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Hepatocellular carcinoma (HCC) is a primary cause of cancer-related death in the world. Despite the fact that there are many
methods to treat HCC, the 5-year survival rate of HCC is still at a low level. Emodin can inhibit the growth of HCC cells in
vitro and in vivo. However, the gene regulation of emodin in HCC has not been well studied. In our research, RNA sequencing
technology was used to identify the differentially expressed genes (DEGs) in HepG2 cells induced by emodin. A total of 859 DEGs
were identified, including 712 downregulated genes and 147 upregulated genes inHepG2 cells treatedwith emodin.We usedDAVID
for function and pathway enrichment analysis.The protein-protein interaction (PPI) network was constructed using STRING, and
Cytoscape was used for module analysis.The enriched functions and pathways of the DEGs include positive regulation of apoptotic
process, structural molecule activity and lipopolysaccharide binding, protein digestion and absorption, ECM-receptor interaction,
complement and coagulation cascades, and MAPK signaling pathway. 25 hub genes were identified and pathway analysis revealed
that these genes were mainly enriched in neuropeptide signaling pathway, inflammatory response, and positive regulation of
cytosolic calcium ion concentration. Survival analysis showed that LPAR6, C5, SSTR5, GPR68, and P2RY4 may be involved in
the molecular mechanisms of emodin therapy for HCC. A quantitative real-time PCR (qRT-PCR) assay showed that the mRNA
levels of LPAR6, C5, SSTR5, GPR68, and P2RY4 were significantly decreased in HepG2 cells treated with emodin. In conclusion,
the identified DEGs and hub genes in the present study provide new clues for further researches on the molecular mechanisms of
emodin.

1. Introduction

Hepatocellular carcinoma (HCC) is a severe disease of the
digestive system and is the sixth most common and second
leading cause of death due to cancer. While the early stage
of HCC can be successfully treated by surgical resection
and liver transplantation, most HCC cases are diagnosed
only at the late stage, when treatment options are more
limited [1–3]. Targeted therapies using sorafenib, regorafenib,
and lenvatinib, as well as immunotherapy with a PD-1
inhibitor (nivolumab), have been approved for the treatment

of advanced-stage HCC [4–7]. However, there remains an
urgent need for the identification and development of novel
therapeutic agents and strategies for the treatment of HCC.

Emodin (1,3,8-trihydroxy-6-methylanthraquinone; Fig-
ure 1) is an active ingredient derived from Polygonum cus-
pidatum [8], Rheum palmatum [9], Cassia occidentalis [10],
and Polygonum multiflorum [11] and has been used in China
for many centuries. The role of emodin as an anticancer drug
has been previously described. Modern pharmacological
studies have revealed that emodin exhibits various biological
activities, such as apoptosis-inducing and antiproliferative
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Figure 1: Chemical structure of emodin.

effects in breast cancer [12], pancreatic cancer [13], prostate
cancer [14], gastric cancer [15], lung carcinoma [16], colon
cancer [17], and HCC [18]. Furthermore, emodin can inhibit
metastasis, invasion, andmigration inHCCand breast cancer
[19, 20]. Dong et al. showed that emodin induces apoptosis in
humanHCC [21]. Hsu et al. confirmed that emodin inhibited
the growth of hepatoma cells [22]. Numerous studies have
confirmed the therapeutic effect of emodin on liver cancer.
Thus, it is necessary to identify the key genes associated
with emodin in HepG2 cells by conducting comprehensive
bioinformatic analysis.

High-throughput technologies, such as transcriptome,
protein, metabolite, and RNA sequencing, are high accu-
racy tools that can be used to identify biomarkers for the
treatment, diagnosis, and prognosis of various diseases [23].
RNA sequencing (RNA-seq) uses deep-sequencing technolo-
gies to provide precise information regarding transcription
profiles. The use of RNA-seq in analyzing the effects of
drug treatments presents significant advantages including
the identification of differentially expressed genes (DEGs)
associatedwith the drug.Network and functional enrichment
analyses are also beneficial in understanding the molecular
mechanisms underlying drug action.

