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Variation in a range of mTOR-related genes
associates with intracranial volume and intellectual
disability
M.R.F. Reijnders 1, M. Kousi2, G.M. van Woerden3, M. Klein 1, J. Bralten1, G.M.S. Mancini4, T. van Essen5,

M. Proietti-Onori3, E.E.J. Smeets6, M. van Gastel7, A.P.A. Stegmann6, S.J.C. Stevens6, S.H. Lelieveld8,

C. Gilissen 1, R. Pfundt1, P.L. Tan2, T. Kleefstra1, B. Franke 1,9, Y. Elgersma3, N. Katsanis2

& H.G. Brunner1,6

De novo mutations in specific mTOR pathway genes cause brain overgrowth in the context of

intellectual disability (ID). By analyzing 101 mMTOR-related genes in a large ID patient cohort

and two independent population cohorts, we show that these genes modulate brain growth

in health and disease. We report the mTOR activator gene RHEB as an ID gene that is

associated with megalencephaly when mutated. Functional testing of mutant RHEB in

vertebrate animal models indicates pathway hyperactivation with a concomitant increase in

cell and head size, aberrant neuronal migration, and induction of seizures, concordant with

the human phenotype. This study reveals that tight control of brain volume is exerted through

a large community of mTOR-related genes. Human brain volume can be altered, by either

rare disruptive events causing hyperactivation of the pathway, or through the collective

effects of common alleles.
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Many aspects of brain homeostasis, among which are
measures of total brain volume, are highly heritable1.
Genome-wide association studies (GWAS) of brain

volume have shown a polygenic architecture in the general
population, with individual common genetic variants explaining
<1% of phenotypic variance2. Neurodevelopmental disorders,
such as intellectual disability (ID) and autism spectrum disorder
(ASD), have been associated with significant brain overgrowth. In
ID, up to 6% of the patients are macrocephalic3. One of the key
regulators of normal brain development is the evolutionarily
conserved Ser/Thr protein kinase Mammalian Target Of
Rapamycin (MTOR). The role of the mTOR pathway in brain
development and function has been intensively studied both
in vitro and in vivo using different mouse models. In these

models, mutations in either the downstream effectors of mTOR,
or the most important upstream regulators of mTOR, such as Ras
homolog enriched in brain (Rheb), tuberous sclerosis 1 (Tsc1),
and Tsc2, have been tested4, 5. Collectively, all studies provide
strong evidence that proper mTOR signaling is involved in key
aspects of brain development, such as neuronal progenitor
maintenance and differentiation (including regulation of neuro-
nal polarity, soma size and neurite outgrowth) and neuronal
migration6–17. In the mature brain, mTOR is an important reg-
ulator of synapse formation and synaptic function18–21, in par-
ticular through its role in regulating protein translation and
elongation22–25. Not surprisingly, hyperactivity of the mTOR
pathway in mice can lead to a myriad of phenotypes such as
macrocephaly, seizures, and behavioral abnormalities6, 26–31.
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Fig. 1 Schematic overview of selected mTOR-related genes. Schematic representation of the genes (n= 101) included in our mTOR-related gene-set based
on three different authorative publications59–61. Both proteins acting upstream of mTOR and proteins acting downstream of mTOR were included.
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In contrast, sustained downregulation of the mTOR pathway
appears to have little effect on neuronal function and behavior32.
Findings that the epilepsy and behavioral deficits in mice can be
rescued by mTOR inhibitors, offers a broad therapeutic window
in which patients can potentially be treated. Indeed, recent studies
indicated that mTOR inhibition is a promising treatment for
epilepsy in tuberous sclerosis complex (TSC) patients33–35.

Given the large body of evidence implying mTOR function in
key aspects of brain development, it is not surprising that
hyperactivating, somatic, and germline mutations in components
of the PI3K-AKT3-mTOR pathway have been linked with rare ID
syndromes associated with (hemi)megalencephaly, focal cortical
dysplasia, and epilepsy38–41. We were struck by the apparent
recurrence of mTOR-related mutations in ID, the persistent
co-morbid megalencephaly and the absence of studies investi-
gating the overall contribution of the mTOR pathway to ID and
brain growth. Considering this knowledge gap, we sought to
identify deleterious germline mutations in mTOR-related genes,
and assess their contribution to the development of ID and
megalencephaly. Next, assuming that our findings are not only
relevant to rare diseases such as ID, we hypothesized that the
pathology of syndromic ID patients represents the extreme end
of a more continuous contribution of the mTOR pathway to
human brain development and neuroanatomical variance in the
population. Our data indeed indicate that mTOR variation
significantly contributes to megalencephaly in a large ID cohort
and brain size in the population. Furthermore, we present that de
novo mutations in a key regulator of mTOR, RHEB, causes severe
ID, epilepsy and megalencephaly in humans. By functionally
testing the RHEB mutations in vertebrate animal models, we

show that the specific mutations cause hyperactivation of mTOR,
with a concomitant increase in cell and head size, aberrant
neuronal migration and induction of seizures, concordant
with the human phenotype. The extent of mTOR activation
likely affects brain volume in humans. In extreme cases, highly
deleterious mutations can lead to profound pathology. For such
patients, functional restoration of the pathway through treatment
with selective mTOR inhibitors might be of direct clinical utility.

Results
mTOR-related mutations are associated with macrocephaly. To
assess the overall burden of mTOR defects to ID, we
performed whole-exome sequencing (WES) in a cohort of 826
patients with ID cataloguing de novo mutations (Supplementary
Data 1) in a set of 101 mTOR-related genes (Supplementary
Data 2, Fig. 1). We identified 17 de novo mutations affecting 10
different mTOR-related genes, providing a possible genetic
diagnosis in 2.1% of our cohort. Five of the identified genes were
known ID genes (PIK3R1, PIK3R2, RAF1, PPP2R5D, MTOR)
and five (RHEB, RAC1, PPP2R5E, PPP2CA, ERK1) were not
associated with ID previously (Fig. 1, Table 1, Supplementary
Data 3). Three of the five novel genes (RHEB, RAC1, and
PPP2CA) showed a significant enrichment for de novo mutations
in our patient cohort (Table 1, Supplementary Table 1). Combi-
ning the gene-specific mutation rates of all individual mTOR-
related genes, we found a significant enrichment for de novo
mutations in mTOR-related genes (p= 3.50e−04) (Supplemen-
tary Table 1). Additionally, we found significant spatial clustering
of de novo missense variants for a single gene (PPP2R5D:

