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Abstract
Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene ex-

pression in response to changing internal or environmental conditions. In this study, we de-

velop a novel workflow for generating large-scale TRNmodels that integrates comparative

genomics data, global gene expression analyses, and intrinsic properties of transcription

factors (TFs). An assessment of this workflow using benchmark datasets for the well-stud-

ied γ-proteobacterium Escherichia coli showed that it outperforms expression-based infer-

ence approaches, having a significantly larger area under the precision-recall curve.

Further analysis indicated that this integrated workflow captures different aspects of the

E. coli TRN than expression-based approaches, potentially making them highly comple-

mentary. We leveraged this new workflow and observations to build a large-scale TRN

model for the α-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clus-

ters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA

binding motifs. We found that ~67% of the predicted gene clusters in this TRN are enriched

for functions ranging from photosynthesis or central carbon metabolism to environmental

stress responses. We also found that members of many of the predicted gene clusters were

consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental vali-

dation of predictions from this R. sphaeroides TRN model showed that high precision and

recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism

(RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach en-

abled generation of TRNs with increased information content relative to R. sphaeroides
TRNmodels built via other approaches. We also show how this approach can be used to si-

multaneously produce TRNmodels for each related organism used in the comparative ge-

nomics analysis. Our results highlight the advantages of integrating comparative genomics

of closely related organisms with gene expression data to assemble large-scale TRN mod-

els with high-quality predictions.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004103 February 27, 2015 1 / 35

a11111

OPEN ACCESS

Citation: Imam S, Noguera DR, Donohue TJ (2015)
An Integrated Approach to Reconstructing Genome-
Scale Transcriptional Regulatory Networks. PLoS
Comput Biol 11(2): e1004103. doi:10.1371/journal.
pcbi.1004103

Editor: Christina Leslie, Memorial Sloan-Kettering
Cancer Center, UNITED STATES

Received: April 9, 2014

Accepted: December 23, 2014

Published: February 27, 2015

Copyright: © 2015 Imam et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All microarray and
ChIP-seq datasets were deposited in GEO under the
accession GSE58658. An example dataset can be
found at http://dx.doi.org/10.6084/m9.figshare.
1249869.

Funding: This work was funded by Department of
Energy, Office of Science, Great Lakes Bioenergy
Research Center (DE-FC02-07ER64494);
Department of Energy Genomics:GTL and SciDAC
Programs (DE-FG02-04ER25627); William H.
Peterson Predoctoral Fellowship from the University
of Wisconsin-Madison Bacteriology Department. The
funders had no role in study design, data collection

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004103&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1249869
http://dx.doi.org/10.6084/m9.figshare.1249869


Author Summary

The ever growing amount of genomic data enables the assembly of large-scale network
models that can provide important new insights into living systems. However, assembly
and validation of such large-scale models can be challenging, since we often lack sufficient
information to make accurate predictions. This work describes a new approach for con-
structing large-scale transcriptional regulatory networks of individual cells. We show that
the reconstructed network captures a significantly larger fraction of cellular regulatory
processes than networks generated by other existing approaches. We predict this ap-
proach, with appropriate refinements, will allow reconstruction of large-scale transcrip-
tional network models for a variety of other organisms. As we work towards modeling the
function of cells or complex ecosystems, individually reconstructed network models of sig-
naling, information transfer and metabolism, can be integrated to provide high informa-
tion predictions and insights not otherwise obtainable.

Introduction
Coordinating cellular behavior in response to internal or external signals requires dynamic reg-
ulation at several levels [1,2]. Our ability to understand cellular dynamics requires detailed
knowledge of each regulatory network and will, in part, depend on our ability to reconstruct
models that integrate the datasets that report on these processes. Of the various levels at which
cellular activities are regulated, transcriptional regulatory networks (TRNs) represent a particu-
larly active area for modeling, as high-throughput techniques to monitor RNA levels and pro-
tein-DNA interactions can be applied in a wide range of organisms [2,3]. Using such datasets,
one can analyze, model, and reverse-engineer TRNs [3,4].

Many published approaches to TRN inference depend on gene expression datasets to make
predictions about direct interactions between transcription factors (TFs) and their target genes,
assuming that the expression profile of a gene or cluster of genes, is directly related to that of a
cognate TF(s) [5–11]. However, predictions based on this premise alone can be compromised
by well-known indirect effects (e.g., co-expressed but not co-regulated genes) and post-
transcriptionally regulated TFs, whose cellular levels remain relatively constant under condi-
tions where their activity is significantly altered. In attempts to improve the TRN inference
process, sequence analysis of the promoter regions of target genes has been used to inform
models on the likelihood of a TF directly regulating a set of target genes [5,6,12–16]. However,
there is intrinsic statistical variability in the definition of gene clusters obtained from co-ex-
pression analyses. Consequently, identifying directly co-regulated genes (i.e., genes that are
both co-expressed and share conserved upstream regulatory sequences) is particularly chal-
lenging, as de novo identification of functional DNA binding motifs from co-expression clus-
ters is hampered by the fact that the functional sequences of interest are often
underrepresented [17].

Comparative genomics analysis of closely related organisms can facilitate identification
of functional regulatory motifs by increasing the signal to noise ratio in the input DNA se-
quences that are used for de novomotif detection [13–15]. The apparent conservation of TFs
and regulatory interactions across species has been leveraged to build TRNs across related spe-
cies [13–16]. However, computational prediction of the presence of a shared DNA motif that is
associated with the promoter in a group of genes should not be the only criterion for determi-
nation of co-regulation, as co-regulated genes would also be expected to share similar expres-
sion profiles under some conditions.
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While these individual approaches to TRN inference have their strengths and limitations,
they can be complementary and could potentially be combined to construct TRNs of greater
coverage and better predictive power [3,6]. However, no integrated workflow currently exists
that systematically combines these potentially complementary concepts. Thus, we sought to de-
velop an approach for reconstructing large-scale TRNs that would integrate these various ideas
to generate TRN models with higher information content and greater depth.

To achieve this goal, we developed a workflow to construct TRNs, which integrates compar-
ative genomics data, global gene expression analyses, and intrinsic properties of transcription
factors (TFs). Intrinsic properties comprise several well-known characteristics of bacterial TFs
such as the proximity of TF structural genes to their binding sites [12,14,18,19], the correlation
of expression profiles of TFs and their target genes [3,6–8], the similarity in DNAmotifs
bound by TFs having similar DNA binding domains [19,20] and the co-occurrence of TFs and
their binding sites across species [19]. While these properties are established features of many
bacterial TFs, they have not been systematically leveraged in the large-scale inference of TRN
models. We assessed the function of such an integrated workflow using benchmark datasets for
the well-studied bacterium Escherichia coli and we show that it is able to capture a significant
portion of the known E. coli TRN. Furthermore, we show this integrated network provides sig-
nificantly improved predictive power over expression-based inference approaches. We also ob-
served that the content of the TRN models derived from our integrated workflow and from
expression-based approaches are complementary, providing an opportunity to combine the
TRN models derived from these different approaches.

We also used this workflow to construct and evaluate a large-scale TRN model for the meta-
bolically versatile α-Proteobacterium Rhodobacter sphaeroides. R. sphaeroides is a purple non-
sulfur bacterium that has been studied for decades as a model system for photosynthetic
growth, being used to understand photon capture, light-driven energy metabolism, and other
aspects of the photosynthetic lifestyle [21,22]. In addition to anoxygenic photosynthetic
growth, this facultative bacterium is capable of aerobic and anaerobic respiration [22].
R. sphaeroides can also fix CO2 and N2, and produce H2, polyhydroxybutyrate or other com-
pounds of industrial importance [21–30]. Thus, gaining a detailed understanding of its TRN
will be pivotal in extending our knowledge of how these various lifestyles and metabolic pro-
cesses are regulated. Using our integrated workflow, we identified clusters of co-regulated
genes in R. sphaeroides and made predictions on DNA binding proteins that are likely to regu-
late these gene clusters. By focusing on several major sub-networks, we show that predictions
of our TRN are consistent with prior knowledge in R. sphaeroides and related bacteria. In addi-
tion, experimental analysis of select TFs using chromatin immunoprecipitation followed by
high-throughput sequencing (ChIP-seq) and global gene expression analyses provided direct
validation of the predictive power of this large-scale R. sphaeroides TRN model. Our analyses
illustrate the utility of this integrated approach to assemble TRN models that provide new in-
sights into important biological processes and highlight the role of large-scale TRN inference
in driving scientific discovery.

Results and Discussion

TRN Inference
We developed an integrated inference approach to reconstruct large-scale TRNs that uses both
sequence information from closely related bacteria and gene expression data, while taking into
consideration known properties of bacterial TFs (summarized in Fig. 1). Gene clusters generat-
ed by this integrated approach could conceptually be thought of as being co-regulated, as they
would share similar expression profiles and evolutionarily conserved upstream DNA sequence
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motifs. Furthermore, the prediction of TFs that directly control expression of these co-
regulated clusters would not depend solely on expression information, potentially enabling
more accurate TF-cluster assignments, even for post-transcriptionally regulated TFs whose ex-
pression profiles might be unrelated to those of their target genes.

The key steps in our workflow are summarized in S1 Fig., with implementation details of
each step provided in the Material and Methods section. Several of these steps involve the use
of a variety of well-established public domain algorithms and software packages, which are sys-
tematically integrated with new algorithms to build an automated workflow. Below, we sum-
marize the keys steps in this workflow.

Selecting organisms for phylogenetic footprinting. To incorporate comparative genomics
into TRN inference, our workflow begins with the selection of appropriate organisms for phy-
logenetic footprinting. The selection of organisms is critical for this analysis, as organisms that
are too closely related may be uninformative, while organisms that are too distantly related
may not possess conserved regulatory modules to inform the construction of highly predictive
models (see Materials and Methods). Our analysis indicates that as few as 6 appropriately se-
lected organisms could be sufficient to conduct a robust analysis, with addition of more species
only providing marginal benefit to the TRN predictions (S2 Fig.). However, as the most appro-
priate organisms to use are not always known a priori, using a larger selection of organisms
may be beneficial.

Identification of orthologs. Prior to de novo motif detection, orthologous genes shared be-
tween the selected organisms have to be identified. Approaches for predicting orthologs such

Fig 1. Overview of TRN reconstruction approach. A summary of the various steps involved in our TRN reconstruction workflow.

doi:10.1371/journal.pcbi.1004103.g001
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as bidirectional best BLAST hits can provide satisfactory results for ortholog predictions in
prokaryotic genomes [31]. However, the orthoMCL algorithm [32], which builds on bidirec-
tional best BLAST hits by implementing additional normalizations for protein lengths and uses
the Markov cluster algorithm (MCL) [33] to group orthologous proteins from multiple species,
provides an automated approach to ortholog identification across multiple organisms that can
yield improved results. Thus, our workflow leverages orthoMCL analysis to identify orthologs
shared among the organisms selected for the analysis, with all orthologs of a given gene form-
ing an orthologous group.

De novomotif detection. After identification of orthologs shared across species, de novo
motif detection analysis is conducted on the intergenic regions of all the genes coding for pro-
teins within a given orthologous group (S2 Fig.). From our analysis, we found that MEME [34]
enabled the identification of a wide variety of evolutionarily conserved motifs and performed
better than a Gibb’s sampling based approach [35,36]. These evolutionarily conserved DNA
motifs are then used to scan the entire genome for other candidate sites, which are clustered
based on sequence similarity (see Materials and methods). This results in the generation of
clusters of genes with conserved upstream DNA sequence motifs.

