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Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory

syndrome coronavirus2 (SARS-CoV-2), has spread to more than 200

countries and regions, having a huge impact on human health, hygiene, and

economic activities. The epidemiological and clinical phenotypes of COVID-19

have increased since the onset of the epidemic era, and studies into its

pathogenic mechanisms have played an essential role in clinical treatment,

drug development, and prognosis prevention. This paper reviews the research

progress on the pathogenesis of the novel coronavirus (SARS-CoV-2), focusing

on the pathogenic characteristics, loci of action, and pathogenic mechanisms

leading to immune response malfunction of SARS-CoV-2, as well as

summarizing the pathological damage and pathological manifestations it

causes. This will update researchers on the latest SARS-CoV-2 research and

provide directions for future therapeutic drug development.
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1 Introduction

Since the end of December 2019, a global outbreak epidemic

has emerged in several countries as an acute respiratory infection

caused by a previously undiscovered strain of coronavirus (1).

On December 1, 2019, the first pneumonia of unknown origin

was identified in Wuhan, Hubei Province, and confirmed as a

new coronavirus on January 8, 2020 (2, 3). On 12 January 2020,

the World Health Organization (WHO) tentatively named this

virus as “2019 new coronavirus (2019-nCoV)”, and on 11

February, the International Committee on Classification of

Viruses officially called it “SARS -CoV-2”, and on the same

day WHO unified pneumonia caused by SARS-CoV-2 infection

as “Coronavirus disease 2019 (COVID-19)”. This pneumonia is

associated with a novel strain of RNA virus from the coronavirus

family. In terms of clinical manifestations, COVID-19 has a

lower morbidity and mortality rate than SAS and MERS. Still, it

spreads faster and more widely, and the number of infections

and deaths far exceeds those of the first two viruses (4), which

are highly infectious, have a long incubation period, and are

prone to mutation (5). COVID-19 can lead to severe acute

respiratory infections and multiple organ systems functional

impairment, with 15-30% of COVID-19 patients requiring

Intensive Care Unit (ICU) admission and organ function

support therapy, with an overall morbidity and mortality rate

of 4.3%-15% (6), with a morbidity and mortality rate of up to

61% within 28 days in critically ill patients.

Therefore, an in-depth exploration of the pathogenic

mechanism of COVID-19 is crucial in achieving an accurate

diagnosis, targeted therapy, vaccine development, and improved

prognosis. This review provides a detailed overview of the

pathogenic mechanism of the new coronavirus based on the

pathogenic characteristics of the virus, the process of invasion

into the human body, the dysregulation of the immune

response caused, and the pathological manifestations and

pathological damage of the organism, to provide clinical and

scientific assistance.
2 Pathogenic characteristics and loci
of action of SARS-CoV-2 virus

The main routes of transmission of SARS-CoV-2 are

currently considered to be respiratory droplets and close

contact (3), with the possibility of aerosol transmission (7) and

vertical transmission (8) also present. Data from a clinical study

of 1145 patients suggest that the severe course of COVID-19

may be closely related to its viral load during exposure (9).

Therefore, studying the pathogenic characteristics of SARS-

CoV-2 and its loci of action is essential to understanding the

pathogenic mechanisms of the virus.
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2.1 Pathogenetic characteristics of
SARS-CoV-2 virus

SARS-CoV-2 is a member of the coronaviridae family, order

Nestoroviridae, genus Pre-coronavirus, and is a spherical

enveloped virus with a diameter of approximately 120 nm (10).

Mature SARS-CoV-2 viral particles consist of a positive 5’-plus-

cap and 3’-polyadenylate single-stranded RNA with a genomic

sequence approximately 30,000 bases long, encoding the

structural proteins nucleocapsid phosphoprotein (N), membrane

glycoprotein (M), envelope (E), spines (S), and nonstructural

protein (nsp) (11). Among them, it is mainly the S glycoprotein

that mediates viral entry into target cells and the E and M proteins

responsible for viral transcription, translation, and assembly.

The S protein consists of S1 and S2 subunits. The S1 subunit

consists of the N-terminal structural domain (NTD) and the

receptor binding domain (RBD), which is responsible for the

direct binding of Angiotensin-converting enzyme 2 (ACE2)

(12); the S2 subunit mediates the fusion of the viral envelope

with the host cell membrane (13). It was shown that RBD in the

SARS-CoV-2 spike-in (S) protein undergoes a specific point

mutation, i.e., the asparagine is replaced by tyrosine at position

501 (N501Y) (14), and thus the N501Y S-protein binds more

readily to the ACE2 receptor than the original S-protein (15).

The S-protein was found to have four amino acid residues

inserted at the junction of subunits S1 and S2 (PRRA) (16).

This amino acid sequence can be efficiently cleaved by furin and

other proteases (17), which reduce the stability of the SARS-

CoV-2 S-protein, enhance viral membrane fusion and infection,

and promote viral replication (18).

