maintain and is currently one of the
most commonly used. Most of our networks are currently based on the star topology, and ongoing
deployments are also being based on this topology. In the following, we present two star topology-based
setups that are common in many IoT scenarios.

In Figure 1, we have presented a simple, star topology-based, small heterogeneous IoT network. The
example network consists of two types of nodes: the first type is an MSP430-based highly constrained
IoT device, and second type is a more powerful NXP/Jennic-based IoT device. The nodes are arranged
in two types of topological connections. The MSP430-based devices, due to their low computational
resource availability, are forming an extended star topology by connecting to the more powerful
NXP/Jennic 5148 devices. The NXP/Jennic 5148 nodes are responsible for more resource-hungry tasks,
like higher level device authentication or routing of the traffic between the MSP430 nodes and other
parts of the network. This setup is very favorable, due to the offloading of the specific tasks from the
MSP430-based devices and moving more resource-demanding jobs to the NXP/Jennic 5148 nodes. This
scenario limits the deployment costs and battery usage of the more constrained devices.
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NXP/Jennic 5148 IoT device

MSP430 IoT device

Figure 1. Extended star topology representation of a small heterogeneous IoT network with
MSP430- and NXP/Jennic 5148-based IoT devices.

In Figure 2, a somewhat different star topology example is presented. Two separated IoT networks are
connecting to each other through the cloud. The NXP/Jennic 5148 nodes are responsible for managing
the connections with the MSP430 nodes and the communication with the cloud. It is highly probable
that this kind of the communication scenario will dominate IoT deployments, due to the fact that the star
topology is the main topology for Bluetooth Low Energy devices. We are also assuming that the large
part of the new IoT devices will be based on the Bluetooth Low Energy standard.

Cloud

NXP/Jennic 5148 IoT device

MSP430 IoT device

Figure 2. Star topology representation of small heterogeneous IoT networks comprised of
MSP430- and NXP/Jennic 5148-based devices connecting directly to the cloud.

Both example topologies will increase the operational time of the more constrained IoT devices, due
to the fact that the MSP430-based devices will be able to make less computations and put themselves
more often into sleep mode, thus saving energy resources. Additionally, the solutions based on star
topologies with heterogeneous devices benefit from shorter latency and a smaller number of lost packets.
This is related to the fact that most of the communication efforts have been shifted to the more powerful
NXP/Jennic 5148 nodes, and the weaker MSP430 will not create communication delays. Using the
heterogeneous approach brings down the overall hardware costs without loss of the functionality or the
performance of the whole solution.

2.2. Secure Bootstrapping

One of the most basic functionalities that is required to create scalable IoT deployments is the secure
bootstrapping mechanism. The bootstrapping process is responsible for providing necessary information
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for the new devices to grant them full access to the resources of the network to which they are trying to
connect. In terms of the overwhelming number of IoT devices that will be deployed in the future and
the constraints coming from the IoT technologies, there is an urgent need to design solutions that will
enable secure bootstrapping in such an environment. Due to the fact that the network and its devices
will be embedded in many scenarios that would involve gathering, sending and processing sensitive (in
terms of privacy) information, the highest effort needs to be put toward providing a scalable and secure
bootstrapping mechanism.

The bootstrapping process consists of a few stages, of which, from the perspective of the usage
of cryptographic functionalities, the authentication process is the most important. The common
way to provide the authentication in today’s networks is achieved by employment of the Extensible
Authentication Protocol (EAP), which has been adapted for the IEEE 802.15.4-based IoT devices [15].
The EAP protocol provides a common framework for the authentication mechanism and can utilize many
different cryptographic functions for authentication purposes. The EAP protocol works on the link layer,
so it does not introduce unnecessary communication overhead and is very flexible and minimalistic.
These features are very appealing for constrained devices, where every transmitted bit counts. The
Transport Layer Security and Datagram Transport Layer Security are different authentication protocols
that are working on a higher network layer and sharing the same feature of combining different
cryptographic primitives into one solution. However, they introduce communication overhead while
using the Internet Protocol version 6 (IPv6), Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) protocols.

From the perspective of the IoT requirements, the best way to provide secure bootstrapping
is by a combination of simple and flexible link-layer authentication protocols with a lightweight
cryptographic mechanism for the authentication procedure. Such attempts have already been made and
presented in [12,13] or [14]. The novelty of this research effort is that the highly-optimized elliptic
curve-based authentication and key negotiation mechanisms have been combined with a very lightweight
authentication protocol.

3. Optimization of ECC Implementation

In this section, we present the approach that has been conducted to optimize the implementation of
the elliptic curve cryptography (ECC) primitives and protocols. These optimizations were especially
designed for the NXP/Jennic 5148-based IoT devices and have been based on the previous work for
MSP430 processors [17]. This section is theoretical and presents our approach from the mathematical
point of view.