Integration of gene expression data. In addition to containing shared upstream regulatory
motifs, co-regulated genes might also be expected to have common or similar expression pat-
terns, at least under a subset of conditions. Thus, approaches for reconstruction of TRNs
should use both types of information, when available, to build higher confidence networks. To
integrate information captured in comparative genomics-based gene clusters with gene expres-
sion data, our workflow uses DISTILLER [37]. DISTILLER is a bi-clustering algorithm that
identifies conditions or sub-conditions (biclusters) under which a group of genes share a strong
co-expression pattern, as condition-dependent regulation of genes means they may not share
strong co-expression profiles across the entire dataset. Thus given pre-specified a group of
genes (in this instance based on the presence of a shared evolutionarily conserved motif), DIS-
TILLER is used to identify sub-conditions under which these genes share a significant co-
expression pattern. We use this approach to generate clusters of “co-regulated” genes having
both shared DNA sequence motifs and gene expression patterns.

Linking TFs to clusters. The task of predicting the TF(s) that regulate genes or gene clusters
is typically carried out by assessing the relationship between the expression profiles of TFs and
their predicted targets [3,5,9,38]. While this approach has been successfully applied in bacterial
systems, it is of limited use in eukaryotes [3,38]. However, even in bacteria many TFs are post-
transcriptionally regulated, and therefore, their expression profiles are unlikely to share any re-
lationship to those of their target genes. This can lead to spurious predictions when using gene
expression data alone. Use of prior knowledge about the properties of TFs, beyond just corre-
lated expression profiles, could facilitate prediction of target genes of such TFs. Thus, in order
to link known or predicted TFs to the putative co-regulated gene clusters, our workflow takes
advantage of four known characteristics of bacterial TFs: (i) correlation in expression profiles
between a TF and its target genes [3,6–8]; (ii) proximity of a TF to the location of the closest
binding site within a given cluster (since many bacterial TFs are either auto-regulatory or bind
to locations in close proximity to their structural genes) [12,14,18,19]; (iii) similarity in DNA
motifs bound by TFs having similar DNA binding domains (since TFs belonging to the same
protein families often bind to similar DNA sequence motifs) [19,20]; and (iv) phylogenetic cor-
relation of the occurrence of a TF and occurrence of a DNA sequence motif across species, (as-
suming that a DNA sequence motif is likely present in an organism if the TF which recognizes
this site is also encoded in its genome) [19].

Given the set of known or predicted TFs in the organism of interest, T = {TF1, . . ., TFi}
(where i is the total number of TFs in the organism), and the set of all predicted gene clusters,
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C = {Cluster1, . . ., Clusterj} (where j is the total number of predicted clusters), these four prop-
erties are integrated as follows:

Correlation: To use correlation to discriminate between potential transcriptional regulators
of a cluster of putatively co-regulated genes, the average Pearson’s correlation coefficient (Corr-

mean) was determined for each TF per gene cluster (eqn. 1) (S3A Fig.). This was achieved by de-
termining the correlation of the expression values between a given TF (TFx) and each gene (gk)
within a given cluster (Clustery) containing n genes, across the subsets of conditions under
which the gene is tightly co-expressed with others in the cluster. The absolute values of these
TF-gene correlations are then averaged to obtain a TF-cluster Corrmean (eqn. 1). This is carried
out for all TFs in the target organism to determine the average correlation of each TF in rela-
tion to each cluster. These average correlation scores are then converted into p-values (Pcorr)
by random permutation. Briefly, 1000 TF-cluster Corrmean scores were randomly generated,
then each previously calculated TF-cluster Corrmean was compared to the set of randomly gen-
erated values. The total number of randomly generated scores greater than or equal to a given
TF-cluster Corrmean divided by 1000 was used as an estimate of the p-value (eqn. 2).

CorrmeanðTFx; ClusteryÞ ¼ 1

n

Xn

k¼1

jcorr ðTFx;ClusteryðgkÞÞj

8TFx 2 T and 8Clustery 2 C

ð1Þ

PcorrðTFx; ClusteryÞ ¼ Total no: of random scores � CorrmeanðTFx; ClusteryÞ
1000

8TFx 2 T and 8Clustery 2 C
ð2Þ

Proximity: To use the proximity of TFs to link them to their binding sites, we determined
the minimum distance (in number of genes) between each TF’s location in the genome and the
genes present in a given cluster (eqn. 3) (S3B Fig.). Here, the proximity score would have a
value of 0 (if the TF is a member of a cluster for a given TF-cluster pair) or larger. This proxim-
ity score is determined for every TF-cluster pair where at least one member of the cluster is lo-
cated on the same replicon as the TF. These minimum distance scores (Proxmin) were also
converted into p-values (Pprox) by random permutation as described above (eqn. 4).

ProxminðTFx; ClusteryÞ ¼ MinðDistðTFx;Clusteryðg1ÞÞ; . . .;DistðTFx;ClusteryðgnÞÞÞ
8TFx 2 T and 8Clustery 2 C

ð3Þ

PproxðTFx; ClusteryÞ ¼ Total no: of random min: dist: � ProxminðTFx; ClusteryÞ
1000

8TFx 2 T and 8Clustery 2 C
ð4Þ

DNA binding domain: To incorporate information on DNA binding domain (DBD) simi-
larity into TRN predictions, we begin by determining the DBD family to which each TF in the
target organism belongs to using Pfam analysis [39]. All E. coli TFs from RegulonDB [40],
which had binding motif information (81 at the time of this analysis), were retrieved and their
DBD families also determined using Pfam. Position specific scoring matrices (PSSMs) for the
DNA binding sites of the RegulonDB TFs and each of the evolutionarily conserved de novo de-
tected motifs are then constructed. For each TF-cluster pair to be assessed, the PSSM for the de
novo detected motif of the cluster under consideration was compared to the PSSM(s) from E.
coli whose associated TF(s) belongs to the same DBD family as the TF under consideration.
This TF was then assigned the most significant (smallest) q-value from this set of comparisons.
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For instance, if TFx is a Crp family TF, to assign a score to TFx in relation to Clustery, the PSSM
for Clustery is compared to all available Crp family PSSMs from the RegulonDB data set and
TFx is assigned a value equivalent to the most significant match to these PSSMs (S3C Fig.).
These q-values were then—log10 transformed to generate the DBD_score for that TF-cluster
pair. PSSM comparisons were made using Tomtom [41,42] and all possible TF-cluster pairs
were assessed similarly. These DBD_scores were converted into p-values (Pdbd) by random
permutation as previously described (eqn. 5).

PdbdðTFx; ClusteryÞ ¼ Total no: of random DBD scores �DBD score ðTFx; ClusteryÞ
1000

8TFx 2 T and 8Clustery 2 C

ð5Þ

Phylogenetic correlation: To compute a score for this property, we first determine the oc-
currence of a given motif across all the genomes used in the analysis. For each de novo detected
motif, we use MAST [41] to search for all instances of that motif in the intergenic regions of
each organism used for phylogenetic footprinting. These genome-wide p-values of MAST hits
for a given motif were stored in separate vectors for each genome. The correlation was then cal-
culated between the MAST hits p-value vector of the target organism and that for each species
used for phylogenetic footprinting (target organism inclusive). These correlations were referred
to as “motif occurrence correlations” (S3D Fig.). We then determined the occurrence of each
TF in the target organism across all the species used for phylogenetic footprinting via
orthoMCL analysis. Finally, the correlation between the “motif occurrence correlation” and TF
occurrence was calculated to determine the phylogenetic correlation. These phylogenetic corre-
lation scores were converted to p-values by random permutation as described above (eqn. 6).

PpcðTFx;ClusteryÞ ¼
Total no: of random Phylo: corr: scores �Phylo: corr: score ðTFx; ClusteryÞ

1000
8TFx 2 T and 8Clustery 2 C

ð6Þ

Combining scores: To rank candidate TFs, the -log10 of the computed p-values for the 4 different cri-
teria were summed together to generate a final score Rscore (eqn. 7), resulting in a ranked list of TFs most
likely to regulate a given cluster.

RscoreðTFx; ClusteryÞ ¼ �log10ðPcorrðTFx; ClusteryÞ �PproxðTFx; ClusteryÞ
�PdbdðTFx; ClusteryÞ �PpcðTFx; ClusteryÞÞ
8TFx 2 T and 8Clustery 2 C

ð7Þ

Predicting regulatory interactions from global gene expression data. The integrative ap-
proach described above identifies conserved clusters of putatively co-regulated genes, but its
utility can be limited by the evolutionary distance and the degree of conservation of the indi-
vidual regulatory modules across the organisms used to generate the TRN. For example, it may
be difficult to identify conserved regulatory sequences across closely related species if these se-
quences or regulatory mechanisms have undergone significant evolution. Furthermore, indi-
vidual sub-networks that are specific to a lifestyle or response of an individual species, genus
and/or clade might not be captured via a comparative genomics-based approach. Thus, to com-
plement predictions from the comparative genomics-based analysis, we considered the consen-
sus predictions of multiple high performing direct expression-based inference approaches
[3,9–11] to make predictions for additional TFs not included in the comparative genomics-
based TRN. In particular, we used the consensus predictions from 3 approaches: context

Genome-Scale Transcriptional Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004103 February 27, 2015 7 / 35



likelihood of relatedness (CLR), which uses normalized mutual information-based scores, as
an indication of the relatedness of expression profiles, to assess potential TF-target interactions
[9]; GENIE3, which uses multiple regression and tree-based feature selection to identify TFs
whose expression profiles are most predictive of a given target gene [10]; and an approach
which uses analysis of variance (ANOVA) to score how dependent the expression profile of a
target gene is to potential transcriptional regulators [11]. The predictions from these ap-
proaches were combined using methods similar to those previously used for generating con-
sensus networks from approaches assessed in the DREAM challenges [3]. Details of this are
provided in the Materials and methods (see “Inferring regulatory interactions solely from ex-
pression data”).

The networks predicted from comparative genomic-based integration and the gene
expression-based consensus network were then combined. This was achieved by taking the in-
tegrated comparative genomic-based TRN as the core of the network, then augmenting it by
including high-scoring predictions for TFs not already included in the integrated network. We
chose this approach based on observations from analysis of the E. coli TRN (see below).

An integrated approach improves overall predictive performance
To assess the performance of the integrated workflow outlined above, we built a TRN for E. coli
using sequence data from 14 enterobacteriales species (including E. coli) obtained from NCBI
and curated expression data obtained from the many microbes microarray database [9]. The
TRN built using the described integrative comparative genomics-based component of our
workflow consisted of 225 motifs and clusters, 1660 genes, 126 TFs and a total of 2457 interac-
tions (S1 Dataset). In addition, 156 of the 225 clusters were significantly enriched for at least
one functional category. These predictions were compared to similar sized TRNs (2500 highest
ranked interactions) generated by CLR and GENIE3 using the same gene expression dataset.
These TRN models were then validated against an experimentally verified list of regulatory in-
teractions from regulonDB [40].

A widely used metric for assessing the performance of TRN inference approaches is the area
under a plot of precision against recall for inferred TF-target gene interactions [4,43]. Assessing
this area under the precision-recall curve (AUPR), we observed that the integrated approach
performed significantly better than CLR or GENIE3, both when all predicted interactions were
considered (AUPR ~3 times larger) and when only interactions for TFs with experimental data
were considered (AUPR ~1.5 times larger) (Fig. 2A). At a precision of 25%, CLR and GENIE3
and the integrated TRNs achieved a recall of 1.8%, 2.1% and 5.7%, respectively. These analyses
indicate that our comparative genomics-based integrated approach is more accurate and able
to capture a larger fraction of known regulatory interactions. It should be noted that for this
analysis, only the highest scoring TF predicted for each cluster was used to build the final list of
predicted interactions for the integrated TRN. In some instances other high scoring TFs may
actually be the direct regulators, but these were not considered here.