In addition, it has been proposed that S proteins can circulate

within the Golgi and promote S protein cleavage and

glycosylation, thereby infecting the plasma membrane of cells

(19). Another study found that the S1/S2 cleavage site has

remained constant during the human evolution of SARS-CoV-2,

suggesting that it provides an adaptive advantage for the virus

(14). The antiviral activity of chloroquine and its analogues are

well established in the fight against SARS-CoV-2 infection (20),

and clinical trials have shown that the use of some chloroquine

derivatives can achieve viral reduction and improve the efficacy of

the infection (21, 22). And laboratory studies have shown that its

antiviral effects are attributed to multiple mechanisms, including

fighting coronavirus infection by blocking the glycosylation of

host receptors (23, 24), inhibiting the processing of S proteins, and

suppressing the inflammatory response (25).
2.2 Action sites of SARS-CoV-2 virus

ACE2 is a metallocarboxypeptidase of the renin-

angiotensin-aldosterone system (RAS) (26). The pathway of

SARS-CoV-2 into host epithelial cells was mainly focused on
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ACE2 (27). Accordingly, it has been found that tetracycline and

doxycycline can act as inhibitors of ACE2-peg binding (28).

ACE2 is expressed in over 150 different cell types in all major

human tissues and organs, and its expression levels do not vary

by age, sex, or race. Immunofluorescence data showed (29) that

ACE2 is expressed at higher levels in epithelial cells of the upper

respiratory tract, lung, heart, kidney, testis (30), intestine, liver,

pancreas, stomach, duodenum, and rectum (31), and the higher

levels of ACE2 in the cilia of the nose compared to the bronchi

(32) also suggest that the nose may be the initial site of viral

invasion and infection.

ACE2 decreases angiotensin II (Ang II) and is a stimulator of

Nicotinamide Adenine Dinucleotide Phosphate (NADPH)

oxidase (33). It is a key molecule in the body’s resistance to

inflammation and oxidative damage in tissues triggered by

SARS-CoV-2. After SARS-CoV-2 binds to the ACE2 receptor

and begins to enter the cell and fuses with the viral particle-

membrane, ACE2 expression will be downregulated (34), and

the affinity of angiotensin II is significantly increased during

infection, leading to the susceptibility of the virus in binding to

ACE2 (35). It was shown that the affinity of SARS-CoV-2 to

ACE2 receptor is about 10-20-fold higher than SARS-CoV (36).

Therefore, based on the persistent downregulation of ACE2

expression, the overproduction of angiotensin II and activation

of NADPH oxidase leads to enhanced oxidative stress

mechanisms along with the release of inflammatory molecules

(37), leading to the rapid progression of the disease.

In addition, cell surface phospholipid proteoglycans

(HSPGs) interact with the S protein of SARS-CoV-2 (18),
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triggering a conformational change in the S protein RBD, and

acting as a cofactor during viral endocytosis (33), which

facilitates viral binding to its specific receptor (38). Basic

studies suggest that HSPGs are modified by 3-OST isoform 3

but not 3-OST isoform 5, increasing S protein-mediated fusion

between SARS-CoV-2 and cells, suggesting a role in virus

transmission (39). In particular, HSPGs have been identified as

adhesion receptors for SARS-CoV-2 infection in isolated human

lung tissue explants from human lung epithelial cell nuclei in

vitro (40).

RNA sequencing also revealed that immune cells, although

not expressing ACE2, are transmembrane proteins of

immunoglobulin cluster of differentiation (CD) 147, providing a

pathway for the virus to enter and attack immune cells (41–43). It

should be noted that one study using single-cell sequencing found

that few cells in the placenta express both ACE2 and

transmembrane serine proteases (TMPRSS2), thus concluding

that ACE2 is not an effective route of transmission from mother

to child (44). (Figure 1) Also, in combination with the replication

process of new coronaviruses, the nucleoside analogue favipiravir

(T-705) was found to effectively inhibit the RNA polymerase

activity of RNA viruses (45). Remdesivir targets RNA-dependent

RNA polymerase (RdRp) and is a nucleotide analogue.

Remdesivir received emergency use authorization from the US

Food and Drug Administration (FDA) and was approved as the

first drug to treat patients with COVID-19 (46). The

pharmacological mechanism of the drug is to interfere with the

polymerization of viral RNA (47). As a broad-spectrum antiviral

drug, it has significant antiviral activity against several RNA
FIGURE 1

Schematic diagram showing SARS-CoV-2 injecting RNA into the host cell by binding to the ACE2 receptor on normal cells via the S protein. The
injected RNA uses the nutrients in the host cell to replicate itself and make the structural proteins it needs. The structural proteins combine with
the RNA to form a new virus.
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viruses such as Ebola virus, coronavirus (48), hepatitis C virus, and

human immunodeficiency virus (HIV) (49). Experimental studies

have shown that the drug significantly inhibited SARS-CoV-2

virus infection in Vero E6 cells (50), while reducing viral load and

pulmonary pathological changes in animal models (51), and had

stronger antiviral activity in combination with interferon (52).