Although emodin exhibits good clinical efficacy, its gene
regulatorymechanisms in liver cancer cells have not been sys-
tematically elucidated. Therefore, it is necessary to measure
the expression levels of DEGs in cancer cells after treatment
with emodin and to systematically analyze the functions
of these genes. To overcome the aforementioned issue, the
transcriptomes of emodin-treated HepG2 cells were profiled
using RNA-seq method. The DEGs induced by emodin
treatment were then examined in more detail using a series
of analysis tools. The hub genes were extracted, and their
corresponding expression levels were compared. A series of
survival analyses was then conducted to determine whether
the hub genes are correlated with poor prognosis. The
relationship between the hub genes and tumor progression in
patients with HCC was analyzed. Finally, statistical analysis
of functional DEGs was performed, and their potential
possible contributions to the anticancer effects of emodin
were discussed.

2. Materials and Methods

2.1. Drug. Emodin was purchased from the Chinese
Medicine Center in Beijing, dissolved in dimethylsulfoxide
(DMSO) at a concentration of 100mM, and stored at −20∘C.

The compound was diluted in the appropriate medium to
25, 50, 75, and 100 𝜇M immediately before use. The final
concentration of DMSO was <0.1%.

2.2. Cell Culture. Human hepatocellular carcinoma HepG2
cells were purchased from cell bank of the institute
of Biochemistry and Cell Biology, Shanghai Institutes
for Biological Sciences, Chinese Academy of Science
(http://www.cellbank.org.cn/). Cells were cultured in
RPMI1640 medium (GIBCO, Grand Island, NY, USA),
with 10% fetal bovine serum (FBS, Gemini, US), 100U/ml
penicillin, and 100mg/ml streptomycin in a humidified
atmosphere with 5% CO2 at 37∘C (Thermo Fisher Science,
MA, USA). The cells with 80% confluence were treated by
emodin of different concentrations. In this study, we have
pooled 3 biological repeats into one RNA-seq experiment
to achieve the same amount of total RNA content. More
specifically, at the cell culturing section, cancer cells in 6
different petri dishes were divided into two equal groups.
One group was used as emodin treated group, and the other
was used as control/untreated group.

2.3. Cell Proliferation Assay. Cell Counting Kit-8 assay was
used to measure cell proliferation. HepG2 cells were seeded
in 96-well plates at 5 × 103 cells/well and incubated at 37∘C in
complete medium for 24 h before being treated with increas-
ing concentrations of emodin for up to 72 h. Then the cells
were incubated with 10 𝜇l CCK8 at 37∘C for 2 h. Absorbance
at 450 nm was determined using a microplate reader as
recommended by the manufacturer. All experiments were
performed in triplicate and repeated at least three times with
essentially similar results. The inhibition rate was calculated
as follows: inhibition rate (%) = [average OD value (control)-
average OD value (medication)]/average OD value (control)
× 100%. The IC50 value was calculated on the nonlinear
regression fit method by the GraphPad Prism software.