Table 1 Identified mutations with bonferroni corrected p-value and occipital frontal circumference (OFC) of patients with de novo
mutations in mTOR-related genes

Patient key Gene c.DNA Protein change Known ID gene OFC Bonferroni-corrected p-value

1 RHEB c.202 T>C p.(S68P) No >+2.5 SD 4.514e−03*
2 RHEB c.110 C> T p.(P37L) No >+2.5 SD
3 RHEB c.110 C> T p.(P37L) No >+2.5 SD
4 RAC1 c.53 G>A p.(C18Y) No <−2.5 SD 7.657e−03
5 RAC1 c.116 A>G p.(N39S) No <−2.5 SD
6 PPP2R5E c.605 T>G p.(V202G) No No data 1
7 PPP2CA c.882dup p.(R295*) No No data 1.696e−02
8 PPP2CA c.572 A>G p.(H191R) No >+2.5 SD
9 ERK1 c.569 T> C p.(I190T) No <−2.5 SD 1
10 PIK3R1 c.1359 C>G p.(N453K) Yes Normal 7.662e−02
11 PIK3R1 c.1692 C>G p.(N564K) Yes >+2.5 SD
12 PIK3R2 c.1117 G>A p.(G373R) Yes >+2.5 SD 1
13 RAF1 c.1082 G> C p.(G361A) Yes Normal 1
14 PPP2R5D c.1258 G>A p.(E420K) Yes No data 7.832e−04
15 PPP2R5D c.598 G>A p.(E200K) Yes >+2.5 SD
16 PPP2R5D c.592 G>A p.(E198K) Yes >+2.5 SD
17 MTOR c.4555 G>A p.(A1519T) Yes >+2.5 SD 1

OFC occipital frontal circumference; SD standard deviation
*In the statistical enrichment analysis, the RHEB p.(P37L) variant was considered as a single event

Table 2 Number of patients with macrocephaly, normal OFC, and microcephaly

Macrocephaly Normal OFC Microcephaly

Patients with clinical data (n= 732) 47 580 105
Patients with de novo mutation(s) (n= 553) 35 442 76
Patients with de novo mutation in mTOR-related gene (n= 14) 9 2 3
Patients with de novo mutation in gene not related to mTOR (n= 539) 26 440 73

OFC occipital frontal circumference
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p< 1e−07; permutation test) and a general pattern of spatial
clustering across the five genes with recurrent de novo missense
variants (p= 0.0057, Fisher’s combined probability test; Supple-
mentary Table 2).

To investigate the contribution of mTOR-related mutations
on brain overgrowth, we performed a literature analysis of the
101 mTOR genes. This search showed that 23 genes had
been previously reported to cause syndromic ID, with the
majority (18/23; 78%) being associated with varying degrees of
macrocephaly or relative macrocephaly (Supplementary Table 3).
Motivated by this observation, we collected occipital frontal
circumference (OFC) data from 732/826 patients (Supplementary
Data 4). Macrocephaly was present in 6% of patients in our
cohort (47/732 ID patients), a rate comparable to previous reports
from an independent cohort3. De novo mutations were identified
in 76% of our cohort (553/732 patients; Table 2). Among the
35 patients presenting with ID, macrocephaly, and a de novo
mutation, we found a significant enrichment (p= 9.084e−09) for
de novo mutations within genes of the mTOR pathway (9/14)
compared to genes that operate in mTOR independent pathways
(26/539) (Table 2). In contrast, microcephaly was not enriched
among patients with de novo mutations in mTOR-related genes
(p= 0.4228).

mTOR pathway contributes to intracranial volume. Driven by
the high frequency of brain overgrowth described in the literature
and the strong enrichment of macrocephaly in patients with
mutations in mTOR-related genes in our cohort, we tested our set
of 101 mTOR pathway genes for an association with intracranial
volume (ICV) in the general population (Fig. 1, Supplementary
Table 2). The final data set contained 76,746 SNPs in 96 auto-
somal genes (data were unavailable for X-chromosomal ARAF,
RPS6KA3, RPS6KA6, RRAGB, and PPP2R3B). Using the
ENIGMA2 data set (n= 13,171) we found a significant associa-
tion of the entire mTOR gene set with ICV for the self-contained
test (pself-contained= 0.0029088) and a suggestive association for
the competitive test (pcompetitive= 0.054742). Data from the
CHARGE consortium (n= 12,803) similarly revealed a significant
association of the mTOR gene set with ICV for the self-contained
test, but not for the competitive test (pself-contained= 0.00076589
and pcompetitive= 0.22105, respectively). Meta-analysis of the two
data sets, confirmed the significant association of the mTOR
gene set with ICV both for self-contained and competitive tests
(pself-contained= 1.3895e−05, pcompetitive= 0.025764). Post hoc
testing of the two major branches of the mTOR pathway sepa-
rately (RAS-MAPK-mTOR, 76 genes; PI3K-AKT-mTOR, 60
genes; Fig. 1, Supplementary Table 4) showed stronger association
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of PI3K-AKT-mTOR than RAS-MAPK-mTOR with ICV (PI3K-
AKT-mTOR: pself-contained= 0.00092471, pcompetitive= 0.0079133;
RAS-MAPK-mTOR: pself-contained= 2.2885e−07, pcompetitive=
0.068983). The role of the PI3K-AKT-mTOR pathway in volu-
metric variation of the brain was further strengthened by testing
the previously described Reactome_PI3K_AKT_activation gene-
set42 (35 genes; pself-contained= 3.8649e−13; pcompetitive=
0.00028957; Supplementary Table 5). Not all 96 genes in the
gene-set analysis showed significant association with ICV indi-
vidually. The most strongly associated individual gene was AKT3
(P= 2.22E−05) and in total, 18 genes of the mTOR gene
set including APC (P= 0.00042), and the new ID gene RHEB
(P= 0.0041), showed nominally significant association with ICV
(Supplementary Fig. 1; Supplementary Table 6).