Lopinavir/ritonavir (LPV/r) are two anti-HIV protein hydrolase

inhibitor (PI) drugs that act as antiviral retroviral with a

pharmacological mechanism that prevents the excision of the

Gag-Poll polyprotein (53), leading to the immaturity of the virus

that replicates and proliferates in the organism. Clonidine is also

thought to inhibit RNA virus replication by entering the infected

cells during viral RNA (54).

At the same time, studies have pointed out that papain-like

protease (PLpro) and main protease (Mpro/3CLpro) are two

crucial proteases produced by the new coronavirus. Therefore,

inhibition of PLPro and Mpro/3CLpro can effectively inhibit

virus infection and replication, and is a vital target for antiviral

drug development (55). The researchers screened and evaluated

the applicability of a batch of FDA-approved clinical drugs

targeting PLpro to SARS-CoV-2 PLpro, and found that a

naphthalene-based noncovalent inhibitor GRL0617 works by

occupying and blocking the PLpro substrate-binding pockets S3

and S4 exerted a potent inhibitory activity. In addition, studies

have also identified inhibitors against novel coronavirus Mpro,

including boceprevir, GC-376, and calpain inhibitors II and XII,

which are often mimetic peptides that mimic natural peptide

substrates and covalently bind to residue C145 in Mpro to exert

inhibitory effects. (56). And a study selected 47 from the list of

3987 FDA-approved drugs for in vitro 3CLpro enzyme inhibitor

screening test, and observed that boceprevir, ombitasvir,

paritaprevir, tipranavir, and micafungin showed partial

inhibition, and ivermectin blocked. The 3CLpro activity of

SARS-CoV-2 was more than 85%, indicating that it has the

potential to inhibit the replication of SARS-CoV-2. In addition,

PF-07321332, developed by Pfizer, is the first oral coronavirus-

specific major protease inhibitor approved by the U.S. FDA. The

FDA has approved emergency treatment for Paxlovid (PF-

07321332 and ritonavir). As a protease inhibitor, PF-07321332

binds to viral enzymes and can block the activity of proteases

required for the coronavirus to replicate itself. Ritonavir, an

inhibitor of a key liver enzyme called CYP3A, also increased and

maintained plasma concentrations of PF-07321332 when given

in combination (57).
2.3 Mediating factors of SARS-CoV-2
virus invasion into cells

The consensus achieved by the current study is that the entry

and spread of the SARS-CoV-2 virus depend on the host ACE2

receptor and the serine protease TMPRSS2, with possible

involvement of B/L7 and furin proteases (27).
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Experimental studies have shown that the S protein of the

SARS-CoV-2 virus binds to the receptor, acid-dependent

proteolytic cleavage (58), and is assisted by the S2 subunit to

mediate the fusion of the viral membrane with the cell

membrane (59), leading to cytoplasmic lysis. This process is

mainly mediated by certain host proteases, including furin

protease, TMPRSS2, histone B, histone L, factor Xa, and

elastase (60). Bertram et al. also suggested that the coronavirus

protease system is transmembrane anchored, which is essential

for invasion and infection (61). As previously described, after

membrane fusion and protease mediation, the S1/S2 site of the S

protein will insert four amino acids, providing a motif that can

be recognized and cleaved by the furin protease. The virus is

then cleaved by TMPRSS2, and the viral protease system forms

an unlocking and fusion catalytic structure with the type II

transmembrane serine protease (TTSP) family at the cell surface

and mediates rapid entry into the cell and completion of ligation

within the cell (61, 62), triggering irreversible and extensive

conformational changes that mediate membrane fusion (63, 64).

In addition to the associated proteases, it has been proposed

that coronavirus infection increases circulating exosomes

containing lung-associated autoantigens as well as viral

antigens and 20S proteasomes (65). It has also been shown

that SARS-CoV-2 drives host cell molecular pathways to activate

cellular kinases, such as casein kinase II (CK2) and p38 mitogen-

activated protein kinase (MAPK), and growth factor receptor

(GFR) signaling to hijack the host protein production machinery

(66) for its replication, transcription, and translation purposes.
3 Abnormalities in the body’s
immune response

When normal, the body’s immune system can limit processes

such as the entry of viruses into host cells and their replication

within the host cells. The immune system has two main defense

mechanisms: innate immunity and adaptive immunity. In contrast,

after infection with the SARS-CoV-2 virus, the pathogen-

associated molecular patterns (PAMPs) of the virus trigger

specific combinations of pattern recognition receptors (PRRs)

and adapter molecules, leading to an immune response adapted

to the pathogen (67), resulting in abnormal immune response

function and causing the associated pathological processes.
3.1 Inherent immune
response dysregulation

Innate immunity is the first line of defense against infection.

The main cells that perform innate immunity are mast cells, NK

(natural killer cells), NKT (natural killer T cells), NHC (natural

helper cells), granulocytes, macrophages, and monocytes. The

organism detects coronaviruses through PRRs, which trigger an
frontiersin.org
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innate immune response that effectively limits viral replication.

And it helps to control or eliminate viral infections by releasing

interferons (IFNs), while activating interferon-stimulated genes

(ISGs) to exert direct antiviral effects and recruit antiviral

immune effector cells to clear the virus (Table 1).