Integrated and expression-based networks are complementary. While the above analysis
highlights the improved performance of the integrated approach over the expression-only
TRN inference, it may be more informative to examine the predicted interactions and assess
where each approach excels or fails, to determine if there is any complementarity between
these approaches. Of the 81 TFs for which experimentally verified interactions exist in the reg-
ulonDB dataset used in our analysis, CLR, GENIE3 and the integrated TRN models were able
to make at least one correct prediction for 28, 23 and 30 of these TFs respectively (Table 1,
Fig. 2B). While CLR and GENIE3 use different approaches to infer their TRNs, there is a large
overlap in the TFs for which they make predictions (Fig. 2B, Table 1). This is consistent with
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previous observations from analysis of TF-target interactions conducted as part of a compre-
hensive assessment of expression-based inference approaches [3]. Overall 96% of the TFs for
which GENIE3 made correct predictions could also be captured using CLR and 79% vice versa,
though the precision and recall for each of these TFs varies between approaches (Table 1). Con-
versely, only 57% and 61% of the TFs for which CLR and GENIE3 made predictions for, re-
spectively, also had predictions in the integrated TRN, while predictions for 43% of the TFs in
integrated network were unique to this approach (Fig. 2B).

These observations indicate that there are specific subsets of TFs that are amenable to pre-
dictions using expression-based assumptions. However, many TFs that are not amenable to
analysis solely by expression-based analyses can be correctly assigned in a TRN constructed
using an integrative approach. This is potentially due to instances where the expression profile
of a TF does not show any significant relationship to those of its target genes. This typically oc-
curs for TFs that are known to be post-translationally regulated such as FNR, ArgR, Fur, Cra
etc [44–47] (Table 1). On the other hand, for several of the TFs where expression-based ap-
proaches performed better, the integrated approach failed to make any prediction (Table 1).
This could be the result of a number of factors including lack of conservation of TF binding
sites, small regulon size, complex DNA binding motifs or limitations in the motif detection al-
gorithm utilized. Importantly, for TFs for which predictions were made by all three ap-
proaches, the predictions from the integrated approach were in general on par with, or better
than, those obtained with expression-based approaches (Table 1). These observations lend
themselves to a straight-forward approach for combining these approaches wherein the inte-
grated comparative genomics-based network serves as the core of the TRN, and is comple-
mented with high scoring predictions from expression-based approaches for TFs not already
captured in the core network.

Overview of the Inferred TRN for R. sphaeroides
Using the same workflow and leveraging the observed complementarity of integrative and ex-
pression-based approaches, we generated a large-scale TRN model for the metabolically versa-
tile photosynthetic bacterium R. sphaeroides. In this case, we used sequence information from
8 closely related α-Proteobacteria, including R. sphaeroides (S4 Fig.) and gene expression data
from 198 experiments (S1 Dataset). The resulting TRN model consists of 120 clusters, 93 TFs,

Fig 2. Comparison of the performance of CLR, GENIE3 and integrated approaches on E. coli dataset.
(A) AUPR for CLR, GENIE3 and the integrated approach when predictions for all 267 input candidate TFs are
considered (blue bars) or when only interactions for the 81 experimentally verified TFs in RegulonDB are
considered (red bars). (B) Venn diagram summarizing the overlap between the 3 approaches for the TFs for
which at least one accurate prediction was made.

doi:10.1371/journal.pcbi.1004103.g002
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Table 1. Predictions for E. coli TFs.

Integrated* CLR GENIE3

TFs† Regulon size Prec. (%) Rec. (%) Prec. (%) Rec. (%) Prec. (%) Rec. (%)

A b1013 (RutR) 17 100 52.9 0 0 NA NA

b3438 (GntR) 12 100 41.7 0 0 0 0

b4178 (NsrR) 83 100 3.6 NA NA NA NA

b0683 (Fur) 129 68.6 27 0 0 0 0

b1712 (IhfA) 219 66.7 1.8 NA NA NA NA

b0080 (Cra) 78 52 15 NA NA 0 0

b3512 (GadE) 36 50 8.3 NA NA NA NA

b1334 (FNR) 296 39 3 0 0 0 0

b3938 (MetJ) 15 30.8 26.6 0 0 NA NA

b3094 (ExuR) 8 21 37.5 0 0 0 0

b3237 (ArgR) 37 21 35 NA NA NA NA

b2369 (EvgA) 18 5.5 5.5 0 0 0 0

b1508 (HipB) 2 0.8 100 0 0 NA NA

B b3418 (MalT) 10 88.9 80 66.6 40 NA NA

b3828 (MetR) 5 66.7 40 100 20 NA NA

b1221 (NarL) 121 25 0.8 25 0.8 0 0

b0076 (LeuO) 20 15.5 10 8.3 5 0 0

C b3569 (XylR) 6 80 66.6 20 16.7 100 16.7

b3868 (GlnG) 44 86.4 43.2 8.3 2.3 100 2.3

b0064 (AraC) 11 75 27 54.5 54.5 88.8 72

b0399 (PhoB) 60 53.3 26.7 8.3 1.7 40 3.3

b4043 (LexA) 59 59.57 47.5 76 32.2 61.8 35.6

b3357 (Crp) 497 39.4 13.5 50 0.2 22.2 0.4

b1658 (PurR) 31 26.1 58.1 23.5 12.9 22 35.5

b0889 (Lrp) 105 25 1 14.2 1.9 12.9 13.3

b1014 (PutA) 2 13.3 100 20 50 33.3 50

b0113 (PdhR) 42 10.7 7.1 71.4 11.9 100 14

b0020 (NhaR) 7 10.5 28.5 50 14.3 100 14.3

b3702 (DnaA) 12 6.8 33.3 10 16.7 3.5 16.7

b3912 (CpxR) 63 6.6 1.6 10.5 3.2 14.3 3.2

D b2151 (GalS) 10 0 0 33.3 30 100 30

b2731 (FhlA) 30 NA NA 9 3.3 100 3.3

b1531 (MarA) 38 NA NA 40 5.3 50 5.3

b2531 (IscR) 32 NA NA 38.5 15.6 31.3 15.6

b3905 (RhaS) 6 NA NA 9.8 66.6 26.6 66.7

b0676 (NagC) 36 NA NA 20 2.8 25 2.8

b3021 (MqsA) 4 NA NA 11.1 25 20 25

b1040 (CsgD) 23 0 0 33 13 12.1 17.4

b3261 (Fis) 227 0 0 10.5 0.9 6.7 4

E b1130 (PhoP) 55 NA NA 20 1.8 NA NA

b4324 (UxuR) 7 NA NA 16.66 12.5 NA NA

F b1988 (Nac) 21 NA NA 0 0 2.1 4.7

(Continued)
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76 distinct evolutionarily conserved DNA sequence motifs and 1858 TF (or motif)-target inter-
actions (S5 Fig., S1 Table). This model includes a total 1211 R. sphaeroides genes (about 28% of
the open reading frames predicted in its genome [48,49]). Below, we provide an overview of
some of the pertinent predicted sub-networks in the TRN, as well as experimental validation of
some key TFs in the network.

Reconstructed TRN encompasses a wide variety of functions. The R. sphaeroides TRN
model encompasses a wide variety of cellular functions ranging from central carbon metabo-
lism and global stress responses, to processes more specific to R. sphaeroides, such as nitrogen
fixation and photosynthesis (Fig. 3, S5 Fig.). Of the 120 identified gene clusters, 80 were signifi-
cantly enriched for at least one gene ontology (GO) [50] category (S1 Table, Fig. 3), indicating
this TRN model captures a high degree of functional information even though this type of
functional data was not used in the network inference workflow.

Photosynthesis. Previous analyses of the photosynthetic lifestyle of R. sphaeroides have im-
plicated 3 TFs in this process: PpsR [51,52], FnrL (a homolog of FNR) [53–55] and PrrA (the
response regulator of the PrrAB two component system) [56–60] (Fig. 4). More recently a
small non-coding RNA, PcrZ has been implicated in the regulation of photosynthesis in
R. sphaeroides [61]. Despite extensive prior analysis, our TRN model predicts at least 2 addi-
tional regulators of photosynthesis: CrpK (RSP_2572) and RSP_2888 (Fig. 4). To illustrate the
predictive ability of our TRN, below we provide details about the known or predicted TFs in
the R. sphaeroides photosynthetic lifestyle.

Previous analysis of PpsR (RSP_0282) identified this TF as a repressor of photopigment
production under aerobic conditions [51,52,63,64]. The activity of PpsR is regulated by its cog-
nate anti-repressor, AppA, which is reported to respond to both oxygen and blue light [65–68].
To gain a more complete picture of the PpsR regulon, as well as assess the predictive perfor-
mance of our inferred TRN for this TF, we determined the genome-wide binding of PpsR to its
target sites by ChIP-seq using a 3X-myc tagged PpsR protein that complements a defined
ΔppsRmutant. We identified a total of 19 PpsR binding sites in the genome that were located
upstream of 15 operons, only 2 of which had been previously verified as direct targets for this
TF [51] (Table 2, Fig. 5A). Consistent with its role in regulation of photopigment formation,
the majority of PpsR target operons had known or predicted photosynthesis-related functions
(Table 2). Interestingly, PpsR was bound upstream of the prrA gene, which encodes another
transcriptional regulator of photosynthesis in R. sphaeroides [56–60], suggesting a previously
unknown genetic interaction between these TFs.

In addition to photosynthesis-related targets, PpsR was bound upstream of RSP_2095 and
RSP_3000, which encode proteins of unknown function. However, these genes were not found
to be significantly differentially expressed (DE) in a pair-wise comparison of RNA levels be-
tween a ΔppsRmutant and its parental strain [51], nor did their expression profiles show

Table 1. (Continued)

Integrated* CLR GENIE3

TFs† Regulon size Prec. (%) Rec. (%) Prec. (%) Rec. (%) Prec. (%) Rec. (%)

Average 40.7 28.6 23.2 12.5 34.6 14.6

* NA—Not applicable i.e., no predictions made by inference approach for that TF. A value of 0 indicates some predictions were made but all were

inaccurate. Prec.—precision; Rec.—recall.

† TFs for which accurate predictions were made by: A—only integrated approach; B—both CLR and the integrated approach; C—all 3 inference

approaches; D—only CLR and GENIE3; E—only CLR; F—only GENIE3.

doi:10.1371/journal.pcbi.1004103.t001
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Fig 3. Overview of functional categories captured in the R. sphaeroides TRN. Heat map showing the most significantly enriched GO terms for 48 of the
120 clusters identified in our analysis. The predicted regulators for each cluster is shown on the right hand side of the map, while the GO categories are at the
bottom. Darker shades of blue indicated greater significance.

doi:10.1371/journal.pcbi.1004103.g003
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significant correlation to other members of the PpsR regulon across the available microarray
dataset compendium (Fig. 5B), suggesting these might represent non-functional binding sites
in the genome, despite possessing strong PpsR motifs (Table 2). Consistent with the known
role of PpsR as a transcriptional repressor, all DE PpsR targets we identified were predicted to
be repressed by PpsR as RNA levels were increased in cells lacking this TF (Table 2).