RHEB mutations cause increased neuronal cell and head size.
Two of the three individuals with de novo RHEB mutations
were siblings and carried the same heterozygous p.(Pro37Leu)
mutation, while a sporadic individual carried the p.(Ser68Pro)
allele. The p.(Pro37Leu) mutation was not identified in either
parent, suggesting parental gonadal mosaicism (Fig. 2a). The

RHEB mutations are located in the RAS domain (Fig. 2b, c) and
are absent from ExAC, EVS, or our internal clinical exome
databases. All three individuals (Fig. 2d) with de novo RHEB
mutations had short stature (−2 to −3 SD) and early brain
overgrowth with pronounced macrocephaly during childhood
(+2.5/+3 SD). They had severe to profound ID with hypotonia, as
well as autism spectrum disorder. Two of three individuals were
reported to have epilepsy. No epileptic episodes were noted for
the third patient, but EEG recordings were suggestive of epileptic
discharges (Supplementary Note, Supplementary Table 7). Brain
magnetic resonance imaging (MRI) evaluation of the patient with
the p.(Ser68Pro) allele, confirmed megalencephaly with broad
frontal lobes and mild dilatation of the lateral ventricles. The MRI
scan further showed a thickened rostrum of the corpus callosum
and small splenium, and mild hypoplasia of the lower cerebellar
vermis (Fig. 2e).

We selected the RHEB mutations to obtain experimental
evidence for our hypothesis that de novo changes in mTOR-
related genes are likely due to a gain-of-function mechanism,
resulting in hyperactivation of mTOR, as previously shown for
other syndromic neurodevelopmental cases associated with
macrocephaly. We first tested in vitro whether the RHEB de
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novo changes have an impact on overall mTOR activity
levels. Given that mTORC1 regulates cell size11, 43, we used
primary hippocampal neuron soma size as a readout to assess
differences between RHEB-WT overexpressing vs. RHEBp.P37L
and RHEBp.S68P overexpressing neurons. A significant increase
in soma size was detected already in RHEB-WT transfected
neurons, suggesting that RHEB is a highly dosage sensitive
gene, likely causing hyperactivation of the mTOR pathway44.
Overexpression of the RHEB mutant proteins caused an
increase in soma size, confirming that these mutations do not
cause a loss of function (Fig. 3a, b, one-way ANOVA, p< 0.0001,
F(3,260)= 50.35; control vector vs. RHEB-WT: p< 0.0001;
control vector vs. RHEBp.P37L: p< 0.0001; control vector
vs. RHEBp.S68P: p< 0.0001 by Tukey’s multiple comparisons
test). Notably, overexpression of RHEBp.P37L had the strongest
effect inducing a significantly pronounced increase in soma
size compared to RHEB-WT (p< 0.05) and RHEBp.S68P
(p< 0.05).

We next sought to evaluate the relevance of these variants in
the development of neuroanatomical phenotypes in a developing

zebrafish in vivo model. Toward this, we identified the sole
zebrafish rheb ortholog (96% similarity, 91% identity). First, we
corroborated that the variants identified are not acting through a
loss of function mechanism by generating a CRISPR-Cas9 system
to introduce deletions. Assessment of head size in mosaic F0
embryos injected with a guideRNA against exon 3 showed
microcephaly in two biological replicates, which was opposite to
the phenotype observed in the patients (Supplementary Fig. 2).
We next evaluated the effect of the rheb alleles on head size under
a gain of function and mTOR hyperactivating paradigm, as
suggested through our in vitro studies. To test this hypothesis, we
injected human WT or mutant RHEB mRNA into 1- to 4-cell
stage zebrafish embryos. Expression of WT human RHEB
induced a significant increase in the headsize area of 5 dpf larvae
(p= 0.0013). Overexpression of either RHEBp.P37L or p.S68P,
also resulted in significantly increased headsize, reminiscent of
the megalencephaly seen in our patients (p< 0.0001 for either
mutant allele when compared to WT RHEB; Fig. 3d, e). This
finding was reproducible across three independent biological
replicates.
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electroporated P0 brains (a) or P7 brains (b), with an enlargement showing the migratory pathway of the transfected cells (tdTomato+) from the
intermediate zone (IZ) and subplate (SP) to the more superficial layers of the cortex (CP= cortical plate and MZ=marginal zone). c Quantification of the
neuronal migration pattern observed in different conditions. Data are presented as mean± SEM. Statistical significance was assessed by two-way repeated
measure ANOVA followed by Bonferroni’s post hoc test (for bins 2–4: *indicates significant difference between control vector and the different RHEB
conditions (p< 0.0001); #indicates significant difference between the RHEB-WT and all other conditions (p< 0.0001); for bins 9 and 10: *indicates
significant difference between control vector and RHEBp.P37L and RHEBp.S68P; #indicates significant difference between RHEB-WT and RHEBp.P37L and
RHEBp.S68P (p< 0.0001)); §indicates significant difference between RHEB-WT and RHEBp.P37L (p< 0.0001); £indicates significant difference between
RHEBp.P37L and RHEBp.S68P (p< 0.001). d Kaplan–Meier graph representing onset of tonic–clonic seizures in successfully targeted mice. The insert
legends of the graph show Npictures/Nmice (c) or Nseizure/Ntotal (d)
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Rapamycin rescues neuronal soma and head size defects.
Antagonists of the mTOR pathway, such as rapamycin, can
ameliorate some of neurological deficits associated with mTOR
hyperactivity33–35, 36, 37. To evaluate whether this is true for the
RHEB activating mutations described here, we treated the neu-
rons with 20 nM rapamycin or vehicle 1 day after transfection for
3 days and assessed neuronal soma size. We found that while the
soma size of RHEB-WT overexpressing neurons nominally
decreased, a statistically significant reduction of neuronal soma
size was observed for both RHEBp.P37L and RHEBp.S68P and a
trend in the same direction was seen for RHEB-WT (Fig. 3c, two-
way ANOVA, effect of treatment p< 0.0001, F(1,89)= 16.29;
RHEBp.P37L vehicle vs. RHEBp.P37L Rapamycin p< 0.01;
RHEBp.S68P vehicle vs. RHEBp.S68P Rapamycin: p< 0.05;
RHEB-WT vehicle vs. RHEB-WT Rapamycin: p= 0.1; by Bon-
ferroni’s multiple comparisons test). Taken together, these data
show that overexpression of either wild-type or mutant RHEB
induces an mTOR-dependent increase in soma size and that this
phenotype can be rescued through the administration of the
known mTOR antagonist rapamycin. Grounded on the in vitro
observations, we next explored the possibility of rapamycin ser-
ving as a putative therapeutic agent in vivo. Toward this, we co-
injected rapamycin together with WT or mutant RHEB mRNA in
zebrafish embryos and we compared the embryos’ head size at 5
dpf. Rapamycin alone did not induce any appreciable neuroa-
natomical pathologies, or indeed any other overt morphological
phenotype(s) (Fig. 3e). In contrast, rapamycin sufficiently and
reproducibly rescued the macrocephalic phenotype induced by
both RHEBp.P37L and RHEBp.S68P, suggesting that suppression
of mTOR hyperactivity might present a therapeutic target for
disease ammelioration (Fig. 3e).