3.1.1 Excessive inflammatory response
Studies have shown that reduced numbers and functional

failure of NK cells occur during SARS-CoV-2 infection (68, 69),

and the mechanism may be closely related to the generation of

reactive oxygen species (ROS) during the early stages of the

immune response. In addition, Nox2 may be a key factor in

the infection and development of COVID-19. It was found that

the SARS-CoV-2 virus may suppress the immune response and

lead to infection by activating Nox2 (NADPH oxidase 2,

nicotinamide adenine dinucleotide phosphate hydrogen

oxidase 2) (70). Clinical observations likewise revealed higher

levels of Nox2 activation in critically ill patients with COVID-

19 (37).

The main PRRs-against viruses are currently considered to

be Toll-like receptors (TLRs) and RIG-I-like receptors (RLRRs),

and NOD-like receptors (NLRX) (71). Among them, PRRs are

present on the cytoplasmic and endosomal membranes of
Frontiers in Immunology 05
immune cells, and their function is to recognize foreign

pathogens on the cell surface or inside. The binding of PAMPs

to PRRs induces innate immune signaling (17), successively

involving adaptor proteins (MYD88, TRIF, RGL-1, and MAD-

5), cell membrane protein kinases (IRKs, MAPKs, and ERKs),

and finally the production of transcription factors at the cell

membrane (e.g., nuclear factor kappa-B, IFRs, NF-kB, and IFRs)
(72). These transcription factors migrate to the nucleus and

induce the expression of encoded cytokines, IFN-I, IFN-III, pro-

inflammatory cytokines, and chemokines (73), which leads to a

massive accumulation of neutrophils (74). Although neutrophils

have an antiviral function, their secretions, cytokines, and

chemokines promote the accumulation of immune cells and

further produce an excessive inflammatory response

(75) (Figure 2).

Glucocorticoids should be used for a short period of time, as

appropriate, in patients with progressively worsening

oxygenation indices, rapidly developing imaging, and over-

activated inflammatory responses (76), and systemic

corticosteroid use is effective in reducing mortality in critically

ill patients with COVID-19 (77). The World Health

Organization recommends using dexamethasone 6 mg daily

for up to 10 days in patients with severe or critical COVID-19
Table 1 Summary of research progress on COVID-19 innate immune response dysregulation.

Pathological
process

Mechanism Presenters Time

Excessive
inflammatory
response

ROS is associated with reduced numbers and functional failure of NK cells. Osman;
Zheng

2020

SARS-CoV-2 suppresses immune response and causes infection through activation of Nox2. Violi 2020

Binding of PAMPs to PRRs induces intrinsic immune signaling. Higashikuni 2021

Immune signaling sequentially involves adaptor proteins (MYD88, TRIF, RGL-1 and MAD-5), cell membrane protein
kinases (IRKs, MAPKs and ERKs) and finally transcription factors (e.g. nuclear factor kappa-B, IFRs, NF-kB and IFRs)
are produced at the cell membrane.

Vabret 2020

Transcription factors migrate to the nucleus and induce the expression of encoded cytokines, IFN-I, IFN-III, pro-
inflammatory cytokines and chemokines.

de Wit 2016

CRAC channel inhibitors block the release of pro-inflammatory cytokines and protect the integrity of endothelial cells. Bruen 2022

Evasion of natural
immune system
recognition

Nsp16 and nsp10 induce the synthesis of viral mRNAs that mimic host cell mRNAs, thereby protecting the virus from
the host intrinsic immune response.

Viswanathan 2020

SARS-CoV-2 nsp1 causes mRNA translation shutdown in host cells and blocks RIG-I and ISG. Higashikuni 2021

SARS-CoV-2 inhibits interferon-induced and blocked IFN signaling and leads to decreased expression levels of toll-like
receptor 7, TLR8, TLR2 and TLR4 receptors that recognize SARS-CoV-2 viral RNA, producing immune escape.

V'Kovski 2021

Interferon response
dysregulation

The immune evasion mechanism of SARS-CoV-2 is also associated with the inhibition of IFN production and IFN
signaling by viral proteins.

Hadjadj;
Jiang

2020

The protease of SARS-CoV-2 can directly cleave IRF3, resulting in diminished IFN production. Moustaqil 2021

IRF7 and IRF9 are upregulated in SARS-CoV-2 infection and severe viral load may overwhelm the IFN response and
determine the outcome of the infection.

Hasan 2021

ORF-6 acts as an antagonist of type I interferon promoting viral escape from the host intrinsic immune system. Fiorino 2021

Viral proteins or nucleic acids that trigger PRRs induce b-interferon TIR structural domain bridging proteins (TRIFs)
and IRFs via TIR domain-containing junctions, thereby activating the interferon response.

Prompetchara 2020

SARS-CoV-2 viral protein's interference with interfering with the production of IFN leads to or blocks the downstream
signaling pathway following the binding of IFN to ISGs.