Our TRN predicted a total of 13 PpsR target operons, 12 of which were verified via ChIP-
seq analysis (S1 Table (cluster 60), Table 2), corresponding to a recall of 80% (i.e., 12 of 15
PpsR ChIP-seq identified sites were predicted) and a precision of 92.3% (i.e., 12 of 13 predicted
target sites were accurate). The only predicted PpsR target site not verified by ChIP-seq analysis
(RSP_4172—a hypothetical protein) was classified as a false-positive since enrichment for
PpsR binding was not detected by subsequent ChIP-qPCR analysis under the growth condi-
tions tested (S6 Fig.). On the other hand, 3 PpsR sites identified in our ChIP-seq assay were not
predicted in our TRN (RSP_2095, RSP_3000 and hemE). However, given that putative targets
such as RSP_2095 and RSP_3000 were not DE in the absence of PpsR (Table 2, Fig. 5B), these
might represent non-functional or false positive binding events. Independent ChIP-qPCR vali-
dation of ChIP-seq identified sites suggest that RSP_2095 and RSP_3000 are likely bound by
PpsR but not DE under the conditions tested (S6 Fig.). Overall, our inferred TRN provided an
accurate and expanded picture of PpsR binding sites across the genome with a large coverage
of true binding sites. Accordingly, the consensus DNA sequence motifs obtained for PpsR
from ChIP-seq and phylogenetic footprinting analysis are very similar (Fig. 5C).

FnrL (RSP_0698) is an iron-sulfur cluster-containing Crp-family TF which previous stud-
ies have reported to be essential for anaerobic growth in R. sphaeroides [54,55]. Previous ChIP-
chip analysis of genome-wide FnrL binding sites in vivo indicated the direct involvement of
this TF in a host of processes including photosynthetic and anaerobic respiratory growth [53].
Our inferred TRN captured a significant portion of the known FnrL regulon, predicting a total

Fig 4. Photosynthetic gene regulatory network. An overview of the R. sphaeroides photosynthetic gene regulatory network, showing all the known/
predicted transcriptional regulators. Solid lines indicate experimentally verified interactions, while dashed lines indicate predicted but as yet unverified
interactions. Under aerobic conditions, AppA—the anti-repressor of PpsR—is inactive, allowing PpsR to repress photosynthetic genes (grey nodes and
edges indicate inactivity). Under photosynthetic conditions, AppA becomes active and interacts with PpsR via protein-protein interactions (depicted with a
white circle), thereby inhibiting PpsR repression. The transcriptional activators, PrrA and FnrL become active under these conditions and drive the
expression of photosynthetic genes. CrpK and RSP_2888 (MppG) are also predicted to be involved in this process. PcrZ is a sRNA shown to negatively
impact photopigment gene expression under photosynthetic conditions. Biotapestry was used for network visualization [62]. * indicates newly added
components of the photosynthetic gene regulatory network identified in this study.

doi:10.1371/journal.pcbi.1004103.g004
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of 59 FnrL target operons (S2 Table, S1 Table (cluster 11)) that included 24 of the 25 previously
identified FnrL target operons, a recall of 96%. The only previously verified FnrL target operon
not identified in our analysis was RSP_6116, which is not represented on the R. sphaeroides
Affymetrix gene chip, and thus dropped out during the integration of gene expression data. In
addition to previously identified sites, our large-scale TRN predicted an additional 35 FnrL tar-
get operons not previously known or predicted to be under the control of FnrL (S2 Table).
Each of these new FnrL target operons have putative binding sites with strong similarity to the
FnrL consensus and share a similar expression profile with other members of the FnrL cluster
(S3 Table). Several of these newly predicted FnrL targets encode functions for which this TF
has been previously implicated; including the regulation of Fe-S cluster biogenesis (e.g.,
RSP_1949) and Fe-S binding proteins (e.g., RSP_0692_89—rdxBHIS). However, several new
functions for FnrL that are predicted in this data set need to be tested experimentally. If these
predictions are correct, it would significantly broaden the functional role of FnrL in
this species.

In addition to PpsR and FnrL, whose regulons were globally characterized in this or previ-
ous studies, our TRN model also made predictions for direct targets of less-well characterized
TFs. For instance, our TRNmodel made several new predictions for targets of the photosynthe-
sis regulator PrrA (RSP_1518). PrrA has previously been proposed to be major global

Table 2. PpsR binding sites across the R. sphaeroides genome identifed by ChIP-seq.

ID Annotation chrID peakStart peakStop FCa Motif Exprb

1 RSP_0263–59c bchCXYZ-pufQ chr1 1987800 1988799 24.3 TGTCCAATAAAGTTGACACT -36.61

2 RSP_0265–4c crtEF chr1 1990400 1990799 3.3 TGTAAGAAAAAGTTGACACC -8.98

RSP_0266–7c crtCD -2.65

3 RSP_0271–69c crtIB-tspO chr1 1996200 1996799 20.2 TGTCTAGTCAGGTTTACAAT -11.75

RSP_0272–5c crtA-bchIDO -20.05

4 RSP_0279–6c bchG-pucC-bchP chr1 2005000 2005599 7.8 TGTAAGGATAGATTGACACT -8.03

5 RSP_0281–80c bchEJ chr1 2007600 2009599 21.9 TGTCAACTGAAATGGACACA -9.60

6 TGTCCAGTGCGTCTGACACT

7 RSP_0283*,c ppaA chr1 2010000 2010799 12.6 TGTCAAAGAAAATTGACACC -7.48

8 RSP_0284–91*,c bchFNBHLM-puhA chr1 TGTAAGTCAGAATTGACACT -36.33

9 RSP_0314-RSP_6256c pucBA chr1 2042200 2042799 23.5 TGTCAGCGCAATGTGACACC -112.17

10 TGTCAGCCAACACTGACATT

11 RSP_0680 hemE chr1 2424000 2424400 1.7 TGTCCATTTGCCCTGACAAC -2.23

12 RSP_1518c prrA chr1 105181 105204 2.1 CGTCAAAGGAAGTTGACACA NA

13 RSP_1556-RSP_6158c puc2B2A chr1 146000 146599 58.4 TGTCTGCATGGCATGACATA -8.99

14 RSP_2095 hypothetical protein chr1 694600 694999 2.5 TGTGTGCGCAGTTGGACACC -1.09

15 RSP_3000 hypothetical protein chr1 1697500 1697700 3 TGTCCATATGGGTTGACATT -1.21

16 chr1 4000 4200 3.5 TGTGTGTCAAGATGCACACT ND

17 chr1 1680000 1680599 3.2 TGTCTATGACATTTCACAAT ND

18 chr2 4000 4200 3.4 TGTGTGTCAAGATGCACACT ND

19 chr2 33000 39599 5 TGTGTGTCAAGATGCACACT ND

* Previously experimentally verified as direct PpsR target
a Fold enrichment of PpsR-myc ChIP over control myc antibody ChIP in WT.
b Fold change in gene expression from microarray analysis of ΔPpsR and its parental strain. NA—Not applicable (prrA is deleted from both strains used

for expression analysis). ND—Not determined (binding sites not located upstream of any annotated gene(s)).
c PpsR targets predicted in the TRN

doi:10.1371/journal.pcbi.1004103.t002

Genome-Scale Transcriptional Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004103 February 27, 2015 14 / 35



regulator in R. sphaeroides and other bacteria [57]. PrrA is essential for photosynthetic growth
in R. sphaeroides and direct control of photosynthesis related operons, tetrapyrolle biosynthesis
(hemA) and the Calvin—Benson—Bassham (CBB) cycle genes has be shown in vitro [59,70].
Our TRN predicts that a total of 17 operons are directly regulated by PrrA (S1 Table (cluster
96)). Of these, 7 predicted PrrA target operons have a photosynthesis related role, including

Fig 5. Analysis of the PpsR regulon in R. sphaeroides. (A) Using ChIP-seq, we identified the binding sites for PpsR across the R. sphaeroides genome,
with several binding sites across chromosome 1 highlighted. MochiView [69] was used for visualization of binding profile. (B) Heat map depicts the
expression profiles of the first members of PpsR targets operons across our microarray compendium of 198 experiments conducted under aerobic
respiratory (Aerobic), anoxygenic photosynthetic (Photosynthesis) and anaerobic respiratory conditions (DMSO). Expression profiles for experiments
conducted on the ΔprrA and ΔprrA-ΔppsR strains are highlighted. Deletion of PpsR from ΔprrA results in derepession of PpsR target genes. (C) Position
weight matrix logo generated for PpsR using targets identified by ChIP-seq compared to logo generated from our TRN inference analysis.

doi:10.1371/journal.pcbi.1004103.g005
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pufLMX (RSP_0255–7), pufA (RSP_0258), ppaA (RSP_0283), bchFNBHLM-puhA (RSP_0284–
91), hemC (RSP_0679), hemA (RSP_2984) and appA (RSP_1565). However, only two of these
operons (bchF and hemA) have previously been experimentally verified as PrrA-dependent in
R. sphaeroides [70], so direct analysis of PrrA binding to these newly proposed targets
is required.

CrpK (RSP_2572) is a Crp/Fnr-family TF, which possesses predicted cyclic nucleotide-
binding and Crp-like helix-turn-helix domains. However, unlike FnrL, CrpK does not possess
N-terminal cysteine residues required for coordination of iron-sulfur clusters, suggesting CrpK
might not directly sense oxygen. Our TRN predicts that CrpK regulates overlapping targets to
FnrL, including several photosynthesis related operons such as bchEJGP (RSP_0281–76) and
hemA (RSP_2984) (S1 Table (cluster 105)), as well as several other known FnrL target genes in-
cluding nuoA-N (RSP_0100–12) and ccoNOQP (RSP_0696–3), amongst others. These predic-
tions suggest CrpK could substitute for FnrL under some conditions, providing added,
previously unappreciated, robustness to the photosynthetic TRN of this bacterium and possibly
others containing homologs of both FnrL and CrpK. The overlapping nature of the CrpK and
FnrL regulons was recently demonstrated experimentally [71].

RSP_2888 (recently renamed MppG [71]) is a BadM/Rrf2 family TF predicted by our TRN
to control photosynthesis gene expression in R. sphaeroides. Predictions from our TRN suggest
a direct role of MppG in the regulation of a bacteriochlorophyll biosynthesis operon
bchFNBHLM (RSP_0284–91), in addition to key photosynthesis related genes, such as appA
(RSP_1565) (S1 Table (cluster 110)). MppG mRNA levels are increased under photosynthetic
conditions in our expression datasets and this gene is predicted in our TRN to be under the
control of PrrA. These observations are consistent with a role for MppG in the photosynthesis
sub-network of the TRN, which has been experimentally verified [71].

Overall our TRN captures a significant portion of the known regulatory interactions in the
photosynthesis sub-network (Fig. 4), while making a large number of novel predictions that
should provide new insights into the complex combinatorial regulation of this lifestyle in PNB.

Central and alternative carbon metabolism. For cells to survive in nature, they must adapt
to the types and quantities of nutrients present in their environment. For instance, E. coli uses
the cAMP receptor protein (CRP), in part, to preferentially utilize glucose over other nutrient
sources, if present in its environment [72]. On the other hand, the ArcAB two-component
global regulator represses portions of E. coli’s central metabolic pathways under anaerobic re-
spiratory conditions [73,74]. In addition to these global regulators, the Cra/FruR regulator spe-
cifically regulates carbon and energy metabolism in enteric bacteria [47].