2.4. RNA-Seq and Analysis. We have pooled 3 biological
repeats into one RNA-seq experiment to achieve the same
amount of total RNA content. More specifically, at the cell
culturing section, cancer cells in 6 different petri dishes were
divided into two equal groups.One groupwas used as emodin
treated group, and the other was used as control/untreated
group. Briefly, after being treated with emodin for 72 h, total
RNA was extracted using Trizol reagent (Invitrogen, Carls-
bad, CA, USA). We use Agilent 2100 Bio analyzer (Agilent
RNA 6000 Nano Kit) to do the total RNA sample QC: RNA
concentration, RIN value, 28S/18S, and the fragment length
distribution. We filter the low quality reads (more than 20%
of the bases qualities are lower than 10), reads with adaptors,
and reads with unknown bases (N bases more than 5%) to
get the clean reads. Then we assembled those clean reads
into Unigenes, followed with Unigene functional annotation,
SSR detection and calculate theUnigene expression levels and
SNPs of each sample. Finally, we identify DEGs (differential
expressed genes) between samples and do clustering analysis
and functional annotations. We use internal software SOAP-
nuke to filter reads, as follows: (1) remove readswith adaptors;
(2) remove reads in which unknown bases (N) are more
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than 10%; (3) remove low quality reads (we define the low
quality read as the percentage of base whose quality is lesser
than 15 and is greater than 50% in a read). After filtering,
the remaining reads are called “Clean Reads” and stored
in FASTQ format. We use HISAT (Hierarchical Indexing
for Spliced Alignment of Transcripts) to do the mapping
step because HISAT is much faster and sensitive and is a
high accuracy analysis software [24]. We mapped clean reads
to reference using Bowtie2 [25], and then calculated gene
expression level with RSEM [26]. RSEM is a software package
for estimating gene and isoform expression levels from RNA-
Seq data. Then, we calculate Pearson correlation between all
samples using cor, perform hierarchical clustering between
all samples using hclust, perform PCA analysis with all
samples using princomp, and draw the diagramswith ggplot2
with fuctions of R.We detect DEGs with DEGseq [27]. DEGs
at each stage or sitewere used for further analyses ofGO (gene
ontology) Molecular Function and KEGG pathways using by
the Database for Annotation, Visualization, and Integrated
Discovery (DAVID: http://david.abcc.ncifcrf.gov).

2.5. PPI Network Construction andModule Analysis. The PPI
network was predicted using Search Tool for the Retrieval of
InteractingGenes (STRING; http://string-db.org) [28] online
database. Analyzing the functional interactions between
proteins may provide insights into the mechanisms of gen-
eration or development of diseases. In the present study, PPI
network of DEGs was constructed using STRING database,
and an interaction with a combined score >0.7 was con-
sidered statistically significant. Cytoscape is an open source
bioinformatics software platform for visualizing molecular
interaction networks [29]. The plug-in ClusterONE (version
1.0) of Cytoscape is an APP for clustering a given network
based on protein-protein interaction networks [30]. The
PPI networks were drawn using Cytoscape and the most
significant module in the PPI networks was identified using
ClusterONE. Subsequently, the KEGG and GO analyses for
genes in this module were performed using DAVID.

2.6. Hub Genes Selection and Analysis. The hub genes were
selected with degrees ≥10 [31]. A network of the genes
and their coexpression genes was analyzed using cBioPor-
tal (http://www.cbioportal.org) online platform [4, 14]. The
overall survival and disease-free survival analyses of hub
genes were performed using Kaplan-Meier curve in cBioPor-
tal [32].

2.7. Quantitative Real-Time PCR. A quantitative real-time
PCR (qRT-PCR) assay was developed for the detection and
quantification of AXIN2, WNT5B, WNT3A, CATENIN,
and GSK3B transcripts using ACTIN as an endogenous
control. The primers used in this study were designed as
follows: ACTIN forward 5󸀠-CACCCAGCACAATGAAGA-
TCAAGAT-3󸀠; reverse 5󸀠-CCAGTTTTTAAATCCTGA-
GTCAAGC-3󸀠. P2RY4 forward 5󸀠-CTGGACTGTTGGTTT-
GATGAGGA-3󸀠; reverse 5󸀠-CAGCGACAGCACATACAA-
GGT-3󸀠; C5 forward 5󸀠-GGAGTGACGGTGCTGGAG-
TTT-3󸀠; reverse 5󸀠-CCCTCGTGCCAAAGTGGATAA-3󸀠;
SSTR5 forward5󸀠- CTACATTCTCAACCTGGCAGTGG-3󸀠;

reverse 5󸀠-GCTCATGACTGTCAGGCAGAAGA-3󸀠. LPAR6
forward 5󸀠-GGTAAGCGTTAACAGCTCCCAC-3󸀠; reverse
5󸀠- CATTTCGGACTTTGAGGACGC-3󸀠. GPR68 forward
5󸀠-CAACTCCTCGATGAGCTGTACCA-3󸀠; reverse 5󸀠-
AGGTAGCCGAAGTAGAGGGACA-3󸀠. qRT-PCRwas per-
formed in a 20 𝜇L mixture containing 2 𝜇L of the cDNA
preparation, 10𝜇L 2x SYBR Green Premix ExTaq (Takara),
and 10 𝜇M primer on an ABI 7500 Real-Time PCR System
(Applied Biosystems, Grand Island, NY, USA). The PCR
conditions were as follows:10min at 95∘C, followed by 40
cycles of 15s at 95∘C, and 1min at 60∘C. Each sample was
tested in triplicate. Threshold values were determined for
each sample/primer pair, and the average and standard errors
were calculated.