RHEB mutations affect neuronal migration and induce
seizures. Previous studies have shown that mTOR signaling is not
only involved in cell morphology and growth, but also plays a role
in neuronal migration. Increased mTOR activity in vivo, induced
either by overexpression of a constitutively active RHEB or by
inactivating mutations in the Tsc1 or Tsc2 genes, two negative
regulators of RHEB, causes neuronal migration defects12–17. We
performed in utero electroporation at E14.5 to induce the in vivo
overexpression of RHEB-WT, RHEBp.P37L, and RHEBp.S68P,
and tested the effect of the RHEB mutations on neuronal
migration in the still developing somatosensory cortex of P0
pups45, 46. Although in neuronal cultures overexpression of
RHEB-WT and RHEB mutants increased soma size equally, the
results obtained in vivo showed notable differences between these
proteins. We observed that while cells transfected with the control
vector efficiently migrated to the cortical plate (CP), cells
transfected with RHEB-WT could be found in all the layers of
the cortex (Fig. 4a). Strikingly, the majority of cells transfected
with either RHEBp.P37L or RHEBp.S68P remained in the
subplate (SP), indicating more severe migration deficits compared
to RHEB-WT overexpression (Fig. 4a). At P7, when the cortical
layers are more defined, the difference between RHEB-WT
and RHEBp.P37L or RHEBp.S68P was even more striking
(Fig. 4b). Analysis of the number of tdTomato-positive cells
present in the different cortical layers showed a significant
difference between the four different conditions (two-way repe-
ated measure ANOVA, effect of interaction: F(27,180)= 13.73,
p< 0.0001), consistent with our previous in vitro and in vivo
studies that the mutations in RHEB are gain-of-function hyper-
activating mutations. Consistent with our findings in primary
neuronal cultures, post hoc analysis revealed that the RHEBp.
P37L mutation yielded the strongest effects among evaluated
conditions (Fig. 4c).

Neuronal migration deficits are often linked with seizures and
ID47. Additionally, the link between an epileptogenic phenotype
and hyperactivity of the mTOR pathway has been established
from studies in both human and mice28, 30, 48. Interestingly,
knockdown of the TSC1 gene, a negative regulator of the mTOR
pathway, in just a subset of cortical neurons reduces the threshold
for seizure induction12. Careful monitoring of the in utero
electroporated mice, revealed that overexpression of RHEB-WT,
RHEBp.P37L, and RHEBp.S68P resulted in spontaneous
tonic–clonic seizures starting at P20 (Supplementary Movie 1).
Seizures were particularly common in mice expressing mutant
RHEB: whereas 20% (2/10) of mice expressing RHEB1-WT
developed epilepsy, all (7/7) mice expressing RHEBp.P37L
and 83% (5/6) of mice expressing RHEBp.S68P developed
spontaneous seizures (Fig. 4d). Consistent with our findings
from primary neuronal cultures and neuronal migration follow-
ing in utero electroporation, the RHEBp.P37L allele was shown to
have the strongest effect, as the mice expressing this allele also
showed a significantly earlier onset of seizures (log-rank
(Mantel–Cox) p< 0.01 compared to RHEBp.S68P; Fig. 4d).
Taken together, our in vivo results further corroborate the
conclusion that the missense mutations in RHEB act as dominant
activating mutations.

Discussion
Here we studied the contribution of mTOR-related genes to ID
and brain overgrowth in 826 ID patients unselected for any other
phenotypic features and found 17 germline de novo mutations in
genes related to mTOR, providing a possible genetic diagnosis for
2.1% of our cohort. We show that genes encoding components of
the mTOR pathway, contribute to rare and common alleles that
impact brain volume and provide insight into neurodevelop-
mental processes mediated through mTOR hyperactivity and
outlook to potential treatment options for a subset of patients
with ID.

A significant fraction of patients harboring a de novo mutation
in mTOR-related genes was observed to be macrocephalic. The
link between mTOR mutations and ID and/or head size differ-
ences has already been established through numerous studies that
identified genes such as AKT3, PIK3CA, PPP2R5D, and recently
MTOR itself38–40, 49. In fact, from the 23 genes previously
reported to cause ID among our gene-set of 101 mTOR-related
genes, most (18/23, 78%) have been associated in the literature
with macrocephaly or relative macrocephaly. Our study
significantly extends these findings: of the 35 patients with
macrocephaly in the complete cohort, 9 patients (26%) harbored
a de novo mutation in mTOR-related genes. As such, genes in
this pathway should be carefully evaluated in patients with ID and
macrocephaly.

Motivated by the high frequency of brain overgrowth in
previous reports of mTOR-related syndromes, and in patients
with mutations in mTOR-related genes in our cohort, we
reasoned that the highly penetrant activating alleles that we
identified de novo might represent only a fraction of alleles
associated with severe neurocognitive disorders, and that more
common and less penetrant alleles might be associated with head
and brain growth in the general population. Indeed, a combined
analysis of common variants of all 96 autosomal genes in the
mTOR-related gene-set showed significant association with ICV
in two large imaging genetics samples from the CHARGE
and ENIGMA consortia, confirming our initial hypothesis.
Interestingly, the PI3K-AKT-activation pathway (35 genes from
the reactome gene-set) was recently shown to be among the most
strongly associated pathways for ICV in an enrichment analysis
testing 671 Reactome gene-sets using the same cohorts42. Our
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analyses support and expand this conclusion by testing a
different, carefully selected gene-set (only 15 out of 96 genes
overlapping). Taken together, our data support a model by which
mTOR-related genes, including the newly discovered ID gene
RHEB, contribute to variation in brain growth, through common
and rare genetic variants, in health and disease. Our observations
corroborate, how rare disorders can inform biological mechan-
isms underlying common traits in the general population.