R. sphaeroides is not predicted to possess proteins analogous to CRP or ArcAB. However,
our TRN predicts that the regulation of central carbon metabolism in R. sphaeroides is con-
trolled by a LacI family transcriptional regulator, RSP_1663. RSP_1663 is predicted to regulate
transcription of genes encoding the central carbon metabolism enzymes Mdh (RSP_0968),
PckA (RSP_1680), malic enzyme (RSP_1593), PdhAB (RSP_2968-RSP_4047-RSP_4050), suc-
cinate dehydrogenase (RSP_0974–6), as well as glycolytic enzymes Zwf (RSP_2734), Pgl
(RSP_2735), Pgi (RSP_2736) and FbaB (RSP_4045), potentially making this TF a major regula-
tor of carbon metabolism under many conditions (Fig. 6). This predicted RSP_1663 regulon
might make it functionally analogous to the Cra/FruR regulator in enteric bacteria [47] and the
RpiR family TF HexR in β- and γ-proteobacteria [75]. RSP_1663 is predicted to bind to an in-
verted repeat DNA motif with the sequence [A/G/T]GTT N6–8 AAC[A/C/T] (where N is any
nucleotide) (Fig. 6). In addition, differences in spacer between the inverted repeats divides the
genes predicted to be regulated by this TF into 2 clusters (S1 Table (clusters 15 and 36)). Fur-
ther experimental analysis is needed to understand the functional role of RSP_1663.

Genome-Scale Transcriptional Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004103 February 27, 2015 16 / 35



In addition to RSP_1663, RSP_0981—a GntR family transcriptional regulator, is predicted
to regulate transcription of genes encoding the succinyl-CoA synthetase (RSP_0967–6), succi-
nate dehydrogenase (RSP_0974–6) and α-ketoglutarate dehydrogenase (RSP_0965–62) com-
plexes of the tricarboxylic acid cycle (Fig. 6, S1 Table (cluster 48)), while NtrC (RSP_2838) is
also predicted to be involved in the regulation of the succinate dehydrogenase complex (Fig. 6,
S1 Table (cluster 1)). Cluster 62 in our TRN (Fig. 6, S1 Table) also contains a number of genes
encoding enzymes involved in central carbon metabolism including Icd (RSP_0446 and
RSP_1559), L-malyl-CoA lyase (RSP_1771), citrate synthase (RSP_1994) and NuoA-N
(RSP_2512–23). The members of cluster 62 share the inverted repeat motif (Fig. 6), indicating
that these central metabolism genes are under the joint control of an as yet unidentified TF.

Our TRN also made predictions about regulation of metabolism of several other carbon
sources. For instance, RSP_0489—a GntR family transcriptional regulator, is predicted to reg-
ulate transcription of genes encoding enzymes that are involved in the metabolism of carboxyl-
ic acids including UxuA (RSP_0773), UxaC (RSP_0488), KduID-UxuB (RSP_0482–80) and
carbohydrate kinase (RSP_0490), as well as substrate transport (RSP_0487–3 and RSP_3168–
5) (Fig. 6, S1 Table (cluster 83)), making it functionally analogous to UxaR [76]. We tested
these predictions by comparing RNA levels between wild type (WT) and ΔRSP_0489 cells, and
conducting ChIP-seq analysis with a myc-tagged version of RSP_0489 (Fig. 7). A total of 55

Fig 6. Predicted gene regulatory network controlling central and alternative carbonmetabolism in R. sphaeroides. Sub-network highlighting the
regulons of the major TFs predicted to be involved in the regulation of carbon metabolism in R. sphaeroides. TFs are represented by diamond shaped nodes
while non-TF target genes are presented as circular nodes. Green edges represent activation; red edges represent repression, while black edges represent
undetermined regulation. Green nodes indicate genes known or predicted to be involved in carbon metabolism, while blue nodes are related to nitrogen
metabolism. Motifs predicted to be bound by the various TFs in this sub-network are shown on the right.

doi:10.1371/journal.pcbi.1004103.g006
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genes were DE (1.5 fold change, pvalue< 0.05) between WT and ΔRSP_0489 cells, including
predicted targets uxuA, kduID-uxuB, uxaC and RSP_0487–3, which were repressed in the pres-
ence of RSP_0489 by as much as 36-fold (Fig. 7A, S4 Table). Several other genes involved in
substrate transport and metabolism were also DE in this data set (Fig. 7A, S4 Table). ChIP-seq
analysis with a 3X myc tagged variant of RSP_0489 revealed that RSP_0489 binds at the pro-
moters for uxuA (RSP_0773), the uxaC operon (RSP_0488–0), RSP_0489, RSP_0490 and with-
in the coding regions of substrate transporter (RSP_3372–70 and RSP_2667–3) (Fig. 7B,
Table 3), verifying several predictions from our TRN model. Overall 4 out of these 6 RSP_0489
target operons (~67%) were correctly predicted in our TRN. The conserved DNA sequence
motif derived from sites bound by RSP_0489 also showed similarities to that obtained from

Fig 7. The RSP_0489 regulon. (A) Heat map of metabolic genes DE between wild-type (WT) and ΔRSP_0489mutant cells from global gene expression
analysis. Only the first members of DE operons are depicted in the heat map for brevity. RSP_0490 (carbohydrate kinase), RSP_3372 (TRAP-T family
transporter), RSP_0577 (hypothetical protein), RSP_1420 (TRAP-T family transporter), RSP_1613 (TRAP-T family transporter), RSP_2401 (putative 6-
aminohexanoate-cyclic-dimer hydrolase), RSP_2508 (Methylcrotonyl-CoA carboxylase beta chain), RSP_1883 (ABC polyamine/opine transporter),
RSP_2506 (Isovaleryl-CoA dehydrogenase), RSP_3168 (ABC transporter), RSP_3169 (FAA-hydrolase-family protein). (B) Direct binding of RSP_0489 to
the uxaC, RSP_0490, uxuA, RSP_3372 and RSP_2667 promoters identified by ChIP-seq. (C) RSP_0489 binding site motif obtained from ChIP-seq analysis
compared to that obtained from phylogenetic footprinting analysis of the RSP_0489 promoter.

doi:10.1371/journal.pcbi.1004103.g007

Table 3. RSP_0489 direct targets identified by ChIP-seq and expression profiling.

ID Annotation chrID peakStart peakStop FCa Motif Exprb

1 RSP_0488–80* uxaC-kduID-uxuB chr1 2222600 2223600 248 TGTCTGACTAATATGCTAGTATGC -36

RSP_0489* GntR family TF chr1

2 RSP_0490* Carbohydrate kinase chr1 2223800 2224200 135 CGGCGGTCAGATAGTCCACCTCCG -2.4

3 RSP_0773* uxuA chr1 2515000 2515799 225 TAATATGCAAGTATGCCAGTTTGC -26

4 RSP_3372–70 TRAP-T transporter chr2 437000 437600 6 TCGCCCGCGAATATGTCACGCGGG -2.4

5 RSP_2667–3 ABC transporter chr1 1310200 1310600 5 CATCGCGCAGGTATTCCAGTTTCC -1.5

* RSP_0489 targets also predicted in TRN
a Fold enrichment of RSP_0489-myc ChIP over control myc antibody ChIP in WT.
b Fold change in gene expression in WT w.r.t ΔRSP_0489.

doi:10.1371/journal.pcbi.1004103.t003
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phylogenetic footprinting analysis of the RSP_0489 promoter (Fig. 7C). Other genomic loca-
tions enriched for RSP_0489 but with no corresponding DE genes are listed in S5 Table.

Fe-S cluster biogenesis and iron homeostasis. Genes of the Fe-S biogenesis pathway (isc-
SUA-hscBA-fdx) are regulated by the Rrf2-family TF IscR, in E. coli and several other bacteria
[77,78]. In E. coli, IscR is a global regulator that is able bind to two different DNA target se-
quences depending on whether it is ligated to a 2Fe-2S cluster [77,78]. The R. sphaeroides ho-
molog of IscR, RSP_0443, differs from E. coli IscR as it does not possess cysteine residues
required for the ligation to a 2Fe-2S cluster, suggesting that this protein is unable to ligate a Fe-
S cluster. If this is true, then the upstream signaling pathway utilized and target genes regulated
by RSP_0443 is likely to differ from that of E. coli IscR.

Consistent with observations in E. coli, RSP_0443 is predicted in our TRN model to regulate
transcription of its own operon (RSP_0443–31). However, the RSP_0443 operon encodes ho-
mologs of the Suf Fe-S biogenesis pathway (sufABCDSE), which is also a direct IscR target in E.
coli [79]. In addition, RSP_0443 is predicted in our TRN model to regulate transcription of cat-
alase (RSP_2779), bacterioferritin-associated ferredoxin (RSP_1547), imelysin (RSP_1548),
biopolymer transport protein TonB-ExbBD (RSP_0920–2), napEFDABC (RSP_4112–8), all
gene products with predicted Fe-S cluster or heme-binding domains or predicted to be in-
volved in iron uptake (S1 Table (cluster 82)). Thus, members of the predicted RSP_0443 regu-
lon could play a significant role in maintaining cellular iron homeostasis, possibly to provide
the metal needed for Fe-S centers. There is also a strong positive correlation between
RSP_0443 RNA levels and transcription of its predicted target genes in R. sphaeroides, suggest-
ing this TF functions as an activator.

In addition to RSP_0443, FnrL is directly involved in regulating transcription of genes en-
coding iron transporters such as feoABC, as well as a number of Fe-S and heme containing pro-
teins in R. sphaeroides. Thus, our TRN predicts that RSP_0443 and FnrL both play an
important role in regulation of cellular iron homeostasis. Furthermore, FnrL is also predicted
in our TRN to directly activate RSP_3341, a putative iron binding RirA-like [80] protein in
R. sphaeroides, which in turn is predicted to negatively regulate the putative 4Fe-4S binding ni-
trate reductase (napEFDABC). We tested this prediction by comparing RNA abundance levels
between wild type (WT) and ΔRSP_3341 cells, and via ChIP-seq analysis using a myc-tagged
version of RSP_3341 (Fig. 8A). We found a total of 69 genes were DE (2 fold change, pvalue
<0.05) between WT and ΔRSP_3341 cells including several members of the nitrate reductase
operon (napEFDABC), which were all repressed by RSP_3341 (Fig. 8A, S6 Table). In addition,
transcription of genes encoding other iron dependent proteins (such as cytochromes and ferre-
doxins) were also repressed by RSP_3341 (Fig. 8A, S6 Table). The mRNA level RSP_0443 was
2 fold higher in WT relative to ΔRSP_3341 cells, suggesting there might be some cross talk be-
tween these TFs. We conducted ChIP-seq analysis with a 3X myc tagged version of RSP_3341
and confirmed the direct regulation of napEFDABC by this protein, consistent with our gene
expression data and TRN model predictions (Fig. 8B). In addition, RSP_3341 binding was
found near Hsp70 DnaK (RSP_1173) and cycJ (RSP_2945) (Fig. 8B, Table 4). These genes were
also DE in our gene expression dataset, thus were considered as additional direct RSP_3341
targets (Table 4). Twenty-two other sites showing significant enrichment for RSP_3341 but for
which no genes in those genomic locations were DE are provided in S7 Table. These data verify
the prediction of our TRN model of the involvement of RSP_3341 in the direct and indirect
regulation of iron-dependent genes in R. sphaeroides.

Another RirA-like protein in R. sphaeroides, MppG, predicted to be important in regulation
of photosynthesis is also involved in the regulation of iron containing proteins such as AppA
(RSP_1565) and those involved in bacteriochlorophyll biosynthesis. Thus, the maintenance of
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iron homeostasis and the transcriptional regulation of genes encoding iron-dependent en-
zymes appears to involve a complex gene regulatory network in R. sphaeroides (Fig. 8C).