3. Results

3.1. Emodin Inhibits HepG2 Cell Growth in the Time- and
Dose-Dependent Manner. We analyzed the effect of emodin
on HepG2 cell proliferation. CCK8 assays were performed
using theHCC cell line, HepG2, after treatment with different
concentrations of emodin for 24, 48, and 72 h. As shown in
Figure 2, emodin decreased cell viability in a dose- and time-
dependent manner, and the 50% inhibitory concentration
(IC
50
) observed at 72 h was 19.12 𝜇M in HepG2 cells.

3.2. RNA-Seq Landscape. Treatment of HepG2 cells via
emodin dose-response assays revealed that emodin had IC

50

values of about 20 𝜇M at 72 h. The whole transcriptomic
profiles of HepG2 cells and of those treated with emodin
were assessed at base-pair resolution via RNA sequencing.
After removing the low-quality reads, the raw reads fromeach
sample were mapped to a reference genome (Table 1).

3.3. Identification of DEGs. DEGs were screened and gen-
erated by comparing the emodin samples to the control
samples. As shown in the column diagram (Figure 3(a)) and
volcano plot (Figure 3(b)), the analysis identified 859 DEGs
comprising 712 downregulated genes and 147 upregulated
genes that satisfy the criteria log 2(fold change) >3 and adj.
p-value <0.001.

3.4. KEGG and GO Enrichment Analyses of DEGs. To deter-
mine the biological classifications of the DEGs, functional
and pathway enrichment analyses were performed using
DAVID, and the GO functional enrichments of the upregu-
lated and downregulated genes were determined at a p-value
of less than 0.05. GO analysis results showed that changes in
biological processes (BP) ofDEGswere significantly enriched
in cellular heat acclimation, positive regulation of apoptotic
process, response to lipopolysaccharide, negative regulation
of inclusion body assembly, negative regulation of extrinsic
apoptotic signaling pathway in absence of ligand, negative
regulation of endopeptidase activity, extracellular matrix
organization, homophilic cell adhesion via plasma mem-
brane adhesion molecules, wound healing, and fibrinolysis
(Table 2). Changes in cell component (CC) of DEGs were
mainly enriched in extracellular space, extracellular region,
proteinaceous extracellular matrix, integral component of
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Table 1: General Statistics of Reads Alignment Process.

Sample Total Raw Reads (M) Total Clean Reads (M) Total Mapping (%)
Emodin1 21.81 21.65 92.18
Emodin2 21.81 21.61 92.31
Emodin3 21.84 21.68 92.28
Control1 21.94 21.86 94.59
Control2 21.94 21.86 94.66
Control3 21.94 21.87 94.59
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Figure 2: Emodin inhibits HepG2 cell growth in the time- and dose-dependent manner. HepG2 cells were treated with increased
concentrations of emodin for up to 72 hrs to examine the cell viability. The cell viability was determined using the CCK8 assay as described
in Materials and Methods and was expressed as percentage of control in the mean ± SD of three separate experiments.
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Figure 3: Column diagram and Volcano Plot of DEGs. DEGs were selected with a log 2(fold change) >3 and adj. P-value <0.001 among the
mRNA expression of emodin and control. (a) Column diagram of DEGs. (b) Volcano Plot of DEGs. Upregulated genes are marked in light
red; downregulated genes are marked in light blue.
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membrane, integral component of plasma membrane, and
myofibril (Table 2). Changes in molecular function (MF)
were mainly enriched in ATPase activity, coupled, serine-
type endopeptidase activity, serine-type peptidase activity,
bradykinin receptor activity, protein domain specific binding,
calcium ion binding, serine-type endopeptidase inhibitor
activity, extracellularmatrix structural constituent, structural
molecule activity, and lipopolysaccharide binding (Table 2).
KEGG pathway analysis revealed that the DEGs were mainly
enriched in complement and coagulation cascades, amoebia-
sis, ECM-receptor interaction, protein digestion and absorp-
tion, platelet activation, MAPK signaling pathway, rheuma-
toid arthritis, estrogen signaling pathway, legionellosis, and
metabolism of xenobiotics by cytochrome P450 (Table 2).