3.1. Point Arithmetic for ECC

ECC is based on the use of points in special curves to represent information. These curves are in
the projective plane defined over a finite field. The most traditional choice is the Weierstrass curves.
Despite the fact that the Weierstrass curves have a very rich literature, we will use the alternative twisted
Edwards curves.
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There are two reasons for this choice. The first one is to show that there are alternatives to Weierstrass
curves, and the second one is that the arithmetic is better optimized with the formulas given for twisted
Edwards curves. This second reason will be explained in more detail in Section 3.2.

Edwards curves were introduced in [18] and have been used in efficient cryptographical systems.
These curves were generalized in [19] to the twisted Edwards curves, which are the ones that will be
used in this paper.

A twisted Edwards curve is a projective curve given by the formula:

ax2 + y2 = 1 + dx2y2 (1)

where a and d are the parameters of the curve. In our case, we are going to use the projective plane
generated by the field Fp for the shifting prime p = 200 · 25619 − 1 and the parameters a = 92 and
d = 88. This is the curve given in [17].

The points of the curve can be written with two coordinates (x, y); this is what is called the affine
representation. These points have a group arithmetic that can be given by unified formulas (the same
for point addition and point doubling). If P = (x1, y1), Q = (x2, y2), then the point addition
P +Q = (x3, y3) has the following coordinates:

x3 =
x1y2 + y1x2
1 + dx1x2y1y2

y3 =
y1y2 − ax1x2
1− dx1x2y1y2

(2)

There are several special representations for fast computation. We can give the general reference [20],
where a rather complete list of formulas is provided.

If (x, y) is a point in the curve, then the points (±x,±y) are also in the curve. This implies that the
number of points in the curve is a multiple of four. A subgroup of prime order is taken. We will take the
same subgroup given in [17] that is generated by the point G = (xG, yG) with the values:

xG = 0x1898e48d78ff84b21e5e96205b4f6bc0b287caee (3)

yG = 0x7cd368e5542aa7f0a6e3199926c006d0b47251b6 (4)

The number of points in this subgroup is:

n = 0x31fffffffffffffffffff2b53704494b52ef4695 (5)

The situation in our devices is rather different. MSP430 is a processor with very limited resources;
therefore, we will try to use the best options for this processor. The implementation given in [17] by the
same authors is already very optimized, and we will use it in this case. This paper will mainly consider
how to connect this implementation with NXP/Jennic 5148. This second device has more computational
resources, and we will delegate the computational effort to it whenever possible.

3.1.1. Point Representation

The points in the curve are part of the cryptographic protocols. They can be represented by the
two coordinates (x, y), but we will use only the y-coordinate in order to reduce the memory usage and
especially the transmission time. This decision causes some problems that will be solved in Section 3.1.3.
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The computation of inverses will be avoided whenever possible. All of our algorithms will give the
option of having outputs in the form (A,B) representing the quotient A/B if we can use the values A
and B to continue the computation and delay the computation of inverses.

3.1.2. Scalar Multiplication

The main operation that is required in ECC primitives is the scalar multiplication
[k]P = P + P + · · ·+ P︸ ︷︷ ︸

k times

. This operation is used by almost all ECC protocols and requires the

biggest part of the computational effort. The implementation of [k]P is made with a combination of
point additions and doublings (the addition of a point with itself) depending on the values of the bits
of k. This is a well-known security threat because a power analysis can detect the differences between
these operations and get the value of k (that is, a secret value, usually the private key). It is a nontrivial
problem to hide this behavior in order to increase the security.

For MSP430, we will use the implementation given in [17] that uses the formulas given in [21] for
the curve arithmetic (point addition and point doubling). These formulas are especially well suited for
the multiplication algorithm designed in [17] because they let one reuse the precomputations in several
multiplications. The combination of point additions and point doublings to get the scalar multiplication
[k]P is done with a combination of additions and subtractions that hide the actual value of k.

For NXP/Jennic5148, we will use the Montgomery ladder technique for twisted Edwards curves
given in [22]. This method is more robust than the one implemented for MSP430, but it also requires
more computational effort. This extra computational effort will be compensated with a more optimized
arithmetic explained in Section 3.1.

The formulas given in [22] are prepared for curves where the parameter α = a/d is small. In that
case, the testing was done with a curve in which this parameter is α = −22, but the values a and d are
very big:

a = 0x4e42c8590b21642c8590b21642c8590b21642c89 (6)

d = 0x4e42c8590b21642c8590b21642c8590b21642c85 (7)

In this study, we want to use small a = 92 and d = 88 parameters. These parameters induce a big
value of the a and d parameters with a very big α parameter:

α =
92

88
= 0x1b45d1745d1745d1745d1745d1745d1745d1745e (8)

Reusing the formulas given in [22] with a very big value of α, like 92/88, would require two extra
multiplications. This would have a big negative impact on the performance of the implementation;
therefore, we are going to provide new formulas that will solve this problem.

Following the notation given in [22], the computation requires the valuesR¬ki , S¬ki , Rki and Ski . The
values Rki and Ski have a problem of inefficient calculation due to the usage of the big α parameter.