Other major cellular sub-networks. In addition to the sub-networks described above,
many others were predicted in our R. sphaeroides TRNmodel including networks involved in
carbon metabolism, nitrogen metabolism, hydrogen production, DNA repair, flagella biosyn-
thesis and chemotaxis, heat shock and oxidative stress responses, methionine biosynthesis,
phosphate transporter and carotenoid biosynthesis (described in S1 Text).

Links between sub-networks in the R. sphaeroides TRN. In addition to the depth and vari-
ety of networks captured in our TRN, we also identified several new and interesting links be-
tween these predicted sub-networks. For instance, the TRN predicts a previously unrecognized

Fig 8. Regulation of iron-dependent genes in R. sphaeroides. (A) Heat map of iron-dependent DE genes between wild-type (WT) and ΔRSP_3341
mutant cells from global gene expression analysis. RSP_4112 (hypothetical protein), RSP_0474 (Cytochrome c’), RSP_2424 (ferredoxin II), RSP_2945
(cytochrome c-type biogenesis protein CcmE). (B) Direct binding of RSP_3341 to the napEFGABC, cycJ and dnaK promoters identified by ChIP-seq. (C)
Predicted gene regulatory network controlling iron-homeostasis in R. sphaeroides. Both RSP_2888 and RSP_3341 are RirA like proteins with C-terminal
cysteine residues potentially capable of binding Fe-S clusters and sensing oxygen. Solid lines indicate experimentally verified interactions, while dashed
lines indicated predicted but as yet unverified interactions.

doi:10.1371/journal.pcbi.1004103.g008

Table 4. RSP_3341 direct targets identified by ChIP-seq and expression profiling.

ID Annotation chrID peakStart peakStop FCa Exprb

1 RSP_1173 Heat shock protein Hsp70 (dnaK) chr1 2941200 2941599 4.4 -2.7

2 RSP_2945 cytochrome c-type biogenesis protein CcmE (cycJ) chr1 1626000 1626599 5.0 -2.5

3 RSP_4112–8* Nitrate reductase (napEFDABC) plasmidC 79400 79799 5.1 -6.3

* RSP_3341 targets also predicted in TRN
a Fold enrichment of RSP_RSP_3341-myc ChIP over control myc antibody ChIP in WT.
b Gene expression in WT w.r.t ΔRSP_3341.

doi:10.1371/journal.pcbi.1004103.t004
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connection between photosynthesis and iron homeostasis in R. sphaeroides. The photosynthe-
sis regulators MppG, CrpK, and FnrL, are predicted to regulate several iron/heme-dependent
and iron transport proteins. Furthermore, FnrL is also predicted to regulate RSP_3341, which
we have shown in this work to be directly involved in regulation of other iron-dependent
genes. These data suggest that regulation of photosynthesis, which employs several iron-
dependent proteins, and iron homeostasis need to be coordinated in R. sphaeroides to achieve
optimal growth under anaerobic photosynthetic conditions.

NtrC, which is predicted in our TRN to be involved in regulation of nitrogen metabolism
(S1 Text), is also predicted to control transcription of genes for central carbon metabolism
(Fig. 3 and S5 Fig.), suggesting a possible previously unrecognized link between carbon and ni-
trogen metabolism in R. sphaeroides. Similar links between carbon and nitrogen metabolism
have been identified in B. subtilis via the global regulator of carbon metabolism CcpA [81]. Our
TRN also captures previously known links between sub-networks controlling the response to
heat shock, singlet oxygen stress and DNA repair (S1 Text).

While this description of sub-networks is by no means exhaustive, it provides a useful over-
view of the various functionalities and connections captured in the R. sphaeroides TRNmodel.
Overall our TRN model captures a significant amount of known transcriptional regulatory in-
teractions in R. sphaeroides, while predicting a large number of new interactions for this bacte-
rium that are consistent with observations in other organisms. Furthermore, the TRN model
also makes a large number of novel predictions unique to R. sphaeroides, which represent high-
quality targets for future experimental verification. In sum, given the high predictive ability of
our TRN model for characterized TFs, we propose that it provides an excellent roadmap for fu-
ture analysis of the R. sphaeroides TRN and those of related bacteria.

The integrated TRN inference approach provided significant improvement in informa-
tion content. We compared the integrated R. sphaeroides TRNmodel to others built from our
gene expression compendium using the direct inference approaches CLR [9] and GENIE3
[10], and a module-base inference approach LeMoNe [82]. Selecting networks of similar size
(i.e., the top ~1900 predicted TF-target predictions from each approach), we found that our in-
tegrated approach generated a TRN with significantly improved information content (Fig. 9).
Of the 120 clusters identified in our TRN, 80 (~67%) were enriched for at least one GO func-
tional category compared to 34, 35 and 53% for networks built with CLR, GENIE and LeMoNe,
respectively. This comparison suggests our approach captures more functional information.
Furthermore, the number of de novo detected DNA sequence motifs obtained in the integrated
TRN (88 motifs corresponding to ~73% of the clusters), significantly supersedes that obtained
by searching the intergenic regions of predicted TF targets obtained from CLR, GENIE and
LeMoNe analyses (7, 13 and 11 motifs corresponding to 4, 10 and 17% of the clusters respec-
tively) (Fig. 9). These data suggest that while these expression-based approaches can group po-
tentially functionally related and co-expressed genes together, the resulting clusters likely do
not include a sufficiently high percentage of co-regulated genes, so the ability to detect con-
served promoter motifs from these predicted clusters/regulons is very low. Thus, it appears
that initiating TRN inference with motif detection (via phylogenetic footprinting) prior to in-
corporating expression data significantly improved its information content and allowed us to
overcome some of the limitations in gene expression datasets.

While the regulons of only a handful of TFs have been studied on a genome-scale in R.
sphaeroides, assessing predictions made for some of these TFs highlights other advantages of
an integrated approach. For instance, CLR, GENIE and LeMoNe were not able to accurately
predict targets for PpsR or FnrL, likely due to the almost invariant expression profiles of these
TFs (see Fig. 5B for ppsR expression), as their activities are regulated post-transcriptionally.
However, by taking other features of bacterial TFs into consideration, we were able to
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accurately link PpsR and FnrL to their respective regulons, while making predictions across
our network for other similarly regulated TFs. On the other hand, for the alternative sigma fac-
tor σE whose binding elements are separated by a variable length spacer region and whose regu-
lon might differ considerably across the species used in our comparative genomics analysis, the
expression based approaches performed better at identifying members of this regulon. Thus,
incorporating consensus predictions for expression-based inference approaches allowed us to
capture such predictions in our final R. sphaeroides TRN.

Overall, for the 7 TFs for which genome-wide TF-target interaction data exist for R. sphaer-
oides (including the 3 TFs analyzed in this study), the predictions from the integrated network
outperformed that obtained from expression-based inference approaches, achieving an overall
precision (and recall) of 75% (32%), compared to 52% (6%), 74% (12%) and 82% (13%) for
CLR, GENIE3 and LeMoNe networks respectively (S8 Table).

Targets of some TFs remain difficult to identify
Though our approach performed relatively well for many R. sphaeroides TFs, a large number of
verified target genes were not identified for some regulators (e.g., RpoHI and RpoHII). This
could possibly be due to difficulties in discriminating DNA binding motifs for these or other
closely related σ-factors as well as limitations in available gene expression data. Alternatively, it
could be the result of constraints used in de novomotif detection or limitation of the motif
finding algorithm itself. While these constraints performed well at identifying likely binding
sites of many traditional TFs, they might be too prohibitive for identification of σ-type motifs.

In addition, of the 81 characterized E. coli TFs used for performance assessment, accurate
predictions could be made for 42 (~52%) of them when considering the predictions from both
integrative and expression-based approaches. This leaves a relatively large category of TFs for
which available datasets do not provide sufficient information or resolution to make

Fig 9. Comparison of predictions from our workflow to those from other inference approaches. Bar
chart depicts the number of clusters (or regulons) predicted by CLR, GENIE3, LeMoNe and our approach
(Final TRN). It also shows the number of these clusters that are significantly enriched for at least one GO
functional category (p<0.00001) and the number of these clusters where we could identify a shared
conserved motif using the same de novomotif detection approach.

doi:10.1371/journal.pcbi.1004103.g009
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predictions at a reasonable level of precision. Thus, advances in algorithmic and experimental
methodologies are still required to bridge this gap.

Preliminary TRNs for closely related organisms. An additional benefit of using compara-
tive genomics for TRN inference is that preliminary TRNs can also be built for the other
organisms used in the comparative analysis. For instance, the inference of the TRN model for
R. sphaeroides served as the basis for the construction of preliminary sequence-based TRNs for
R. sphaeroides ATCC 17025, Rhodobacter capsulatus SB 1003, Roseobacter denitrificansOch
114, Dinoroseobacter shibae DFL 12, Rhodopseudomonas palustris CGA009, Bradyrhizobium
japonicum USDA 110 and Paracoccus denitrificans PD1222 (S9 Table). We expect that these
preliminary TRN models will provide insights into the peculiarities of the TRNs of these α-
Proteobacteria. They can also serve as starting points for construction of more detailed global
TRNs for these and other related bacteria.

Concluding remarks
In this study, we developed a new workflow to generate genome-scale TRNs, which integrates
genome sequence information and gene expression data, as well as taking into consideration
properties of bacterial TFs. Validation of this workflow using benchmark datasets for E. coli
showed that it provides significantly improved predictive capability compared to high-per-
forming expression-based approaches. Further analysis of the predicted TRN models showed
that the predictions from this workflow and expression-based inference approaches are highly
complementary—a feature that could be exploited to build TRN models with greater coverage.
We further demonstrated the utility of this workflow by building a large-scale TRN model for
R. sphaeroides. The R. sphaeroides TRNmodel consists of 120 gene clusters and 1858 regulatory
interactions encompassing ~28% of the genes for this organism. Several observations indicated
that this approach generated a large-scale TRN with high predictive power. The majority of the
predicted gene clusters were enriched for specific functions and the genes found in many of
these clusters were consistent with prior knowledge in R. sphaeroides or other bacteria. In addi-
tion, experimental validation of select R. sphaeroides TFs showed that the TRN assembled via
this integrated approach makes accurate predictions for several of these regulators. Our analy-
sis also illustrates the ability of this workflow to generate of large-scale TRN models with in-
creased information content relative to those built via other approaches. An additional benefit
of our approach is that it simultaneously enables construction TRNmodels for other organisms
used in the comparative genomics analysis. Overall, the workflow presented here represents a
powerful approach by which to reconstruct TRNs for bacteria for which similar data types are
available. It has also provided a large amount of new insight into transcriptional regulation in a
phototroph, correctly capturing many aspects of the diverse lifestyles of R. sphaeroides, while
providing novel predictions into regulatory networks that await experimental validation. Thus,
this large-scale TRN model should serve as an indispensable data source for those interested in
R. sphaeroides and related bacteria.

Materials and Methods

TRN reconstruction
To build large-scale TRN models for E. coli and R. sphaeroides, we utilized an approach that
combined comparative genomics, gene expression analysis and intrinsic properties of bacterial
TFs. The workflow used for our reconstructions is detailed below in a stepwise fashion and
summarized in S1 Fig.