3.5. PPI Network Construction and Module Analysis.
To analyze the functional contributions of the DEGs,
protein–protein interaction (PPI) network analysis was
performed using STRING andCytoscape.The false discovery
rate (FDR) for each p-value was calculated. In general, the
terms with FDR values < 0.01 were considered significantly
enriched. The PPI network and the most significant module
of the DEGs were determined (Figures 4(a) and 4(b)).
Functional and pathway enrichment analyses of the genes
involved in the module were performed using DAVID.
Results showed that the genes in the most significant
module were predominantly enriched for terms associated
with inflammatory response, neuropeptide signaling
pathway, and positive regulation of cytosolic calcium ion
concentration (Table 3).

3.6. Hub Gene Analysis. A total of 25 genes were identified
as hub genes with degree ≥10. The 25 most significant
genes showing significant interaction were OPRD1, AVP,
BDKRB2, TAS2R4, KNG1, BDKRB1, AGT, PTGDR2, LPAR6,
C5, OPRL1, ADRA2C, CCL16, OXER1, CORT, SSTR5, PYY,
MCHR1, UTS2R, ANXA1, ADCY1, GPR68, PIK3R1, P2RY4,
and HCAR2. The functional roles of these hub genes are
shown in Table 4. Coexpression of these hub genes was
determined using cBioPortal (Figure 5). To further analyze
these hub genes, overall survival and disease-free survival
analyses were performed using a Kaplan-Meier curve. HCC
patients with C5 and LPAR6 alterations showed low overall
survival (Figure 6(a)), andHCC patients with SSTR5, P2RY4,
LPAR6, and GPR68 alterations showed low disease-free sur-
vival (Figure 6(b)). Results based on qRT-PCR revealed that
the mRNA levels of LPAR6, C5, SSTR5, GPR68, and P2RY4
were significantly downregulated in HepG2 cells (Figure 7).
These findings indicated that C5, SSTR5, P2RY4, LPAR6, and
GPR68 play important roles in the molecular mechanisms
involved in emodin therapy for HCC.

4. Discussion

Transcription is an important biological process that deter-
mines the proteome of the cells. In this study, the RNA profile
of HepG2 cells was determined via RNA-seq to explore the
functions ofDEGs in cancer cells treatedwith emodin. A total
of 859 DEGs were screened, including 712 downregulated