There is ongoing debate on the precise genetic composition of
gene-sets. Gene-set databases, such as KEGG, Ingenuity, and
others, all differ in their coverage of specific biological pathways
and their functional annotations. In line with this observation, the
number of genes mapped to pathways may also vary greatly
across the databases50. For mTOR-related gene-sets, inclusion in
databases is incomplete, with key proteins and protein complexes
such as RAC1, RAG, MEK, and PP2A missing. For this reason, we
used three authorative reviews on mTOR signaling describing
both upstream and downstream interactors of mTOR and then
used additional evidence from the literature to subdivide various
protein complexes into their constituent proteins and genes.
Therefore, our selection of 101 mTOR-related genes might be
incomplete and additional genes are likely to be involved in
mTOR signaling. For this reason and because of limitation of our
methods to detect reliably somatic mosaicism, a mechanism
thought to be a significant contributor to mutation burden in this
pathway38–40, we postulate that the diagnostic rate within our
cohort (2.1%) might represent the lower bound of the estimate.

In this study, we identified de novo mutations in both known
ID genes (PIK3R1, PIK3R2, RAF1, PPP2R5D, MTOR) and novel
candidate ID genes (RHEB, RAC1, PPP2R5E, PPP2CA, ERK1).
For the most frequently mutated gene, RHEB, we show that
hyperactivating mutations cause an ID syndrome with brain
overgrowth and epilepsy. The finding that these mutations are
hyperactivating, is in line with the observation that loss of RHEB
activity does not result in overt neurological phenotypes in Rheb
mutant mice32. Several mechanisms, such as increased
proliferation, increased soma size and reduced apoptosis are
known to have a role in the development of megalencephaly51.
We observed a significant increase in soma size upon over-
expressing WT and mutant RHEB alleles in vitro. Since RHEB is
the canonical activator of mTOR, this finding is consistent with
other reports that have highlighted mTOR as a main regulator of
cell size6, 11, 15, 52. In vivo, we postulate that the increased soma
size might represent one of the mechanisms through which
macrocephaly occurs, as the zebrafish embryos injected with
mutant RHEB were phenotypically concordant with the human
patients. Further dissecting the pathomechanism(s) underlying
RHEB-associated ID, we showed severe neuronal migration
defects in mouse embryos electroporated with mutant RHEB and
an increased incidence of epileptogenic activity postnatally. These
findings are reminiscent to what has been observed for mutations
of MTOR itself. Constitutive activation of mTORC1 causes
enlarged neuronal somata in rodent neurons, and focal cortical
expression of MTOR mutations has been reported to disrupt
neuronal migration and to cause spontaneous seizures by in utero
electroporation in mice40, 41, 53. This observation shows that
activating mutations in different genes of the mTORC1 branch of
the mTOR pathway act through convergent mechanisms and
have similar phenotypic outcomes.

Based on these observations, we reasoned that patients with
activating RHEB changes might be able to benefit from therapies
that result in a reduction of mTOR activity, such as rapamycin.
Indeed, we here showed that suppression of mTOR levels through
the administration of the mTOR antagonist rapamycin can
significantly and reproducibly prevent both the neuronal soma
size phenotype in vitro and the macrocephalic phenotype in vivo.

Recent studies have reported successful implementation of mTOR
inhibitor treatment in individuals with TSC-associated epilepsy
and brain tumors33–35. In a conceptually similar paradigm,
fibroblasts from a patient with an mTOR activating PIK3CA
change, were treated successfully with the PI3K inhibitors
wortmannin or LY294002, which abrogated the overactivation of
the pathway54. It is premature to advocate the use of rapamycin
in patients with ID and mutations in all mTOR-related genes, not
least because of the potentially adverse effects induced by
prolonged exposure to this agent55. However, we speculate
that targeted administration of mTOR inhibitors (rapamycin,
wortmannin, everolimus as well as currently emerging second-
generation drugs), perhaps during critical postnatal neurodeve-
lopmental windows, might be of significant benefit to patients. In
that context, rapid molecular diagnosis in both known ID genes
and candidate ID genes, would be a critical component of the
treatment decision process.

In conclusion, our data show that a large number of mTOR-
related genes together modulate human brain volume in the
population. Severe disruption of such mTOR-related genes can
cause intellectual disability and brain overgrowth, most likely
through mTOR hyperactivation.

Methods
Subjects and mutation analysis. We evaluated a cohort of 826 patients with ID,
who had undergone diagnostic trio WES at Radboud University Medical Center
(Radboudumc). We included 820 simplex patients described previously, as well as
three sib pairs excluded from the earlier study56. Diagnostic WES was approved
by the medical ethics committee of the Radboud University Medical Center
(Commissie Mensgebonden Onderzoek), Nijmegen, The Netherlands (registration
number 2011-188).Written informed consent was obtained from all individuals or
their legal guardians. We collected all available clinical information and performed
deep phenotyping of individuals with a de novo mutation in RHEB. Consent for
publication of photographs was obtained. Brain images were re-evaluated where
available.

Selection of mTOR-related genes. We focused on the two well-described,
convergent pathways in which mTOR acts as key regulator: the PI3K-AKT-mTOR
pathway and the RAS-MAPK-mTOR pathway. We defined a list of 101 mTOR-
related genes based on three authorative reviews on the mTOR regulators57–59.
Protein complexes were mapped to single proteins and genes based on information
available in the literature. The final list contains 101 mTOR-related genes: 96 map
on autosomes and five map on the X-chromosome.

Identification of mutations and collection of OFC data. From our cohort of 826
patients with ID, we selected all de novo mutations that affect mTOR-related genes.
All mutations were confirmed by Sanger sequencing. mTOR-related genes were
considered to be known ID genes, if present in our recently published list
containing over 1500 known ID genes56. We performed a literature search by
querying Pubmed to investigate which of the known mTOR-related ID genes have
been associated with large or small head size. Within our cohort of 826 patients,
individuals were classified as microcephalic (OFC < −2.5 SD), macrocephalic
(OFC > +2.5 SD), normocephalic (OFC between −2.5 SD and +2.5 SD) or
unknown. We used Fisher’s Exact test to calculate enrichment of macrocephaly in
mTOR-related mutation carriers. The significance threshold was set at p< 0.05.