Bastard;
Zhang

2020
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(78). Calcium-release-activated calcium (CRAC) channel

inhibitors block the release of pro-inflammatory cytokines,

protect endothelial integrity, and may be effective in treating

patients with severe COVID-19 pneumonia (79).

3.1.2 Evasion of natural immune
system recognition

SARS-CoV-2 viruses possess ways to escape the natural

immune system, such as modifying their own viral mRNAs,

inducing mRNA translation abnormalities in host cells, and

blocking interferons. It was found that nsp16 and nsp10 induce

the synthesis of viral mRNAs that mimic host cell mRNAs,

thereby protecting the virus from the host’s innate immune

response (80). The spike protein of SARS-CoV-2 facilitates

invasion of host cells and evades detection by host immune

cells. It was found that the nsp1 of SARS-CoV-2 causes mRNA

translation shutdown in host cells and blocks Retinoic acid-

inducible gene I (RIG-I) and Immune Serum Globulin (ISG), key

mediators of the innate immune response against viral infection

(17). Furthermore, SARS-CoV-2 will inhibit interferon-induced

and blocked IFN signaling and lead to decreased expression

levels of toll-like receptor 7, TLR8, TLR2, and TLR4 receptors

that recognize SARS-CoV-2 viral RNA, which will lead to

immune escape as SARS-CoV-2 virus is not recognized by the

host’s immune system (81).
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3.1.3 Interferon response dysregulation
IFNs are the first line of defense against viruses. It includes a

series of antiviral IFN cytokines, classified into types I, II, and III

according to their unique molecular structures, which trigger the

expression of ISGs. ISGs exert various antiviral and other

immunomodulatory functions by directly inhibiting viral

replication (82), transcription, and translation through

multiple mechanisms.

It is important to note that viruses (especially those infecting

the lung) develop strategies to evade PRR detection and thus

alter the host IFN response; for example, some viral proteins can

inhibit PRRs in host cells (83). It was found that the immune

evasion mechanism of SARS-CoV-2, in addition to the

previously described, may also be related to the inhibition of

IFN production and IFN signaling by viral proteins (84, 85).

Experimental observations revealed that interferon regulatory

factor (IRF) mediated signaling was not activated (86),

suggesting that dysregulation of interferon response occurs

during SARS-CoV-2 virus infection.

Studies suggest that although the organism produces ISGs,

transcriptional processes regulated by the interferon regulators

IRF3 or IRF7 are apparently absent in SARS-CoV-2 infection.

And experiments have shown that the protease of SARS-CoV-2

can directly cleave IRF3 and lead to an attenuated production of

IFN (87). Other experiments have shown that IRF7 and IRF9 are
FIGURE 2

Schematic diagram showing the process by which the new coronavirus enters the human body and triggers an inflammatory response. ACE2
and TMPRSS2 play a decisive role in neo-coronavirus invasion. The major PRRs against viruses are present on the cytoplasmic and endosomal
membranes of immune cells and recognize foreign viruses. After a series of processes, they finally produce transcription factors NF-kB and IFRs
on the cell membrane. Next, they migrate to the nucleus and induce the expression of encoded cytokines and IFN-I and IFN-III, pro-
inflammatory cytokines, and chemokines, which in turn accumulate large numbers of neutrophils. The secretion of neutrophils, cytokines, and
chemokines promotes further accumulation of immune cells, producing an excessive inflammatory response or further triggering the cytokine
storm mentioned below.
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upregulated in SARS-CoV-2 infection and that severe viral load

may overwhelm the IFN response and determine the outcome of

the infection (86), manifesting as a dysregulated IFN response.

Studies suggest that Open reading frame 6 (ORF-6) acts as an

antagonist of type I interferon, promoting viral escape from the

host innate immune system (11).

It was found that viral proteins or nucleic acids that trigger

PRRs induce b-interferon TIR structural domain bridging

proteins (TRIFs) and IRFs through TIR structural domain-

containing junctions, thereby activating the interferon

response (88). And triggering PRRs and interferon type I

pathway leads to a further oxidative stress response.

Meanwhile, the SARS-CoV-2 viral protein has an inhibitory

effect on IFN-I-mediated antiviral immune responses. Its

interference with interfering with the production of IFN leads

to or blocks the downstream signaling pathway following the

binding of IFN to ISGs (89, 90), thus antagonizing the innate

immune response.
3.2 Adaptive immune response
dysregulation

When the organism exerts a normal adaptive immune

response, the SARS-CoV-2 viral antigen is recognized,

processed, and presented by antigen-presenting cells (APCs),

thereby activating cellular and humoral immunity. This includes

the activation of CD4+ and CD8+ T cell differentiation. CD4+ T

cells are activated and differentiate into Th1 and Th2 effector

cells and other subpopulations (including Tfh cells, etc.) that

recruit immune cells by secreting cytokines (including MIP-1s,

INF g, etc.) and chemokines, CD8+ T cells produce substances
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such as Perforin, CD107a, and Granzyme B, while B cell

differentiation and antibody production are stimulated, which

together exert adaptive immunity to destroy the virus

(58) (Table 2).