genes and 147 upregulated genes in HepG2 cells treated
with emodin. These DEGs were found to be associated with
emodin-mediated inhibition of liver cancer proliferation.
Functional and pathway enrichment analyses of the 859
DEGs were performed using DAVID. GO analysis results
showed that the DEGs were mainly enriched in regulation
of apoptotic process and extracellular matrix organization.
KEGG pathway analysis revealed that the DEGs were mainly
enriched in mitogen-activated protein kinase (MAPK) sig-
naling pathway. MAPK is a family of protein kinases com-
prising the p38MAPKs, the c-junN-terminal kinases (JNKs),
and the extracellular regulated kinases (ERKs) [36]. MAPKs
play crucial roles in regulating various cellular processes, such
as cell proliferation. Our findings indicated that emodin-
mediated inhibition of HCC cell proliferation is associated
with the MAPK signaling pathway. The DEGs induced by
emodin treatment were then carefully identified using a
suite of sequence analysis software packages. Weighted gene
coexpression network analysis has been successfully used to
identify coexpression modules and intramodular hub genes
based on DEG expression data. Analyzing the functional
interactions between proteins can provide insights into the
mechanisms underlying the effects of emodin in HCC. PPI
networks were generated using Cytoscape and the most
significant module in the PPI networks was identified using
ClusterONE. The hub genes of the most significant module
were then selected based on the cutoff degree ≥10. A total
of 25 genes were identified as hub genes: OPRD1, AVP,
BDKRB2, TAS2R4, KNG1, BDKRB1, AGT, PTGDR2, LPAR6,
C5, OPRL1, ADRA2C, CCL16, OXER1, CORT, SSTR5, PYY,
MCHR1, UTS2R, ANXA1, ADCY1, GPR68, PIK3R1, P2RY4,
and HCAR2. The functional and pathway enrichment analy-
ses of the 25 hub genes were performed using DAVID. GO
analysis results showed that changes in BP of hub genes
were significantly enriched in positive regulation of cytoso-
lic calcium ion concentration, G-protein coupled receptor
signaling pathway, adenylate cyclase-inhibiting G-protein
coupled receptor signaling pathway, neuropeptide signaling
pathway, and inflammatory response. Changes in CC of
hub genes were mainly enriched in integral component of
plasma membrane and plasma membrane. Changes in MF
weremainly enriched in neuropeptide binding andG-protein
coupled receptor activity. KEGG pathway analysis revealed
that the hub genes were mainly enriched in neuroactive
ligand-receptor interaction. To further analyze these hub
genes, overall survival and disease-free survival analyses
were performed using a Kaplan-Meier curve. Results showed
that C5 and LPAR6 are associated with the overall survival
of HCC patients. SSTR5, P2RY4, LPAR6, and GPR68 are
related to the disease-free survival of HCC patients. These
five genes are closely related to prognosis of HCC patients.
Verification of the results by qRT-PCR showed that emodin
can downregulate the mRNA levels of LPAR6, C5, SSTR5,
GPR68, and P2RY4 in HepG2 cells (Figure 7). Therefore,
C5, SSTR5, P2RY4, LPAR6, and GPR68 are likely to play
important roles in the molecular mechanisms involved in
emodin therapy for HCC. In summary, the five hub genes
can reflect the molecular mechanisms of emodin therapy for
HCC and could serve as targets for emodin therapy for HCC.
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Figure 4: PPI network and themost significantmodule ofDEGs. (a)ThePPI network ofDEGswas constructed usingCytoscape. (b)Themost
significant module was obtained from PPI network with 26 nodes and 234 edges. Upregulated genes are marked in light red; downregulated
genes are marked in light blue.



BioMed Research International 7

Table 2:GOandKEGGpathway enrichment analysis ofDEGs inHepG2 cells treatedwith emodin. (Top 5) P<0.05was considered statistically
significant.

Category Term Count P-Value
Upregulated
GOTERM BP GO:0070370∼cellular heat acclimation 3 3.01E-04

GO:0043065∼positive regulation of apoptotic process 10 3.04E-04
GO:0032496∼response to lipopolysaccharide 7 0.0011565
GO:0090084∼negative regulation of inclusion body assembly 3 0.0021952
GO:2001240∼negative regulation of extrinsic apoptotic signaling pathway in absence of ligand 4 0.0023164

GOTERM CC GO:0005576∼extracellular region 23 0.0032977
GO:0030016∼myofibril 3 0.0179025
GO:0005615∼extracellular space 18 0.0200543

GOTERM MF GO:0042623∼ATPase activity, coupled 3 0.0031569
GO:0004252∼serine-type endopeptidase activity 7 0.0097873
GO:0008236∼serine-type peptidase activity 4 0.0102052
GO:0004947∼bradykinin receptor activity 2 0.0141671
GO:0019904∼protein domain specific binding 6 0.0164848

KEGG PATHWAY hsa04010:MAPK signaling pathway 10 2.68E-04
hsa05323:Rheumatoid arthritis 5 0.0066631
hsa04915:Estrogen signaling pathway 5 0.0100336
hsa05134:Legionellosis 4 0.010905
hsa00980:Metabolism of xenobiotics by cytochrome P450 4 0.0252724