Selecting genomes for phylogenetic footprinting. Our TRN reconstruction workflow be-
gins with exploiting the sequence information from closely related bacteria [13–15]. In order to
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identify evolutionarily conserved sequences upstream of homologous genes across multiple
species (i.e., phylogenetic footprinting), it is important that relatively closely related species are
used, as regulatory mechanisms are more likely to be conserved across these organisms [83].
However, if species are too closely related analysis of upstream sequences becomes uninforma-
tive, as large stretches of identical or highly similar sequences prevent the identification of rele-
vant regulatory sequences. Thus, species selected for phylogenetic footprinting analysis were
carefully chosen to increase the utility of this approach [12]. To select organisms for our analy-
ses, we used a combination of orthology, phylogeny and physiological information. We consid-
ered 3 factors in organism selection: (i) the number of orthologs shared between a given
organism and our target organisms, E. coli and R. sphaeroides (as a larger number of shared
orthologs would enable identification of a potentially larger set of regulatory motifs); (ii) phylo-
genetic distance (as more closely related species would be more likely to have conserved regula-
tory mechanisms); and (iii) metabolic diversity (in addition to general cellular processes, we
considered the regulation of processes peculiar to these metabolically diverse organisms).
Based on these criteria, we restricted the organisms selected for phylogenetic footprinting to
those belonging to the orders Rhodobacterales and Rhizobiales for R. sphaeroides, as these or-
ganisms share a larger number of orthologs with R. sphaeroides (S4 Fig.), are close phylogenetic
relatives to R. sphaeroides (S4 Fig.) and are more metabolically diverse than many members of
other α-Proteobacterial orders. From these two orders we selected 8 organisms for our phylo-
genetic footprinting analysis: R. sphaeroides 2.4.1, R. sphaeroides ATCC 17025, R. capsulatus
SB 1003, R. denitrificans Och 114, D. shibae DFL 12, R. palustris CGA009, B. japonicum USDA
110 and P. denitrificans PD1222. The criteria used for limiting our analysis to 8 organisms are
discussed in the section “Identifying phylogenetically conserved motifs”. For the E. coli analysis
we selected 14 organisms from the Enterobacteriales order based on the same rules: Escherichia
coli str. K-12 substr. MG1655, Citrobacter rodentium ICC168, Cronobacter sakazakii ATCC
BAA-894, Dickeya dadantii 3937, Escherichia fergusonii ATCC 35469, Enterobacter aerogenes
EA1509E, Erwinia pyrifoliae DSM 12163, Klebsiella pneumoniae CG43, Pantoea ananatis
AJ13355, Pectobacterium wasabiaeWPP163, Salmonella enterica subsp. enterica serovar Typhi
str. CT18, Shigella dysenteriae Sd197, Vibrio cholerae O1 biovar El Tor str. N16961, Yersinia
pestis KIM10+. Sequence information for the selected organisms was downloaded from NCBI.

Identifying orthologous genes between species. To identify orthologs shared between the
selected organisms, we used orthoMCL version 2.0.2 [32]. The blastall function was run with
the following parameters:-v 100000-b 100000-F ‘m S’-m 8-e 1e-5. All other functions were run
with their default settings. Each of the identified orthologous groups (i.e., all orthologs of a
given gene across species) was required to have an ortholog from the target species (E. coli or
R. sphaeroides). For each orthologous group, the intergenic regions (IGRs) greater than 40bp in
length, upstream of each gene in the group were then extracted from the appropriate organism,
if they existed (genes within operons would generally not contain IGRs of sufficient length). As
subsequent motif finding steps would require a sufficient number of sequences to identify
meaningful motifs shared by the orthologs, we restricted the orthologous groups carried over
to the motif finding step to those having at least 4 IGR sequences. A total of 2162 and 1326
groups of sequences met these criteria and were used for subsequent de novomotif detection,
for E. coli and R. sphaeroides, respectively.

Identifying phylogenetically conserved motifs. These groups of intergenic sequences up-
stream of orthologous genes were used as input for de novomotif detection. Motif detection
was conducted using MEME [41] with the following parameters:-dna-mod zoops-evt 0.01-
nmotifs 3-maxw 30. A third order background distribution file was generated using all the
intergenic sequences from all the organisms selected for each analysis and was used to aid sub-
sequent motif detection. A total of 5144 and 914 phylogenetically conserved (PC) de novo
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motifs were detected from these sequences, for E. coli and R. sphaeroides, respectively. These
were represented PSSMs (S2A Fig.). It should be noted that increasing the number of organism
used in our phylogenetic footprinting analysis did not significantly increase the number of
identified PC motifs for R. sphaeroides (S2B Fig.). This analysis also indicated as few as 6 organ-
isms could be sufficient to carry out this analysis, if they possess the appropriate characteristics
with respect to the target organism.

Clustering of identified motifs. These PC motifs identified in the phylogenetic footprinting
step will contain a significant amount of redundancy, as multiple instances of essentially the
same motif, corresponding to different binding sites of a specific transcription factor (TF),
exist in this set. To eliminate this redundancy from the data set, we grouped identical or very
similar motifs into clusters based on their similarity. To achieve this, we first conducted a pair-
wise comparison of all identified PC motifs using Tomtom [41,42], generating q-values as mea-
sures of the similarity of these motifs to one another. Only motif pairs with q-values<0.01
were considered as potentially identical motifs and retained for subsequent clustering analysis.
We then used MAST [41] to identify all the instances of each of the PC motifs (represented as
PSSMs) across the target genome. The set of instances identified for a given motif were called
“motif groups”. We then conducted a pair-wise comparison of all these motif groups to one an-
other. Motif group pairs showing a high degree of overlap (based on identification of the same
motif instances across the genome—threshold set to 33%) and for which the parent motif pairs
had a q-value<0.01 were clustered into one group. These clustered motif groups, theoretically
contain all the targets for a putative TF within the target genome. The identified target se-
quences were then used to generate species specific PSSMs based on all instances of each motif
identified (see S1 Dataset and S3 Table for E. coli and R. sphaeroides, respectively). Based on
these analyses, the 5144 and 914 PC motifs were clustered into 225 and 76 unique motifs for
E. coli and R. sphaeroides respectively, based on their similarity.

Processing of gene expression data. Collecting all of the publicly available microarray data-
sets from R. sphaeroides from the gene expression omnibus (GEO platform GPL162) (totaling
174 microarrays) and combining these with unpublished microarray experiments conducted in
our lab (totaling 24 microarrays), we generated a compendium of 198 microarrays encompass-
ing experiments conducted under a variety of conditions (S1 Dataset), as well as a variety of
gene deletion strains (ΔRpoHI, ΔRpoHII, ΔRpoHI/ ΔRpoHII, ΔFnrL, ΔPpsR, ΔPrrA,
ΔRSP_4157 and ΔAppA) all constructed in the R. sphaeroides strain 2.4.1 background. All mi-
croarray analyses were conducted on the same Affymetrix platform, circumventing some of
the data consistency and normalization issues that can arise when working with heterogeneous
data from multiple platforms. All microarrays were normalized together using Robust Multi-
chip Average (RMA) to log2 scale with background adjustment and quantile normalization
[84]. The RMA normalized data were standardized by row normalization. The normalized
R. sphaeroides gene expression dataset is provided in S1 Dataset. Normalized E. coli gene ex-
pression data was obtained fromM3D (http://m3d.mssm.edu/).

Identifying clusters of co-regulated genes. Based on the phylogenetic footprinting analysis
described above, we identified a total of 225 and 76 clusters of putatively co-regulated genes
that shared conserved motifs for E. coli and R. sphaeroides, respectively. While these sequence-
based networks were rich in information content about co-regulated genes and their putative
shared cis-acting regulatory sequences, the information content of such networks could be im-
proved by integration of gene expression data, as genes regulated by the same TFs are likely to
have similar transcriptional profiles at least under a subset of conditions [8,12,37]. Hence, a
gene which has a predicted shared motif with the other genes in a cluster but does not share a
similar transcriptional profile with any other genes in that cluster, over at least a subset of ex-
perimental conditions, could be a false positive prediction, which could potentially be filtered
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out by using expression data. Furthermore, by utilizing bi-clustering algorithms that allow
identification of subsets of conditions under which genes are co-expressed, one can potentially
determine under what experimental conditions the genes of different clusters are active, pro-
viding an indication of their functional roles and/or signals to which they are responsive
[12,37].

To integrate the data generated from phylogenetic footprinting with expression datasets, we
utilized the data integration frame work DISTILLER [37]. DISTILLER takes in motif informa-
tion as a binary file indicating whether a particular de novo detected motif is present or not. It
also takes an expression matrix of normalized expression data across conditions. It then uses an
itemset data mining approach to predict what conditions genes sharing a commonmotif, show
correlated expression patterns. We ran DISTILLER on our data sets using the following parame-
ters: binary supports: 1, box supports: 30, box p-values: 0.001, number of randomizations:
100000, size of randommodules: 4, minimal module size: 3, number of greedy modules: 400.

The integration of expression data into our predictions resulted in the removal of a subset of
genes from the original sequence-based clusters due to an inability to identify sub-conditions
under which they are co-expressed with other members of the cluster. For instance, in the case
of target genes predicted for cluster 60 in the R. sphaeroides dataset, eighteen genes were pre-
dicted to be members of this cluster based on our phylogenetic footprinting analysis (S7 Fig.),
while only 13 of these genes showed strong co-expression with other members of the operon,
under at least a subset of conditions. The genes not showing strong co-expression were thus re-
moved from the cluster. Subsequent experimental analysis of the predicted transcriptional reg-
ulator for this bi-cluster (PpsR, see Results) verified that these excluded genes were likely false
positive predictions from our phylogenetic footprinting step. Thus, at least in subset of in-
stances, integration of our gene expression data sets using DISTILLER appeared to improve
the overall accuracy of our TRN.

Operon extension. While phylogenetic footprinting analysis enabled us to identify putative
binding sites for TFs and thus identify the closest gene(s) to the binding site, other genes within
close proximity of this target gene, and potentially in an operon with it, were not captured in the
initial analysis. To incorporate operon structure into our predictions, we combined distance-
based operon predictions from microbes online [85], with correlation data from the microarray
datasets. Genes predicted to be in an operon based on distance and had a Pearson’s correlation
coefficient of at least 0.8 across the entirety of our microarray compendium, were considered to
be in an operon. This information was used to extend to predictions in our TRN to take into ac-
count genes that might be in an operon with targets identified via our sequence-based analysis.

Prediction of transcriptional regulators for clusters. Having identified and refined our
clusters of co-regulated genes using sequence and gene expression information, we then pre-
dicted the most likely of the known or predicted TFs in our target organisms to regulate each of
these clusters. To achieve this we used a combination of 4 criteria based on known properties
of bacterial TRNs (S3 Fig.). They consisted of:

1. Correlation between a TF and its target genes [3,6–8]

2. Proximity of a TF to the location of its closest binding site in the genome [12,14,18,19].

3. Similarity in DNAmotifs bounds by TFs having similarDNA binding domains (DBD)
[19,20].

4. Phylogenetic correlation of the occurrence of a TF and occurrence of a motif across species
[19].
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Implementation details of these analyses are provided in the Result and Discussion. The top
3 highest scoring TFs for the R. sphaeroides network presented in S1 Table are provided in S10
Table, while those for the E. coli network are provided as part of S1 Dataset.

Inferring regulatory interactions solely from expression data. Recent analysis has shown
that combining the predictions from a small number of high performing expression-based
TRN inference approaches can result in significantly improved prediction accuracy [3]. Thus,
to make predictions for TFs not captured in the comparative genomics-based TRN model for
R. sphaeroides, we employed a combination of expression-based TRN inference approaches to
try to identify regulatory interactions using only our microarray datasets. For this analysis, we
combined the predictions from 3 well-established, high performing direct inference ap-
proaches: context likelihood of relatedness (CLR) [9], GENIE3 [10] and ANOVA-based ap-
proach [11]. As these approaches have previously been described [3], thus we do not provide
any details of implementation or assumptions peculiar to each approach.