The values Rt and St are the numerator and denominator of the actual value Rt

St
that is recovered at

the end of the algorithm. These values are used in this form to avoid the inversion algorithm, but we can
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change the values Rt and St by any multiple of them βRt and βSt if the same nonzero value is used in
the numerator and the denominator. The values Rki and Ski have to satisfy the following equation:

Rki

Ski

←
R4

ki
− 2αR2

ki
S2
ki
+ αS4

ki

−R4
ki
+ 2R2

ki
S2
ki
− αS4

ki

(9)

=
R4

ki
− 292

88
R2

ki
S2
ki
+ 92

88
S4
ki

−R4
ki
+ 2R2

ki
S2
ki
− 92

88
S4
ki

(10)

=
88R4

ki
− 92 · 2R2

ki
S2
ki
+ 92S4

ki

−88R4
ki
+ 88 · 2R2

ki
S2
ki
− 92S4

ki

(11)

=
−22R4

ki
+ 23 · 2R2

ki
S2
ki
− 23S4

ki

22R4
ki
− 22 · 2R2

ki
S2
ki
+ 23S4

ki

(12)

The last change is done multiplying the numerator and denominator by (−4)−1. The values 22 and
23 are very close. Thereby, we reuse the multiplication by 22 to the the multiplication by 23 and reorder
the operations to get the result in a more effective way. The multiplication by the small constant α in the
previous algorithm required the hidden use of an extra temporal variable. In this case, the multiplication
by small constants is written in the same algorithm (Steps 23 to 29) with the temporal variable T2.

The result is more effective than the original formulas, although the number of multiplications and
squarings are the same. The optimizations do not have a big impact on the final performance, but they let
us use the parameters a = 92 and d = 88 that were used in [17]. The final result is given in Algorithm 1.

3.1.3. Recovering the x-Coordinate

The points of the elliptic curve have two affine coordinates (x, y), but we will represent them
only with the y-coordinate. The x-coordinate of the point is needed in some cases, one of which is
signature verification.

If (x, y) is a point in the curve, (−x, y) is also a point in the curve; therefore, the value of x is not
unique, but the point should satisfy the equation ax2 + y2 = 1+ dx2y2; therefore, x2 = 1−y2

a−dy2 , and then,

x = ±
√

1−y2
a−dy2 .

Our field is Fp with p = 200 · 25619 − 1 = 25 · 2155 − 1 ≡ 3(mod 4). This kind of fields lets us
compute square roots with ±

√
m = ±m p+1

4 ; then, we can recover the two possibilities for x as:

x = ±
(

1− y2

a− dy2

)25·2153

(13)

In our case, the value y will be given as U0/V0; therefore:

1− y2

a− dy2
=

1− (U0/V0)
2

92− 88(U0/V0)2
=

V 2
0 − U2

0

92V 2
0 − 88U2

0

(14)

This computation is given in Algorithm 2.
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Algorithm 1 Scalar multiplication (Montgomery’s technique) [a = 92, d = 88].
Input: P = (x, y) is a point in the curve; the order of P is an odd prime; k = (kl−1, · · · , k0)2.
Output:y([k]P ) in projective coordinates.

1: procedure SCALARMULT(k, y)
2: (R0, S0)← (1, 1)

3: (R1, S1)← (y, 1)

4: for i = l − 1 downto 0 do
5: R¬ki ← R¬ki ∗ Ski . R¬kiSki

6: T1 ← S¬ki ∗Rki . S¬kiRki

7: S¬ki ← T 2
1 . S2

¬kiR
2
ki

8: T1 ← T1 +R¬ki . S0R1 +R0S1

9: R¬ki ← R2
¬ki . R2

¬kiS
2
ki

10: T1 ← T 2
1 . (S0R1 +R0S1)

2

11: S¬ki ← S¬ki +R¬ki . S2
0R

2
1 +R2

0S
2
1

12: T1 ← T1 − S¬ki . 2R0R1S0S1

13: R¬ki ← −y ∗ S¬ki . −y(S2
0R

2
1 +R2

0S
2
1)

14: R¬ki ← R¬ki + T1 . −y(S2
0R

2
1 +R2

0S
2
1) + 2R0R1S0S1

15: T1 ← −y ∗ T1 . −2yR0R1S0S1

16: S¬ki ← S¬ki + T1 . S2
0R

2
1 +R2

0S
2
1 − 2yR0R1S0S1

17: T1 ← R2
ki

. R2
ki

18: Ski ← S2
ki

. S2
ki

19: Rki ← T 2
1 . R4

ki

20: T1 ← T1 − Ski . R2
ki
− S2

ki

21: T1 ← T 2
1 . R4

ki
− 2R2

ki
S2
ki
+ S4

ki

22: Ski ← S2
ki

. S4
ki

23: T2 ← 0 . 0

24: T2 ← T2 − T1 . −(R4
ki
− 2R2

ki
S2
ki
+ S4

ki
)

25: T2 ← T2 + T2 . −2(R4
ki
− 2R2

ki
S2
ki
+ S4

ki
)