Downregulated
GOTERM BP GO:0010951∼negative regulation of endopeptidase activity 23 3.10E-10

GO:0030198∼extracellular matrix organization 25 1.58E-07
GO:0007156∼homophilic cell adhesion via plasma membrane adhesion molecules 21 9.99E-07
GO:0042060∼wound healing 14 5.01E-06
GO:0042730∼fibrinolysis 8 5.57E-06

GOTERM CC GO:0005615∼extracellular space 114 8.37E-18
GO:0005576∼extracellular region 124 5.51E-16
GO:0005578∼proteinaceous extracellular matrix 35 1.88E-10
GO:0016021∼integral component of membrane 261 2.10E-10
GO:0005887∼integral component of plasma membrane 96 2.35E-09

GOTERM MF GO:0005509∼calcium ion binding 63 8.97E-11
GO:0004867∼serine-type endopeptidase inhibitor activity 20 1.22E-09
GO:0005201∼extracellular matrix structural constituent 12 2.27E-05
GO:0005198∼structural molecule activity 23 7.88E-05
GO:0001530∼lipopolysaccharide binding 7 9.18E-05

KEGG PATHWAY hsa04610:Complement and coagulation cascades 18 2.02E-10
hsa05146:Amoebiasis 16 5.35E-06
hsa04512:ECM-receptor interaction 13 6.15E-05
hsa04974:Protein digestion and absorption 13 6.90E-05
hsa04611:Platelet activation 14 8.04E-04
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Figure 5: Interaction network analysis of the hub genes. Hub genes and their coexpression genes were analyzed using cBioPortal. Nodes with
bold black outline represent hub genes. Nodes with thin black outline represent the coexpression genes.

Table 3: GO and KEGG pathway enrichment analysis of DEGs in the module. FDR<0.05 was considered statistically significant.

Category Term Count FDR
GOTERM BP GO:0007204∼positive regulation of cytosolic calcium ion concentration 10 2.54E-10

GO:0007186∼G-protein coupled receptor signaling pathway 15 5.11E-09
GO:0007193∼adenylate cyclase-inhibiting G-protein coupled receptor signaling pathway 6 9.72E-06
GO:0007218∼neuropeptide signaling pathway 6 4.76E-04
GO:0006954∼inflammatory response 7 0.0216325

GOTERM CC GO:0005887∼integral component of plasma membrane 13 9.27E-05
GO:0005886∼plasma membrane 19 2.11E-04

GOTERM MF GO:0042923∼neuropeptide binding 4 0.0035638
GO:0004930∼G-protein coupled receptor activity 8 0.0619499

KEGG PATHWAY hsa04080:Neuroactive ligand-receptor interaction 10 1.78E-05
GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; FDR, false discovery rate

Complement activation is regulated to provide a perma-
nent source of complement mediators that can maintain the
inflammatory microenvironment that favors tumor growth
[13, 37]. Complement component 5 (C5) is the fifth compo-
nent of the complement and can be cleaved into C5a and
C5b by C5-convertase. It plays a critical role in cell killing
and inflammatory processes [38].Many studies have reported
that a variety of tumor cell lines can produce the complement
activation product C5a. Furthermore, it has been reported
that plasma C5a levels are elevated in liver cancer and other

tissue-specific cancers [1, 6, 15]. He et al. showed that C5 levels
were upregulated in AFP(-) HBV-related HCC and that C5 is
potentially strongly associated with the progression of AFP(-
) HBV-related HCC [17]. In addition, tumor inflammatory
microenvironments were found to contain the complement-
activating components C3, C4, C5, C1q, and MAC in many
cancer models [39]. Somatostatin receptor type 5 (SSTR5) is
a receptor that can lead to somatostatin-mediated inhibition
of the release of hormones and secretory proteins [40]. A
previous study reported that SSTR5 levels are upregulated in
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Figure 6: (a) Overall survival and (b) disease-free survival analyses of hub genes were performed using cBioPortal online platform. P<0.05
was considered statistically significant.
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Figure 7: qRT-PCR validation of 5 differentially expressed hub DEGs. Comparison of fold change of LPAR6, C5, SSTR5, GPR68, and P2RY4
between RNA seq and qRT-PCR results.