3.2.1 Dysregulated cellular immune response
Experimental studies have shown that CD4+ T cells are

significantly less responsive to various viral proteins such as S,

N, and M proteins in SARS-CoV-2 infection (91). Clinical data

showed a progressive decrease in peripheral blood CD4+ T and

CD8+ T cells during SARS-CoV-2 infection (92). In contrast, a

significant lymphocyte decrease is an important immunological

marker of impending severe COVID-19 (93). Severely ill

patients exhibit macrophage overreaction (also known as

macrophage activation syndrome MAS) and lymphocytopenia

in effective lymphocytes, including neutrophils, CD4+ T cells,

and NK cells (94–96).

It was found that under normal conditions, IFN-g induces

the differentiation of Th0 cells into Th1 cells. In contrast, during

SARS-CoV-2 infection, lower levels of IFN-g production reduce

Th1 production, leading to a further attenuation of the antiviral

immune response of CD4+ T cells (97). In addition, Th2 cells

normally produce IL4, IL-6, Il-8, IL-10, and IL-13, which

suppress inflammatory responses, promote antibody responses,

and inhibit Th1 cell-induced antiviral functions (98).

In COVID-19 patients, TNF-a and IFN-g expression is

reduced in CD4+ T cells (99); high levels of failure markers are

expressed in CD8+ T cells (100); and programmed cell death

protein-1 (PD-1) and T cell immunoglobulin structural domain

and mucin structural domain-3 (TIM-3) expression are increased

(101). T cells from patients with severe COVID-19 showed high

levels of apoptosis and expression of the death receptor FAS (102),
TABLE 2 Summary of research progress on COVID-19 adaptive immune response dysregulation.

Pathological
process

Mechanism Presenters Time

Dysregulated cellular
immune response

CD4+ T cells showed significantly reduced responses to various viral proteins such as S, N and M proteins. Grifoni 2020

Severely ill patients exhibit macrophage overreaction (also known as macrophage activation syndrome
MAS) and lymphocytopenia in effective lymphocytes, including neutrophils, CD4+ T cells, CD8+ T cells
and NK cells

Giamarellos-Bourboulis;
Schulte-Schrepping; Silvin;
Chen

2020

Lower levels of IFN-g production reduce Th1 production, leading to a further attenuation of the antiviral
immune response of CD4+ T cells.

Han 2021

Th2 cells normally produce IL4, IL-6, Il-8, IL-10 and IL-13, which suppress inflammatory responses and
promote antibody responses and inhibit Th1 cell-induced antiviral functions.

Mahlangu 2020

T-cell lymphopenia may be caused by pro-inflammatory cytokines and activation-induced cell death. Bellesi; Zheng 2020

Dysregulation of
humoral immune
response

Helper T cells activate the differentiation of B lymphocytes in the germinal centers of lymph nodes and
other lymphoid tissues and secrete pathogen-specific antibodies.

Kumar 2021

Measurement of serological IgM and IgG titers and detection of SARS-CoV-2 NP antigen by fluorescent
immunochromatography showed its high specificity and relatively high sensitivity in the early stages of
infection.

Devarajan 2021

Stalled or delayed synthesis of IgG and IgM antibodies in patients with severe COVID-19 Sun; Wang 2020
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suggesting severely impaired T-cell function. It was found that in

addition to the reduced number of T cells, the expression levels of

T cell receptor subunits, T cell surface molecules, and their

downstream signaling molecules were also severely reduced

(103). In addition, SARS-CoV-2 infection also resulted in

downregulation of B-cell histocompatibility complex MHC-II

expression (104), which severely impaired immune function.

It should be noted that since ACE2 is not expressed in T

cells, the impaired T cell response may not be due to the direct

toxic effects of SARS-CoV-2 (105). It has been suggested that T-

cell lymphopenia may be caused by pro-inflammatory cytokines

and activation-induced cell death (69, 102).

3.2.2 Dysregulation of humoral
immune response

After SARS-CoV-2 infection, cell-mediated immunity of T

cells comes into play, and cytotoxic T cells recognize an attack

and destroy cells containing this pathogen. Helper T cells

activate the differentiation of B lymphocytes in the germinal

centers of lymph nodes and other lymphoid tissues to secrete

pathogen-specific antibodies (71). Studies have shown that the

antibody profile against the SARS-CoV2 virus has a typical

pattern of IgM and IgG production. Measurement of

serological IgM and IgG titers and detecting SARS-CoV-2

nucleocaps id prote in (NP) ant igen by fluorescent

immunochromatography showed its high specificity and

relatively high sensitivity in the early stages of infection (58).