26: T2 ← T2 + T2 . −4(R4
ki
− 2R2

ki
S2
ki
+ S4

ki
)

27: T2 ← T2 − T1 . −5(R4
ki
− 2R2

ki
S2
ki
+ S4

ki
)

28: T2 ← T2 + T2 . −10(R4
ki
− 2R2

ki
S2
ki
+ S4

ki
)

29: T2 ← T2 − T1 . −11(R4
ki
− 2R2

ki
S2
ki
+ S4

ki
)

30: T2 ← T2 + T2 . −22(R4
ki
− 2R2

ki
S2
ki
+ S4

ki
)

31: Ski ← Ski − T2 . 22R4
ki
− 22 · 2R2

ki
S2
ki
+ 23S4

ki
)

32: T2 ← T2 − T1 . −23(R4
ki
− 2R2

ki
S2
ki
+ S4

ki
)

33: Rki ← Rki + T2 . −22R4
ki
+ 23 · 2R2

ki
S2
ki
− 23S4

ki
)

34: end for
35: return (R0, S0) or (R0, S0, R1, S1) as required. . The result in affine representation is R0/S0

36: end procedure
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Algorithm 2 Computing the x-coordinate of scalar multiplication when only the original y-coordinate
is known.

1: procedure XCOORDINATE(U0, V0)
2: A← V0 . V0

3: A← A ∗ A . V 2
0

4: B ← U0 . U0

5: B ← B ∗B . U2
0

6: B ← B − A . U2
0 − V 2

0

7: C ← B . U2
0 − V 2

0

8: C ← C + C . 2(U2
0 − V 2

0 )

9: C ← C + C . 4(U2
0 − V 2

0 )

10: C ← C +B . 5(U2
0 − V 2

0 )

11: C ← C + C . 10(U2
0 − V 2

0 )

12: C ← C +B . 11(U2
0 − V 2

0 )

13: C ← C + C . 22(U2
0 − V 2

0 )

14: C ← C − A . 22U2
0 − 23V 2

0

15: C ← C + C . 44U2
0 − 46V 2

0

16: C ← C + C . 88U2
0 − 92V 2

0

17: C ← C−1(mod p)

18: B ← B ∗ C
19: for i = 1 to 153 do
20: B ← B ∗B
21: end for
22: Q← B

23: Q← Q ∗Q
24: Q← Q ∗B
25: Q← Q ∗Q
26: Q← Q ∗Q
27: Q← Q ∗Q

28: Q← Q ∗B .
(

V 2
0 −U2

0

92V 2
0 −88U2

0

)25·2153
29: return Q
30: end procedure

This algorithm has two possible solutions ±x. There is another case in which we can recover the
x-coordinate. It is after the computation of the scalar multiplication if we know the original coordinate
of the point. This is the case for example when we compute the scalar multiplication [s]G for the
generator G because the coordinates of G are constant in the system and can be included in the program.
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Suppose P = (x, y) and k is an integer. The computation of [k]P in Algorithm 1 provides the values
R0,R1 and S0,S1, which correspond to Proposition 2 of [22] to the values yn = R0

S0
and yn+1 =

R1

S1
(with

the notations from that paper). The value x([k]P ) is the value xn given in that formula:

x([k]P ) =
yR0

S0
− R1

S1

x
(
92− 88yR0

S0

R1

S1

) (15)

=
yR0S1 −R1S0

x (88S0S1 − 92yR0R1)
(16)

This computation is developed in Algorithm 3. In this case, the result is unique. The result is given
as a quotient N/4D or with the values N and D that can be used to continue the computations without
the inversion of 4D. The application of this will be explained in Section 4.

Algorithm 3 Computing the x-coordinate of scalar multiplication when both original coordinates
are known.

1: procedure XCOORDINATE(R0, S0, R1, S1, y, x)
2: A← S0 . S0

3: A← A ∗ S1 . S0S1

4: B ← y . y

5: B ← B ∗R0 . yR0

6: B ← B ∗R1 . yR0R1

7: D ← A . S0S1

8: D ← D −B . S0S1 − yR0R1

9: A← D . S0S1 − yR0R1

10: D ← D +D . 2(S0S1 − yR0R1)

11: D ← D +D . 4(S0S1 − yR0R1)

12: D ← D + A . 5(S0S1 − yR0R1)

13: D ← D +D . 10(S0S1 − yR0R1)

14: D ← D + A . 11(S0S1 − yR0R1)

15: D ← D +D . 22(S0S1 − yR0R1)

16: D ← D −B . 22S0S1 − 23yR0R1

17: D ← D ∗ x . x(22S0S1 − 23yR0R1)

18: N ← y . y

19: N ← N ∗R0 . yR0

20: N ← N ∗ S1 . yR0S1

21: B ← R1 . R1

22: B ← B ∗ S0 . R1S0

23: N ← N −B . yR0S1 −R1S0

24: return N/4D or (N,D) as needed.
25: end procedure
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3.2. Arithmetic Optimization for ECC Primitives

The primary advantage of this method comes from a specialized implementation for the algorithm
of modular squaring. Our biggest effort in this paper has been the implementation of this squaring
algorithm, which suits perfectly the formulas given in [22]. A special squaring function cannot be used
in MSP430, because it would require almost double the size of the memory, a resource that is critical
in MSP430. In that case, the formulas given in [17] with optimizations derived from the reuse of the
precomputations are the best solution.