Gene-based enrichment. To assess whether mTOR-related genes were
significantly enriched for functional de novo mutations in our cohort, we tested
each of the 101 genes using a statistical model as described previously56. For
this statistical enrichment analysis, the RHEB p.(P37L) variant was considered as
one single event. Multiple testing correction was performed by the Bonferroni
procedure based on 101 tested genes. Additionally, we tested whether the mTOR
pathway as a whole was enriched for functional de novo mutations in our cohort by
combining the gene-specific mutation rates of all individual genes in the pathway.

Clustering analysis. Clustering analysis was performed by generating the full
cDNA for the respective RefSeq genes. To increase the statistical power of the
spatial clustering of the recurrently mutated genes, we added de novo missense
variants from the denovo-db60 annotated by our in-house pipeline (Supplementary
Data 5). The locations of observed de novo missense mutations were randomly
sampled 100,000 times over the cDNA of the gene after which the distances
(in base pairs) between the mutations were normalized for the total coding size
of the respective gene. The geometric mean (the nth root of the product of n
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numbers) of all mutation distances between the mutations was taken as a measure
of clustering. A pseudocount (adding 1 to all distances and 1 to the gene size) was
applied to avoid a mean distance of 0 when there were identical mutations. To
assess overall clustering of the set of genes, we used Fisher’s combined probability
test to combine the 5 p-values of individual genes. To avoid a possible bias
introduced by highly significant p-values (e.g., gene PPP2RD5), we calculated the
combined p-value on deflated p-values where all values smaller than 0.05 were set
to 0.05.

ENIGMA and CHARGE study populations and data description. This study
reports data on 25,974 subjects of Caucasian ancestry from 46 study sites that
are part of the Enhancing NeuroImaging Genetics through Meta-Analysis
(ENIGMA)61 consortium (13,171 subjects) and Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE; 12,803 subjects)62. Briefly, the
ENIGMA consortium brings together numerous studies, mainly with case–control
design, which performed neuroimaging in a range of neuropsychiatric or neuro-
degenerative diseases, as well as healthy normative populations. The CHARGE
consortium is a collaboration of predominantly population-based cohort studies
that investigate the genetic and molecular underpinnings of age-related complex
diseases, including those of the brain. An overview of the demographics and type of
contribution for each cohort is provided in Supplementary Table 8 (Table adapted
from original publication by Adams et al.42). Written informed consent was
obtained from all participants. The study was approved by the institutional review
board of the University of Southern California and the local ethics board of
Erasmus MC University Medical Center. Procedures of whole-genome genotyping,
imputation, MRI, GWAS, and meta-analysis are summarized in Supplementary
Methods (adapted from original publication42). The meta-analysis data from the
recent ENIGMA2 and CHARGE studies of ICV were available as genome-wide
summary statistics, including genome-wide single-nucleotide polymorphism (SNP)
data with corresponding p-values. The ENIGMA consortium has completed a
meta-analysis of site-level GWAS in a discovery sample of 13,171 subjects of
European ancestry2, 61. Access to the summary statistics of ENIGMA can be
requested via their website (http://enigma.ini.usc.edu/download-enigma-gwas-
results/). The CHARGE consortium has completed meta-analysis of site-level
GWAS in a discovery sample of 12,803 subjects of European ancestry42. Genome-
wide summary statistics of the CHARGE consortium has been requested by the
principal investigator of the study described by Adams et al.42 For both data sets,
only SNPs with an imputation quality score of RSQ≥ 0.5 and a minor allele
frequency ≥0.005 within each site were included.

Procedures of whole-genome genotyping, imputation, magnetic resonance
imaging (MRI), GWAS, and meta-analysis of the cohorts are summarized in the
Supplementary Methods.

Gene-based and gene-set analyses. Gene-based and gene-set analyses were
performed using the Multi-marker Analysis of GenoMic Annotation (MAGMA)
software package (version 1.02)63. First, gene-based p-values were calculated using
a symmetric 100 kb flanking region for each cohort separately for the 96 autosomal
genes in the mTOR pathway. Genome-wide SNP data from a reference panel
(1000 Genomes, v3 phase1)64 was annotated to NCBI Build 37.3 gene locations
using a symmetric 100 kb flanking window, and both files were downloaded from
http://ctglab.nl/software/magma. Next, the gene annotation file was used to map
the genome-wide SNP data from the different studies (ENIGMA2 and CHARGE),
to assign SNPs to genes and to calculate gene-based p-values for each cohort,
separately. Since data from the genome-wide association analyses only included
autosomal SNPs, five genes located on the X-chromosome were omitted from the
analysis. For the gene-based analyses, single SNP p-values within a gene were
transformed into a gene-statistic by taking the mean of the χ2-statistic among the
SNPs in each gene. To account for linkage disequilibrium (LD), the 1000 Genomes
Project European sample was used as a reference to estimate the LD between SNPs
within (the vicinity of) the genes (http://ctglab.nl/software/MAGMA/ref_data/
g1000_ceu.zip). Gene-wide p-values were converted to z-values reflecting the
strength of the association of each gene with the phenotype (ICV), with higher
z-values corresponding to stronger associations. Subsequently, we tested, whether
the genes in the mTOR gene-set were jointly associated with ICV in the ENIGMA2
data set, using self-contained and competitive testing65. For the gene-set
analyses, we used an intercept-only linear regression model including a subvector
corresponding to the genes in the gene-set. This self-contained analysis evaluating,
whether the regression coefficient of this regression was larger than 0, tests whether
the gene-set shows any association with ICV at all. Next, we tested whether genes
in each gene-set were more strongly associated with ICV than all other genes in the
genome. Therefore, the regression model was then expanded including all genes
outside the gene-set. With this competitive test, the differences between the
association of the mTOR gene-set to genes outside this gene-set is tested,
accounting for the polygenic nature of a complex trait like ICV. To account for the
potentially confounding factors of gene size and gene density, both variables as well
as their logarithms were included as covariates in the competitive gene-set analysis.
Since self-contained tests do not take into account the overall level of association
across the genome, gene-size (number of principal components, or SNPs) and gene
density, we were interested in the competitive test for the current analysis. The
same procedure was followed for analysis of the CHARGE cohort. In addition to

the gene-set analyses within the individual cohorts, we meta-analyzed data of both
cohorts on the gene-level followed by gene-set analysis. Post hoc, the potential
effects of the two separate mTOR pathways in the gene-set (the PI3K-AKT-mTOR
pathway (60 genes) and the RAS-MAPK-mTOR pathway (76 genes)) as well as the
individual genes were investigated, by reviewing their gene test-statistics. Moreover,
the Reactome_PI3K_AKT_activation gene-set, consisting of 38 genes, was tested
for its association with ICV (downloaded from http://software.broadinstitute.org/
gsea/msigdb/genesets.jsp). Genes were considered gene-wide significant, if they
reached the Bonferroni correction threshold adjusted for the number of genes
within the total gene-set (N= 96; p< 0.000521).