Dysregulated B-cell responses have been reported in

COVID-19. Analysis of circulating B cells has shown

polyclonal expansion of plasma cells and reduced memory B

cells in patients with severe COVID-19 compared to patients

with mild COVID-19 or healthy individuals (104, 106, 107), and

synthesis of IgG and IgM antibodies also appear to be stalled or

delayed (6, 108). Although studies have shown elevated anti-

SARS-CoV-2 antibodies in patients with severe COVID-19

(109), their specificity and affinity appear low (110).
4 Pathological manifestations of
the organism

SARS-CoV-2 viral infection causes disseminated

intravascular coagulation (DIC), septic shock (111), RAS

system activation, hemodynamic changes, and cellular damage

by interfering with the normal function of immune function and

triggering cytokine storms and bradykinin storms, which leads

to a series of pathological manifestations in the organism.
4.1 Cytokine storm

Cytokine storm, also known as cytokine release syndrome, is

a potentially fatal immune disease. It is characterized by the high
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activation of immune cells and the overproduction of large

amounts of inflammatory cytokines and chemical mediators

(112). It has been proposed that cytokine storm, the excessive

immune response that SARS-CoV-2 infection triggers in severe

cases of COVID-19 (113), is thought to be a major cause of

severe disease and death in COVID-19 patients (74). Cytokine

storms begin with strong activation of cytokine-secreting cells

(41), and COVID-19 cytokine storms are characterized by high

expression of IL-6 and TNF-a (114). The mechanism of which

may be related to SARS-CoV-2 induction of cell death and thus

histone release, which triggers the secretion of pro-inflammatory

molecules of the interleukin-1 (IL-1) family (115), producing

such IL-6, IP-10, MIP1ab (macrophage inflammatory protein-

1ab) and MCP1 (monocyte chemotactic protein-1), and a large

number of other pro-inflammatory cytokines and chemokines

(116). Among them, IL-6 is an important pleiotropic pro-

inflammatory mediator and a major driver of the cytokine

storm. And cytokine storm is closely associated with

macrophage activation syndrome (MAS). Excessive

proliferation of differentiated macrophages leads to

phagocytosis and hypercytosis (117, 118), which leads to

systemic inflammatory abnormalities.

In addition, CD4+ T lymphocytes rapidly differentiate into

pathogenic T helper (Th)1 cells that produce IL-6 and GM-CSF

(Granulocyte-macrophage Colony Stimulating Factor). GM-

CSF plays an important role in mediating the cytokine storm

(119). Subsequent induction of high levels of IL-6 and GM-CSF

secretion by CD14+, CD16+, and monocytes (120) exacerbates

the cytokine storm. Activated neutrophils can form neutrophil

extracellular traps (NETs) that are involved in the pathogenesis

of aseptic and nonsterile inflammation (121) and promote the

development and progression of inflammation. Uncontrolled

excessive inflammatory responses produce oxidative stress

(imbalance between oxidants and antioxidants). Activated

neutrophils and macrophages release pro-oxidant factors such

as TNF-a (tumor necrosis factor-a) and release reactive oxygen

species (ROS) (122–124), which in turn stimulate further

cytokine production by inflammatory cells, leading to an even

more intense inflammatory response (125).

In the face of the inflammatory storm generated by neo-

coronavirus, it was found that timely application or combination

of monoclonal antibodies can effectively reduce the rate of

deterioration and mortality of neo-coronavirus pneumonia,

which has broad clinical application prospects. As monoclonal

antibodies against interleukin 6 receptor (IL-6), among which

tocilizumab and satralizumab whose pharmacological

mechanism is mainly to specifically bind to IL-6 receptor and

inhibit its activation, thus inhibiting cytokine storm and

reducing mortality (126), clinical studies have also confirmed

that the application of this drug has significant efficacy in

improving the inflammatory response in patients with

COVID-19 (127). In addition, it has been shown that the

administration of levilimab in patients with SARS-CoV-2
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pneumonia in the absence of other signs of active infection, with

or without oxygen therapy, increases the rate of sustained

clinical improvement (128), that itolizumab significantly

reduces the severe consequences caused by cytokine release

syndrome (129), and that tocilizumab reduces the duration of

hospitalization (130), the progression to mechanical ventilation

(131) and the risk of transfer to the ICU (132). In addition,

studies have proposed binding neutralizing antibodies to the

surface of photothermal nanoparticles (NPs) to capture and

inactivate novel coronaviruses. The NPs consist of a

semiconductor polymer core and a biocompatible polyethylene

glycol surface modified with a high-affinity neutralizing

antibody. The multifunctional NP efficiently captures novel

coronavirus pseudoviruses and completely blocks virus

infection of host cells in vitro by surface-neutralizing

antibodies. In addition to the virus capture and blocking

functions, the NPs have a photothermal function to inactivate

the virus by generating heat upon irradiation (133). The

multifunctional nanoparticles also exhibit excellent biosafety in

vitro and in vivo, and show satisfactory pulmonary delivery in

mice. Most importantly, in vivo treatment with multifunctional

NPs in the presence of actual novel coronaviruses was achieved,

offering significantly improved therapeutic efficacy compared to

soluble neutralizing antibodies and demonstrating their great

potential for clinical novel coronavirus therapy. NPs are very

superior to neutralizing antibodies in the treatment of actual

novel coronavirus infections that occur in vivo. This versatile NP

provides a flexible platform that can be easily adapted to other

novel coronavirus antibodies and extended to new therapeutic

proteins, and thus it promises to provide broad protection

against the original novel coronavirus and its variants (134).
4.2 Coagulation disorders

Clinical observations have revealed alterations in

hematology associated with coagulation during COVID-19 (2,

135). In most severe cases, patients develop microvascular

dysfunction such as disseminated intravascular coagulation

(DIC) or infect ious shock (136). Thromboembolic

complications are one of the main causes of morbidity and

mortality in patients with COVID-19 (137).