The proposed optimizations of the squaring algorithm have the biggest impact on the performance
of our ECC implementation, due to the fact that in the Edward curves, the scalar multiplication is used
most of the time. Thus, we have completely rewritten the squaring algorithm that theoretically is able to
reduce the time of the standard multiplication by more than half.

In this implementation, we have developed a square function that is especially suited to the Jennic
5148 and the shifting primes with 160 bits of size. The technique follows these principles:

• There are no loops or counters.
• Numbers are represented in Montgomery form.
• The number of memory readings is reduced to the minimal amount, keeping everything in registers

as much as possible.
• The result is built starting from the least significant values to the most significant ones, and the

reduction modulo p = 200× 25619 − 1 is done at the same time as the multiplications.
• The carries are avoided taking in consideration the following property: if x and y are 16-bit values,

the product x ∗ y can be added with another 16-bit value without a carry.
• All crossed products x∗y and y∗x are computed only once and accumulated once. The final result

is multiplied by two to have this in consideration.

Using all of these techniques, the modular square requires only sixty percent of the time required for
the modular multiplication.

4. Schnorr Signature Scheme

As a usage example of the proposed optimizations, we will use the Schnorr signature scheme.
The signature will be using point representation given by the y-coordinate. The scheme consists of
three functions: key generation, signature generation and signature verification. All of these functions
will be described, and the algorithms will be presented in this section.

4.1. Key Generation

Keys have two parts: the public key (pk) that is a point in the elliptic curve, and we will represent it
with its y-coordinate; and the private key (sk) that is a number in the range of n, the number of points
in the subgroup generated by G. These parameters are given in Section 3.1. The key generation is given
in Algorithm 4.
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Algorithm 4 Key generation.
Output: returns (pk, sk), the public key and private key.

1: procedure KG

2: sk ← rand(n) . A random value in the range of n
3: pk ←SCALARMULT(sk, yG) . Using Algorithm 1 or the algorithm given in [17], we compute

the y-coordinate of [sk]G for the generator G fixed in affine representation.
4: return (pk, sk).
5: end procedure

The computation of the scalar multiplication [sk]G is done with Algorithm 1 on NXP/Jennic 5148 or
with the algorithm given in [17] for MSP430. In this case, both coordinates of G are required, and we
can get both coordinates of [sk]G. Only the y-coordinate will be used as the public key.

4.2. Signature Generation

The signature generation is given in Algorithm 5.

Algorithm 5 Signature generation.
Input:sk is the private key of the signer, and m is the message
Output: returns (s, h), the signature for the message m.

1: procedure SGN((m, sk))
2: r ← rand(n) . A random value in the range of n
3: R←SCALARMULT(r, yG)
4: h← H(R‖m) . the hash of the joined value R‖m
5: s← r + sk · h(mod n)
6: return (s, h).
7: end procedure

In this case, as we did in the hey generation, the scalar multiplication is done with different algorithms
depending on the microprocessor.

4.3. Signature Verification

The standard Schnorr protocol for signature verification is given in Algorithm 6.
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Algorithm 6 Schnorr signature verification.
Input:pk is the public key of the signer; m is the message, and (s, h) is the signature.
Output: returns true if the signature is valid and false otherwise.

1: procedure VFY(pk,m, s, h)
2: R← y([s]G− [h]pk)

3: if H(R‖m) = h then
4: return true.
5: else
6: return false.
7: end if
8: end procedure

The problem in this algorithm is the computation of the y-coordinate of the point [s]G − [h]pk

needed in Step 2. This operation requires the computation of the points [s]G = G+G+ · · ·+G︸ ︷︷ ︸
s times

and

[h]pk = pk + pk + · · ·+ pk︸ ︷︷ ︸
h times

, and then, the difference [s]G− [h]pk. The scalar multiplication [s]G and

[h]pk can be computed with the Algorithm 1; however, this algorithm only computes the y-coordinate,
and we require both coordinates to compute [s]G − [h]pk. This can be done using Algorithm 2 in the
case [k]pk and with Algorithm 3 for [s]G.