Generation of zebrafish rheb mutants. All animal experiments were carried out
with the approval of the Institutional Animal Care and Use Committee (IACUC).
Guide RNAs targeting the Danio rerio coding region of rheb were generated as
described66. Subsequently, rheb guide oligonucleotide sequences (rheb_ex3_g1F:
5′-TAGGGTCGTGGAACGCAGCGTTCA-3′ and rheb_ex3_g1R: 5′-AAACT-
GAACGCTGCGTTCCACGAC-3′) were ligated into the pT7Cas9sgRNA vector
(Addgene) into Bsm BI sites. For the generation of gRNA, the template DNA was
linearized with Bam HI, purified by phenol/chloroform extraction and in vitro
transcribed using the MEGAshortscript T7 kit (Invitrogen). To generate F0
CRISPR mutants we injected 1 nl containing 100 pg rheb guide RNA and 200 ng
Cas9 protein (PNA bio, CP01) to 1-cell stage embryos. To determine the efficiency
of the guide RNA, embryos were allowed to grow to 5 days post fertilization (dfp),
at which time they were killed and subjected to digestion with proteinase K
(Life Technologies) to extract genomic DNA. The targeted locus was PCR
amplified using the drrheb_g1test_1 F 5′-GAGTGATCAGCTGTGAAGAAGG-3′
and drrheb_g1test_1 R 5′-GAACAGCGACAGGAGCTACA-3′ primer pair. PCR
amplicons were digested using T7 endonuclease I (New England Biolabs) at 37 °C
for 1 h and were visualized on a 2% agarose gel. For Sanger sequencing of indi-
vidual products from the rheb locus, PCR fragments from four embryos with a
positive T7assay were cloned into the pCR4/TOPO TA cloning vector (Life
Technologies), and 40 colonies from each cloned embryo were Sanger sequenced.
We observed sequence aberrations in ~75% of the evaluated rheb clones.

In vivo modeling in zebrafish embryos. The human wild-type67 mRNA of RHEB
(NM_005614) was cloned into the pCS2+ vector and transcribed in vitro using the
SP6 Message Machine kit (Ambion). The variants identified in RHEB in our patient
cohort (RHEBp.P37L, RHEBp.S68P) were introduced using Phusion high-fidelity
DNA polymerase (New England Biolabs) and custom-designed primers. We
injected 50 pg of WT or mutant RNA into wild-type zebrafish embryos at the 1- to
4-cell stage. For the experiments with rapamycin treatment we added 2.7 nM of
ready-made rapamycin solution in DMSO (R8781, Sigma-Aldrich) in each of the
injection cocktails. For the headsize assay, the injected larvae were grown to 5 dpf
and imaged live on dorsal view. The area of the head was traced excluding the
eyes from the measurements and statistical significance was calculated using
Student’s t-test. All experiments were repeated three times and scored blind to
injection cocktail.

Generation of constructs for mouse studies. The cDNA sequences from human
RHEB-WT (NM_005614), and the variants found in the patient cohort (RHEBp.
P37L and RHEBp.S68P) were synthesized by GeneCust, and cloned into our dual
promoter expression vector. The dual promoter expression vector was generated
from the pCMV-tdTomato vector (Clonetech), in which the CMV promoter was
replaced with a CAGG promoter followed by a multiple cloning site (MCS) and
transcription terminator sequence. To assure expression of the tdTOMATO
independent from the gene of interest, a PGK promoter was inserted in front of
the tdTomato sequence (for a schematic overview of the expression vector see
Supplementary Fig. 3). For all the in vivo and in vitro experiments, the vector
without a gene inserted in the MCS was used as control (control vector).

Mice used for the in vitro and in vivo studies. For the neuronal cultures, FvB/
NHsD females were crossed with FvB/NHsD males (both ordered at 8–10 weeks
old from Envigo). For the in utero electroporation female FvB/NHsD (Envigo)
were crossed with male C57Bl6/J (ordered at 8–10 weeks old from Charles River).
All mice were kept group-housed in IVC cages (Sealsafe 1145T, Tecniplast) with
bedding material (Lignocel BK 8/15 from Rettenmayer) on a 12/12 h light/dark
cycle in 21 °C (±1 °C), humidity at 40–70% and with food pellets (801727CRM(P)
from Special Dietary Service) and water available ad libitum. All animal experi-
ments were approved by the Erasmus MC institutional Animal Care and Ethical
Committee, in accordance with European and Institutional Animal Care and Use
Committee guidelines.

In vitro modeling in mouse primary hippocampal neurons. Primary hippo-
campal neuronal cultures were prepared from FvB/NHsD wild-type mice accord-
ing to the procedure described in Goslin and Banker68. Briefly, hippocampi
were isolated from brains of E16.5 embryos and collected altogether in 10 ml of
neurobasal medium (NB, Gibco) on ice. After two washes with NB, the samples
were incubated in pre-warmed trypsin/EDTA solution (Invitrogen) at 37 °C for
20 min. After two washes in pre-warmed NB, the cells were resuspended in
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1.5 ml NB medium supplemented with 2% B27, 1% penicillin/streptomycin and 1%
glutamax (Invitrogen), and dissociated using a 5 ml pipette. Following dissociation,
neurons were plated on poly-D-lysine (25 mg/ml, Sigma) coated 15 mm glass
coverslips at a density of 3×104 or 5×104 cells per coverslip for the axon length
measurements and 1×106 cells per coverslip for all the other experiments. The
plates were stored at 37 °C/5% CO2 until the day of transfection. Neurons were
transfected at 3 days in vitro (DIV3, DIV7, and DIV14) with the following
DNA constructs: control vector (1.8 µg per coverslip), RHEB-WT, RHEBp.P37L,
and RHEBp.S68P (all 2.5 µg per coverslip). Plasmids were transfected using
Lipofectamine 2000 according to the manufacturer’s instructions (Invitrogen). For
the rescue experiments, 20 nM Rapamycin (dissolved in 0.01% Ethanol) was
applied to the culture 1 day post transfection for 3 days. Neurons were fixed 4 days
(Rapamycin experiment) or 5 days (for soma size) post transfection with 4%
paraformaldehyde (PFA)/4% sucrose and incubated overnight at 4 °C with primary
antibodies in GDB buffer (0.2% BSA, 0.8 M NaCl, 0.5% Triton X-100, 30 mM
phosphate buffer, pH 7.4). The following primary antibodies were used: guinea-pig
anti MAP2 (1:500, catalogue number: 188004, Synaptic System) to stain for
dendrites, and rabbit anti-RHEB (1:100, catalogue number: 4935, Cell Signaling).
Donkey anti-guinea-pig-Alexa647- and donkey anti-rabbit-Alexa488-conjugated
were used as secondary antibodies (all 1:200, catalogue numbers: 706-605-148 and
711-545-152, respectively, Jackson ImmunoResearch). Slides were mounted using
mowiol-DABCO mounting medium. Confocal images were acquired using a
LSM700 confocal microscope (Zeiss). For the analysis of the neuronal transfec-
tions, at least ten distinct confocal images (×20 objective, 0.5 zoom, 1024 × 1024
pixels; neurons were identified by the red immunostaining signal) were taken from
each coverslip for each experiment. ImageJ software was used for the analysis of the
soma size, by drawing a line around the soma of the cell. For each coverslip, the
area of the transfected cells was normalized against the area of the non-transfected
cells (five cells per coverslips). These values were then normalized against the mean
value of the control (control vector).