Our RMA normalized and row standardized gene expression data from 198 microarray ex-
periments for R. sphaeroides were used as input data for these 3 inference approaches. A list of
216 R. sphaeroides TFs was also provided as potential transcriptional regulators (S1 Dataset).
In addition, information on specific deleted or over-expressed genes was provided as additional
input for ANOVA. The top 50,000 predicted TF-target interactions from each approach were
selected. For each inference approach, the scores of TF-target predictions were converted to p-
values by random permutation, generating 10000 random TF-target scores for each approach
and comparing actual TF-target scores to this set. To determine the likelihood that TF i regu-
lates target gene j, the predictions from each of the 3 approaches for that specific interaction
were then combined by averaging the—log10 of the p-values from each approach (eqn. 8). In
instances where no prediction was made for a particular TF-target interaction by any one ap-
proach, but predicted by at least one of the other 2 approaches, a score of 0 was assigned for
that approach. Potential TF-target interactions not in the top 50,000 of any of the 3 prediction
lists were not considered.

RexpðTFi; TargetjÞ

¼ 1

3
� log10ðPCLRðTFi; TargetjÞ �PGENIE3ðTFi; TargetjÞ �PANOVAðTFi; TargetjÞÞ ð8Þ

Predicted targets for each TF were then extended to include all genes in a potential operon,
as described above, to generate the expression-based TRN.

To determine a score threshold to use as a cut-off for interactions to be retained in the R.
sphaeroides expression-based network, we collated all previously generated genome-wide pro-
tein-DNA interaction (ChIP) datasets for R. sphaeroides and used this to generate a precision-
recall curve for the network (S8 Fig.). Genome-wide protein-DNA interaction data for FnrL
[53], σE [86], RpoHI and RpoHII [87], corresponding to a total of 467 TF-target interactions,
were used for this analysis. We used these interactions as our set of true positives (TP). Preci-
sion-recall curves were generated for ranked lists of predictions from CLR, ANOVA, GENIE3
and the combined network (S8 Fig.), with precision and recall calculated at intervals of 100 pre-
dictions. Typically precision is calculated as:

TPP
TPP þ FPP

¼ True positive predictions
True positive predictions þ False positive predictions

¼ True positive predictions
All predictions made

ð9Þ

where TPP and FPP are assessed based on the number of interactions considered and a gold
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standard of true positives interactions (TP) [43]. However, due to the small number of TP
available for assessment, for each interval of 100 predictions from the R. sphaeroides expres-
sion-based TRNs, we only considered predictions for TFs for which we had ChIP data and thus
we redefined precision as follows:

TPP
TPP þ FPP

¼ TPP for TFs with ChIP daTa
TPP for TFs with ChIP daTaþ FPP for TFs with ChIP daTa

¼ TPP for TFs with ChIP daTa
All predictions made for TFs with ChIP daTa

ð10Þ

Recall was calculated as previously described [43]:

TPP
TP

¼ True positive predictions
All known true positives

ð11Þ

We selected a precision cut off of 95%, which corresponded to a recall of 8% and a score
cut-off of 1.3 (S8 Fig.). Using this cut off for the entire set of predicted interactions resulted in a
total of 1100 predicted TF-target interactions. In this analysis the best performing of the indi-
vidual approach selected was GENIE3, whose performance was very close to the final compos-
ite TRN, though the predictions retained the final composite network differed significantly
from the predictions of any one of the individual networks (S9 Fig.), as predictions supported
by at least 2 of the 3 approaches received higher scores.

Combining sequence-based and expression-based networks. To leverage the potential
complementarity between the reconstructed R. sphaeroides sequence- and expression-based
networks, we merged predictions from the 2 networks giving precedence to predictions made
using the comparative genomics-based integrative approach, as these predictions were sup-
ported by both sequence and expression data. Thus, for TFs for which predictions were made
in both our comparative genomics- and expression-based networks, only the predictions from
the comparative genomics-base network were retained in our final combined network. Based
on this a total of 641 TF-target interactions from our expression-based analysis were retained
in the final combined network. This included a total of 44 TFs. The final set of interactions pre-
dicted using expression-based approaches is provided in S11 Table.

Experimental analysis. Details of growth conditions, construction of mutants, microarray
and ChIP-seq analyses are provided in S2 Text and S12 Table. All microarray and ChIP-seq
datasets generated in this study were deposited in GEO under the accession GSE58658.

Data and software. The software required to run the workflow is written in JAVA and pro-
vided as part of S1 Dataset. In addition, the code together with files for an example run are
available at http://dx.doi.org/10.6084/m9.figshare.1249869.

Supporting Information
S1 Fig. Reconstruction workflow.
(PDF)

S2 Fig. Identification of phylogenetically conserved motifs. (A) As a illustrative example,
promoter sequences of orthologs of FnrL across 8 bacteria are used to build an evolutionarily
conserved FnrL motif. This was carried out for the promoters of an additional 1325 groups on
intergenic sequences for shared orthologs. (B) To determine how the addition of more ge-
nomes would affect the results we obtained from our phylogenetic footprinting analysis, we re-
conducted this portion of our analysis with an increasing number of organism. The graph
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depicts the total number of orthologous groups identified (blue boxes) and the total number of
PC motifs identified (red boxes) with respect to the total number of genomes used in the analy-
sis ranging from 8 to 20. The organisms utilized for this analysis were: R. sphaeroides 2.4.1, R.
sphaeroides ATCC 17025, R. capsulatus SB 1003, Roseobacter denitrificansOch 114, Dinoroseo-
bacter shibae DFL 12, Paracoccus denitrificans PD1222, Rhodopseudomonas palustris CGA009,
Bradyrhizobium japonicum USDA 110, Sinorhizobium meliloti, Ruegeria pomeroyi, Jannaschia
sp. CCS1,Mesorhizobium ciceri, Azospirillum sp. B510, Rhizobium etli, Starkeya novella, Azor-
hizobium caulinodans, Xanthobacter autotrophicus,Methylobacterium chloromethanicum,
Rhodospirillum rubrum, Ketogulonicigenium vulgare.
(PDF)

S3 Fig. Predicting transcriptional regulators of identified clusters. Overview of the 4 criteria
used in predicting the most likely TFs to regulate the sequence-based clusters identified in
our analysis.
(PDF)

S4 Fig. Phylogenetic tree of α-proteobacteria. The phylogenetic tree was constructed by the
neighbor-joining method using aligned gyrB DNA sequences from 52 representative species of
the major genera of α-proteobacteria. Sequence alignment was done using Clustal X and phylo-
genetic tree generated using phylip. Escherichia coli was used as the out group in this analysis.
The grey bar next to each organism is a measure of the number of orthologs that organism
shares with R. sphaeroides 2.4.1. The dash red circle corresponds to the number of orthologs E.
coli shares with R. sphaeroides 2.4.1. Organisms selected for phylogenetic footprinting are iden-
tified with a red star. Phylogenetic tree was visualized using iTOL.
(PDF)

S5 Fig. Overview of the reconstructed TRN for R. sphaeroides. A high-level visualization of
the TRN constructed for R. sphaeroides consisting of 1221 nodes and 1858 edges. Some sub-
networks consisting of genes and their regulating TFs enriched for different GO functional cat-
egories are highlighted. Green edges represent activation; red edges represent repression, while
back edges indicate undetermined regulatory control. Cytoscape 3.0.2 was used for
network visualization.
(TIF)

S6 Fig. qPCR validation of select PpsR binding sites. Predicted and subsequently ChIP-seq
verified PpsR sites validated using ChIP-qPCR.
(PDF)

S7 Fig. Improving TRN predictions by integrating gene expression data. (A) Heatmap of
the gene expression profiles of genes in cluster 60 across our microarray compendium. The
genes in black (RSP_0271 to RSP_1556) show a high degree of correlation in their gene expres-
sion profiles, while the genes in red (RSP_1449 to RSP_3000) do not show any significant cor-
relation to one another or other members of the cluster. (B) Summary of predictions made for
cluster 18, first using phylogenetic footprinting data only and then after integration with gene
expression data. Initial members of the cluster such as RSP_1449 and RSP_3000, which do not
show any significant correlation in their expression profiles to other members of the cluster,
were filtered out via this data integration step. Subsequent experimental validation via ChIP-
seq verified these were likely false positives.
(PDF)

S8 Fig. Precision-recall curves for expression-based TRN constructed for R. sphaeroides.
Graph depicts precision and recall calculated for interactions for CLR, ANOVA, GENIE3 and
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the combined network at 100 predictions intervals.
(PDF)

S9 Fig. Comparison of the expression-based networks. Venn diagram comparing the top
1100 predictions made using CLR, ANOVA, GENIE3 and the combined expression network.
144 of the final set of predicted interactions were in agreement across all 3 approaches. In addi-
tion, 560 of the predictions in the combined network were also in the top 1100 predictions of at
least 2 of the selected approaches. There is an overlap of 571, 604 and 518 between the com-
bined network and the GENIE3, CLR and ANOVA networks respectively.
(PDF)

S1 Table. Identified clusters and their predicted transcriptional regulators in R. sphaeroides
TRN.
(XLSX)

S2 Table. Predicted FnrL targets in R. sphaeroides.
(XLSX)

S3 Table. Predicted binding sequences of members of each cluster identified by compara-
tive genomics analysis
(XLSX)

S4 Table. List of genes differentially expressed between WT and ΔRSP_0489 cells under
aerobic respiratory conditions in R. sphaeorides.Fold change (FC) represents genes up/
down regulated in WT w.r.t ΔRSP_0489.
(XLSX)

S5 Table. Other genomic locations enriched for RSP_0489 in R. sphaeroides.
(XLSX)

S6 Table. List of genes differentially expressed between WT and ΔRSP_3341 cells under
aerobic respiratory conditions in R. sphaeorides.Fold change (FC) represents genes up/
down regulated in WT w.r.t ΔRSP_3341.
(XLSX)

S7 Table. Other genomic locations enriched for RSP_3341 in R. sphaeroides.
(XLSX)

S8 Table. Comparison of predictions from integrated R. sphaeroides TRN to expression-
based approaches.
(XLSX)

S9 Table. Clusters identified in the 7 other species used in our comparatives genomics anal-
ysis.
(XLSX)

S10 Table. Top 3 predicted transcriptional regulators for each of the identified clusters
with phylogenetically conserved motifs
(XLSX)

S11 Table. TF-target interactions predicted using the consensus predictions from 3 direct
inference approaches.
(XLSX)

S12 Table. Plasmids, strains and primers used in this study.
(XLSX)
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S1 Text. Description of other pertinent sub-networks.
(PDF)

S2 Text. Details of experimental analysis. PDF file containing details of
experimental procedures.
(PDF)

S1 Dataset. Data, results and sample code. This dataset consists of 3 folders containing data
used for the analysis presented in the main text and a summary of the results from the E. coli
analysis. These folder include: “Ecoli _results”, which contains a summary of the results ob-
tained from the E. coli analysis; “Integrate_v1.0”, which contains sample code for running the
presented analysis (the most up-to-date version of this code can be obtained from the figshare
link provided in the Materials and methods); and “Rsp_data”, which contains the R. sphaer-
oides gene expression compendium used in our analysis.
(ZIP)
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