When we have both coordinates [s]G = (x([s]G),y([s]G)) and [h]pk = (x([h]pk),y([h]pk)),
then R = y([s]G − [h]pk) is given by Equation (2) given in Section 3.1, and using the fact that
−[h]pk = (−x([h]pk),y([h]pk)), we get:

y([s]G− [h]pk) =
y([s]G) y([h]pk) + 92 x([s]G) x([h]pk)

1 + 88 x([s]G)x([h]pk)y([s]G)y([h]pk)
(17)

Using the notations given by the previous algorithms, we have:

y([s]G) =
R0

S0

(18)

x([s]G) =
yG

R0

S0
− R1

S1

xG

(
92− 88yG

R0

S0

R1

S1

) (19)

=
yGR0S1 −R1S0

xG (88S0S1 − 92yGR0R1)
=

N

4D
(20)

y([h]pk) =
U0

V0
(21)

x([h]pk) = ±
(

1− y([h]pk)2

92− 88y([h]pk)2

)25·2153

(22)

= ±
(

1− (U0/V0)
2

92− 88(U0/V0)2

)25·2153

(23)

= ±
(

V 2
0 − U2

0

92V 2
0 − 88U2

0

)25·2153

= ±Q (24)
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Step 2 in Algorithm 6 is:

R ← y([s]G) y([h]pk) + 92 x([s]G) x([h]pk)

1 + 88 x([s]G)x([h]pk)y([s]G)y([h]pk)
(25)

=
R0

S0

U0

V0
± 92 N

4D
Q

1± 88 N
4D
QR0

S0

U0

V0

(26)

=
R0

S0

U0

V0
± 23N

D
Q

1± 22N
D
QR0

S0

U0

V0

(27)

=
DR0U0 ± 23NQS0V0
DS0V0 ± 22NQR0U0

(28)

This has two possible solutions, and we combine them in order to get a common denominator;
therefore, the computing inverses only once:

Rpos ←
(DR0U0 + 23NQS0V0)(DS0V0 − 22NQR0U0)

(DS0V0)2 − (22NQR0U0)2
(29)

Rneg ←
(DR0U0 − 23NQS0V0)(DS0V0 + 22NQR0U0)

(DS0V0)2 − (22NQR0U0)2
(30)

With these two values, we will compute the hash in Step 3. The complete algorithm decomposed in
basic operations is given in Algorithm 7.

This signature verification is designed for the NXP/Jennic 5148, which in our case will be the one that
requires this algorithm. In case we need an implementation of the signature verification for MSP430, we
cannot compute [h]pk without the x-coordinate of the public key. Algorithm 2 is required to compute it
before making the scalar multiplication. The algorithm implemented in [17] computes both coordinates
of the scalar multiplications, and they are combined with Equation 17 afterwards.

4.4. Evaluation

Most of the time required for the computation of Schnorr signatures is used for the scalar
multiplication. With the formulas that we have provided and the 160-bit key length, the time required
for the scalar multiplication on Jennic 5148 is (on average) 112 ms. The final time for key generation is
135 ms, most of it used in the scalar multiplication.

The time for signature verification is double this quantity, because the algorithm is not using
something similar to the Shamir trick.

The main reason for the time reduction in this Jennic 5148 implementation comes from the specialized
square function and the use of an algorithm in which most of the operations are in fact squares.

In the case of MSP430, we do not use a specialized square, because it would double the size of the
code, and the multiplication function is already big. The multiplication used is the one given in [17] by
the same authors. The signature verification is done in this case with the Shamir trick; therefore, the time
required is not double the time of signature generation, but only 1.5-times.
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Algorithm 7 Signature verification.
Input: pk is the public key of the signer; m is the message, and (s, h) is the signature.
Output: returns true if the signature is valid and false otherwise.
1: procedure VFY(pk,m, s, h)
2: r ← rand(n) . A random value
3: R0, S0, R1, S1 ←SCALARMULT(s, yG)
4: U0, V0 ←SCALARMULT(h, pk)
5: Q←XCOORDINATE(U0, V0)
6: N,D ←XCOORDINATE(R0, S0, R1, S1, yG, xG)
7: A← N . N

8: A← A ∗Q . NQ

9: B ← A . NQ

10: A← A+A . 2NQ

11: A← A+A . 4NQ

12: A← A+B . 5NQ

13: A← A+A . 10NQ

14: A← A+B . 11NQ

15: A← A+A . 22NQ

16: B ← B +A . 23NQ

17: A← A ∗R0 . 22NQR0

18: A← A ∗ U0 . 22NQR0U0

19: B ← B ∗ S0 . 23NQS0

20: B ← B ∗ V0 . 23NQS0V0

21: E ← D . D

22: F ← E . D

23: E ← E ∗R0 . DR0

24: E ← E ∗ U0 . DR0U0

25: F ← F ∗ S0 . DS0

26: F ← F ∗ V0 . DS0V0

27: Rpos ← E

28: Rneg ← E

29: Rpos ← Rpos +B . DR0U0 + 23NQS0V0

30: Rneg ← Rneg −B . DR0U0 − 23NQS0V0

31: B ← F

32: E ← F

33: B ← B −A . DS0V0 − 22NQR0U0

34: E ← E +A . DS0V0 + 22NQR0U0

35: Rpos ← Rpos ∗B . (DR0U0 + 23NQS0V0)(DS0V0 − 22NQR0U0)

36: Rneg ← Rneg ∗ E . (DR0U0 − 23NQS0V0)(DS0V0 + 22NQR0U0)