In vivo modeling in mice. The in utero electroporation was performed as
described before69 Pregnant FvB/NHsD mice at E14.5 of gestation were used to
target the progenitor cells giving rise to pyramidal cells of the layer 2/370. The DNA
construct (1.5–3 µg/µl) was diluted in fast green (0.05%) and injected in the lateral
ventricle of the embryos while still in utero, using a glass pipette controlled by a
Picospritzer ® III device. To ensure proper electroporation of the injected DNA
constructs (1–2 µl) into the progenitor cells, five electrical square pulses of 45 V
with a duration of 50 ms per pulse and 150 ms inter-pulse interval were delivered
using tweezer-type electrodes connected to a pulse generator (ECM 830, BTX
Harvard Appartus). The positive pole was targeting the developing somatosensory
cortex. The following plasmids were injected: control vector, RHEB-WT, RHEBp.
P37L and RHEBp.S68P. After birth, pups were sacrificed at P0 or P7 for
histochemical processing (to investigate neuronal migration) or used to monitor
seizure development.

For the migration analysis, confocal images (×10 objective, 0.5 zoom,
1024 × 1024 pixels) were taken from 2 to 3 non-consecutive sections from 2 and 3
electroporated animals per control and RHEB-containing plasmids, respectively.
Images were rotated to correctly position the cortical layers, and the number of
cells in different layers were counted using ImageJ using the analyze particles
plugin. The results were exported to a spreadsheet for further analysis. Cortical
areas from the pia to the ventricle were divided in 10 equal-sized bins and the
percentage of tdTOMATO-positive cells per bin was calculated.

For immunofluorescence, mice were deeply anesthetized with an overdose of
Nembutal and transcardially perfused with 4% PFA. Brains were extracted and
post-fixed in 4% PFA. Brains were then embedded in gelatin and cryoprotected in
30% sucrose in 0.1 M phosphate buffer (PB), frozen on dry ice, and sectioned using
a freezing microtome (40/50 μm thick). Free-floating coronal sections were washed
in 0.1 M PB and a few selected sections were counterstained with 4′,6-diamidino-2-
phenylindole solution (DAPI, 1:10,000, Invitrogen) before being mounted with
mowiol® (Sigma-Aldrich) on glass. Overview images of the coronal sections were
acquired by tile scan imaging using a LSM700 confocal microscope (Zeiss) with a
×10 objective. Zoom-in images of the targeted area were taken using a ×20
objective. For seizure observations, mice obtained after in utero electroporation
were observed daily starting at P18. General behavior was observed by looking for
abnormal behaviors such as hyperactivity, the presence of stereotypical behaviors
and the presence of tonic–clonic seizures, either spontaneous or induced upon mild
handling. Weaned mice were video-monitored for 24 h per day in the Phenotyper
(Noldus), to assess seizure onset. Abnormal behaviors and onset of seizures were
scored and analysed for each mouse by an expert experimentalist who had been
blinded to the identity of samples (i.e., which plasmid had been transfected).

Statistical analysis used for the mouse studies. Statistical difference in soma
size between the RHEBWT and mutants was determined using one-way analysis of
variance (ANOVA) followed by Tukey’s post hoc test for multiple comparisons.
The effect of Rapamycin treatment on soma size was determined using two-way
analysis of variance (ANOVA) followed by Bonferroni’s post hoc test for multiple
comparisons. For the analysis of the in utero electroporation data, a two-way
ANOVA repeated measure was performed, followed by the Bonferroni’s multiple

comparisons test. For the analysis of epilepsy onset, the log-rank Mantel–Cox test
was used. The significance threshold was set at p< 0.05. Data are presented as
mean± standard error of the mean (SEM).

URLs of used databases. PubMed (https://www.ncbi.nlm.nih.gov/pubmed/?
term=)

EVS database (http://evs.gs.washington.edu/EVS/)
ExAC Browser (query for RHEB) (http://exac.broadinstitute.org/gene/
ENSG00000106615)
KEGG database (query for MTOR) (http://www.kegg.jp/kegg-bin/
highlight_pathway?scale=1.0&map=map04150&keyword=MTOR)
Ingenuity (http://www.ingenuity.com/)
Access to the summary statistics of ENIGMA2 can be requested via their
website: (http://enigma.ini.usc.edu/download-enigma-gwas-results/).

Data availability. Material requests for zebrafish experiments should be addressed
to N.K. (Nicholas.katsanis@duke.edu). Material requests for neuronal culture and
mouse studies should be addressed to G.M.v.W. (g.vanwoerden@erasmsumc.nl) or
Y.E. (y.elgersma@erasmusmc.nl). Material requests for gene-set analysis should be
addressed to M.Kl. (Marieke.klein@radboudumc.nl) or B.F. (Barbara.Franke@r-
adboudumc.nl). All other material requests should be addressed to M.R. (margot.
reijnders@radboudumc.nl) or H.B. (han.brunner@radboudumc.nl).
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