advanced-stage HCC [23]. SSTR5 can bind to somatostatin
analogues, such as octreotide, which can help determine the
antiproliferative efficacy of somatostatin analogues [2]. In
addition, a positive correlation has been reported between
SSTR5 expression and tumor size [8]. Lysophosphatidic acid
receptor 6 (LPAR6) is a G protein-coupled receptor that can
bind to lysophosphatidic acid [41]. One study reported that
LPAR6 is essential for maintaining the tumorigenic proper-
ties of HCC cells; patient data and the experimental evidence

supported the claim that LPAR6 promotes tumorigenicity
and growth in HCC by activating the protooncogene Pim-3
[33]. Emodin can downregulate the expression of C5, SSTR5,
and LPAR6. So far, no studies have examined the expression
levels of P2Y purinoceptor 4 (P2RY4) and G-protein coupled
receptor 68 (GPR68) in HCC. P2RY4, a G-protein coupled
receptor, is responsive to uridine nucleotides [18] and plays
an important role in transporting chloride in the epithelium
of the jejunum [10]. The role of P2RY4 in apoptosis and cell
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Table 5: Function roles of 5 genes in cancer.

Gene Expression in cancer Function in cancer Ref
C5 Upregulated in HCC Highly associated with the progression of AFP(-) HBV-related HCC. [17]

SSTR5 Upregulated in HCC Regulate intracellular signaling pathways, such as MAPK pathways; constitute a
molecular basis for the treatment of HCC with somatostatin analogues. [2, 32]

LPAR6 Upregulated in HCC Maintain the proliferation capacity and the tumorigenic phenotype of HCC
through the transcriptional activation of protooncogene Pim-3. [33]

P2RY4 Upregulated in colonic
cancer

The function is based on the effect of extracellular nucleotides on apoptosis or cell
proliferation in HCT8 and Caco-2 cells. [7]

GPR68 Upregulated in PDAC and
ovarian cancer

Stimulates PDAC proliferation;
inhibits ovarian cancer cell proliferation and migration, but enhances the cell
adhesion to the extracellular matrix

[34, 35]

proliferation, based on the effect of extracellular nucleotides,
has been studied in HCT8 and Caco 2 cells [7]. In ovarian
cancer, GPR68 is coupled to the PLC/Ca2+ pathway via
the Gq/11 protein [42]. GPR68 is nearly undetectable in the
healthy pancreas but is highly expressed in pancreatic ductal
adenocarcinoma (PDAC) [34]. In human ovarian cancer
cells, GPR68 has been shown to promote adhesion of cells
to the extracellular matrix [35]. Among the five hub genes,
C5, SSTR5, and LPAR6 were found to be involved in HCC
(Table 5). These three genes could serve as the targets of
emodin therapy for HCC (Table 5). However, few studies
have investigated the relationships among P2RY4, GPR68,
and liver cancer, and elucidating these relationships could be
a direction for future research.

5. Conclusion

The present study attempted to identify DEGs that may be
involved in the molecular mechanisms of emodin therapy
for HCC. A total of 859 DEGs and 5 hub genes were
identified and may be regarded as targets of emodin therapy
forHCC.However, further studies are needed to elucidate the
molecularmechanisms and biological function of these genes
involved in emodin therapy for HCC.
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P2RY4: P2Y purinoceptor 4
GPR68: Ovarian cancerG-protein coupled receptor

1
PDAC: Pancreatic ductal adenocarcinoma.
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[42] K. T.Weiss, M. Fante, G. Köhl et al., “Proton-sensing G protein-
coupled receptors as regulators of cell proliferation and migra-
tion during tumor growth and wound healing,” Experimental
Dermatology, vol. 26, no. 2, pp. 127–132, 2017.