37: E ← F . DS0V0

38: E ← E −A . DS0V0 − 22NQR0U0

39: F ← F +A . DS0V0 + 22NQR0U0

40: F ← F ∗ E . (DS0V0 + 22NQR0U0)(DS0V0 − 22NQR0U0)

41: F ← F−1(mod p)

42: Rpos ← Rpos ∗ F
43: Rneg ← Rneg ∗ F
44: if H(Rpos‖m) = h or H(Rneg‖m) = h then
45: return true.
46: else
47: return false.
48: end if
49: end procedure
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5. Schnorr Authentication and Key Negotiation Protocol

We have designed a Schnorr signature scheme-based authentication and key negotiation protocol. The
newly-proposed scheme consists of an exchange of four communications, and it has been presented in
Figure 3. This authentication scheme has been integrated with the Extensible Authentication Protocol
(EAP) that previously had been adapted for the needs of the IEEE 802.15.4 IoT-based networks [15,16].
The scheme presents the benefits of using optimized ECC primitives with shifting primes curves
over different, standard curves. We will refer to this new protocol as EAP-SCHNORR, due to the
nomenclature coming from the EAP protocol.

A B

1a. KG

2. SEND(m1 = Apk, s1 = SGN(m1, Ask))

5. VFY(Bpk, m2, s2))

6. SEND(m3 = RANDOMA, s3 = SGN(m3, Bpk))

9. VFY(Ask, m4, s4))

1b. KG

3. VFY(Apk, m1, s1)

4. SEND(m2 = Bpk, s2 = SGN(m2, Bsk))

7. VFY(Bsk, m3, s3))

8. SEND(m4 = RANDOMB , s4 = SGN(m4, Apk))

Figure 3. Schnorr signatures scheme-based authentication and key negotiation protocol.

5.1. Protocol Description

The first step of the scheme is the key generation phase (Algorithm 4), after which, both devices will
be in possession of their public and private keys, (Apk, Ask) for Device A and (Bpk, Bsk) for Device B.
If the devices have generated their credentials, then Device A starts the key negotiation procedure by
sending its public key m1 = Apk alongside its signature s1 = SGN(m1, Ask). After the reception of the
message sent by Device A, Device B verifies the authenticity of the message by checking its signature
with Algorithm 6. After successful verification, Device B sends its public key m2 = Bpk alongside
its signature s2 = SGN(m2, Bsk) to Device A. After reception of the message from Device B, Device
A verifies the signature of the message with Algorithm 6. Next, Device A sends the random value
RANDOMA along with its signature generated with Device B public key (Bpk). During the signature
generation with Algorithm 5, the device saves the R value (Line 3 of the Algorithm 5) as part of the
shared key (keyA). Then, Device B receives the message from Device A and verifies the signature with
its secret key. During the verification, Device B saves the R value (Line 2 of the Algorithm 6) as part
of the shared key (keyA). After that, Device B sends random value RANDOMB with its signature
using the Device A public key (Apk). During the signature generation, Device B saves the R value as
the second part of the shared secret (keyB). Then, Device A receives the message from Device B and
verifies its signature with its private key (Ask), during which Device A saves the R value as the second
part of the shared secret (keyB). If the verification went successfully, both of the devices will be able to
generate a working shared key from the two parts of the shared secret using key generation procedure
(keygen(keyA, keyB)). For the simplicity of the scheme, we have assumed that the keygen() function
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is XORing the keys; different operations on the keys are also possible, but further deliberation on this
matter is out of the scope of this paper. It should be mentioned that the output of the keygen() procedure
should be design to fulfil the needs of the encryption mechanism that is going to be applied by the
communicating parties.

5.2. Security Discussion

The security of the EAP-SCHNORR protocol lies in the Schnorr signature scheme that is based on
the elliptic curve cryptography primitives that are utilizing the hardness of the elliptic curve discrete
logarithm problem (ECDLP). The protocol requires exchanging four signatures, of which the first two
are for the purpose of connection initiation, during which their identities (in the form of the public keys)
are exchanged. The last two signature exchanges are for the verification of the identity and for the
common key generation.

It is easy to notice that the parties involved in this protocol message exchange are vulnerable to the
man-in-the-middle attack. This can only be mitigated for the second and following key negotiations when
parties have stored theirs peers’ valid public keys. Another technique avoiding the man-in-the-middle
attack needs to involve a trusted third party that would confirm the validity of the public keys.

Due to the fact that the EAP-SCHNORR protocol has been designed to show the benefits of optimized
ECC primitives with shifting primes curves, the security of the protocol has not been the main objective.
However, we are considering to focus more work in that area in the near future.

6. Results Discussion

We have performed network usage measurements using a previous implementation of the EAP
protocol and its selected methods. The statistics have been extended with EAP-SCHNORR method
results based on the signature-based key negotiation procedure from Section 5. The EAP-SCHNORR
method results have been estimated for the heterogeneous environment consisting of MSP430- and
NXP/Jennic 5148-based nodes, as described in Section 2.2. The EAP methods that are different from
EAP-SCHNORR do not include any optimizations that have been described in this paper.

The EAP-SCHNORR method as the Schnorr signature scheme requires a hash function to work. Thus,
we have introduced four different variations of the EAP-SCHNORR method based on four different
cryptographic hash functions. We have EAP-SCHNORR method where Message Digest algorithm
version 5 (MD5) [23] hash function have been used, EAP-SCHNORR with Secure Hash Algorithm
version 1 (SHA1) [24] as a hash function and EAP-SCHNORR-SHA256 and EAP-SCHNORR-SHA512
based on the SHA-2 family of hash functions [25]. It is noteworthy to mention that the usage of the MD5
and SHA-1 hash functions should be depreciated due to security reasons. This hash functions have been
only included in the experiment for reference purposes.

The EAP-SCHNORR message exchange procedure consists of four different communications.
However, all of the communications are constructed in a very similar way. The first and second
communications that are exchanged consist of the ECC public key (20 bytes) and its corresponding
signature, whose length depends on the employed hash function. The third and fourth messages differ
from the first two in that instead of the ECC public key, they are transmitting random values. In our case,
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a random value has the the same 20-byte length as the public key, but this length is not a requirement
and can be set as required.

From the results presented in Table 1, it can be observed that the differences in the network resource
usage in EAP-SCHNORR are mainly due to the usage of the different cryptographic hash functions.
This is obviously related to the hash function output length: MD5 has a 16-byte output size; the SHA-1
has a 20-byte output size; SHA256 has a 32-byte output size; and SHA512 has a 64-byte output size.

Table 1. Network usage statistics of different Extensible Authentication Protocol (EAP)
methods of EAP communication, calculated on the MSP430 node connecting to the
NXP/Jennic 5148, during the authentication procedure. TLS, Transport Layer Security.

TX Packets TX Data RX Packets RX Data Total Packets Total Data
EAP-SCHNORR-MD 5 2 122 B 2 122 B 4 244 B
EAP-SCHNORR-SHA 1 2 130 B 2 130 B 4 260 B

EAP-SCHNORR-SHA256 2 154 B 2 154 B 4 308 B
EAP-SCHNORR-SHA512 2 218 B 2 218 B 4 436 B

EAP-MD5 3 66 B 3 59 B 6 125 B
EAP-PSK 5 181 B 4 160 B 9 341 B

EAP-TLS-ECDSA -160 12 271 B 17 812 B 29 1083 B
EAP-TLS-ECDSA-256 13 286 B 18 931 B 31 1217 B

EAP-TLS-RSA -480 19 376 B 24 1566 B 43 1942 B
EAP-TLS-RSA-512 20 397 B 25 1627 B 45 2024 B
EAP-TLS-RSA-1024 27 496 B 32 2370 B 59 2866 B
EAP-TLS-RSA-2048 43 712 B 48 4200 B 91 4912 B

In comparison to the other evaluated EAP methods the EAP-SCHNORR-based methods are some
of the most lightweight ones. All of them, except EAP-SCHNORR-SHA512, have used the number
of network resources between EAP-MD5 and EAP-PSK, with the total data used between 244 bytes
(MD5 based) and 308 bytes (SHA256 based). The EAP-SCHNORR-SHA512 uses 436 bytes of network
resources and has been placed between the EAP-PSK and EAP-TLS wit Elliptic Curve Digital Signature
Algorithm wit 160 bit keys (EAP-TLS-ECDSA-160) methods.

The benefits of using the EAP-SCHNORR method over other methods are due to the fact that this
method requires transmitting the minimal number of packets. Additionally, the EAP-SCHNORR method
is based on public key cryptography, so it does not require a setup phase during which the shared key is
entered into the devices. The EAP-MD5 and EAP-PSK use private key cryptography, and due to that,
large-scale deployments using these methods would require much effort and maintenance time. Lastly,
the security of EAP-MD5 is known to be highly defective due to the weakness of the MD5 hash function,
so it is completely unwise to be designing security solutions using this method.
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7. Conclusions

In this paper, we have presented ECC optimization for secure communication in heterogeneous
Internet of Things networks. The work presented in this research has been focused on providing
optimized ECC algorithms for the NXP/Jennic 5148-based IoT devices that could be utilized with
MSP430-optimized counterparts for secure communication in IoT networks. The Schnorr signature
scheme has been used as an exemplary solution utilizing our optimized ECC algorithms. In addition,
we have designed a simple key negotiation protocol based on the Schnorr scheme that demonstrates the
usability of the presented ECC optimizations.

Ongoing work is focused on the optimization of the ECC primitives for the needs of the different
microprocessors, and a more advanced authentication mechanism is being designed. Effort is also put
into the integration of the proposed solution with Trust Extension Protocol for Authentication of New
deployed Objects and sensors through the Manufacturer (TEPANOM) [26], and also, an extension of
this work is envisioned for the Bluetooth Low Energy devices for the needs of the truly heterogeneous
IoT ecosystem.
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