The cause of thrombosis is an imbalance between

procoagulant and anticoagulant processes. Systemic

thromboembolism, including venous thromboembolism,

arterial thrombosis, and thrombotic microangiopathy, is a

unique and essential feature of COVID-19. In current studies,

the mechanisms of coagulation disorders may also be associated

with downregulation of ACE2 activity, endothelial dysfunction

(138), activation of von- Willebrand factor, activation of the

complement system, neutrophil extracellular traps (139),

oxidative stress injury, and high inflammatory state (140)

formation. These predisposes infected individuals to the
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activation of Virchow’s triad, leading to arterial and venous

thrombosis and vascular arrest anywhere in the body (141).

It has been studied that coagulation parameters, especially

D-dimer levels, predict mortality in 2019 coronavirus disease

and that patients with 2019 coronavirus disease have an

increased risk of arterial and venous thrombosis. It has been

suggested that anticoagulation (AC) is beneficial in these

patients. That prophylactic AC with enoxaparin and apixaban

is appropriate for treating hospitalized 2019 coronavirus disease

patients with D-dimer levels >1µg/mL (142).

4.2.1 Down-regulation of ACE2 activity
As mentioned previously, the primary site of action of the

SARS-CoV-2 virus is ACE2. And viral infection may lead to a

decrease in ACE2 activity, resulting in elevated angiotensin II

and decreased angiotensin 1-7. Angiotensin II rapidly generates

reactive oxygen species mediated by NADPH oxidase and causes

oxidative stress injury (143). Angiotensin 1-7 is now considered

to be an important anti-inflammatory and anti-thrombotic

peptide with inhibitory effects on platelet activation (144).

Therefore, these will lead to RAS dysregulation, oxidative

stress injury, and coagulation disorders.

4.2.2 Endothelial dysfunction
There is a strong correlation between endothelial

dysfunction and thrombosis (145). Experimental studies have

shown that endothelial dysfunction is a key factor in the release

of the procoagulant factor fVIII (146) to generate and activate

thrombus and trigger various coagulation cascades (147). This

process may be associated with the endothelial expression of

many prothrombotic factors and receptors. In addition,

overexpression of hemagglutinin-like oxidized low-density

lipoprotein receptor (LOX-1), cyclooxygenase (COX-2), and

vascular endothelial growth factor (VEGF) during infection

can also cause endothelial injury (148).

4.2.3 Activation of the von Willebrand factor
The underlying vascular hemophilic factor (vWF) plays a

key role in COVID-19-related coagulation (149). Following

endothelial injury, vWF present in the subendothelium is

released, further multimerized by disulfide bonds, and exposes

to the platelet-binding and collagen-binding domains (150).

vWF acts as an adherent molecular glue platelet together with

subendothelial collagen, activating platelet aggregation and

thrombosis (151).
4.2.4 Activation of the complement system
The complement system is capable of activating the

coagulation cascade through multiple mechanisms leading to

vascular thrombosis. The nucleocapsid (N) protein of SARS-

CoV-2 binds to mannose-binding lectin-associated serine

protease (MASP)-2, which is expressed on microvessels,
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leading to complement activation (121). In contrast,

complement factor C3 and MAC directly activate platelets and

induce platelet aggregation (152). Similarly, complement factor

C5a has been shown to stimulate the expression of fibrinogen

activator inhibitor 1, thereby promoting thrombosis (153).

4.2.5 Formation of neutrophil
extracellular traps

NETs, also known as extra-neutrophil traps, contain various

pro-thrombogenic molecules such as tissue factor, protein

disulfide isomerase, factor XII, vWF, and fibrinogen (154). In

addition, DNA released from extracellular NETs can directly

activate platelets and lead to thrombosis. Circulating histones

(major components of NETs) have also been found to activate

Toll-like receptors on platelets and promote thrombin

production (155).
4.3 Other pathological manifestations

Coronavirus replication can lead to lysosomal disruption,

mitochondrial damage, free radical damage, disruption of

membrane structure and function, destruction of mitochondria

and lysosomes, cellular autolysis, and triggering ion

concentration imbalance (73). Among them, reactive oxygen

species (ROS) and (reactive nitrogen species) RNS may be one of

the modification pathways of severe COVID-19 (156). It has

been demonstrated that the downregulation of ACE2 by

COVID-19 may affect the mitochondrial function of immune

cells, which in turn may reduce the immune function of the

host (157).

As mentioned earlier, ACE2 is an important locus for the

SARS-CoV-2 virus. And one of the roles of ACE2 is to inactivate

angiotensin II by converting it to angiotensin 1-7 through

proteolysis, which puts ACE2 in a critical position to act as a

negative regulator of the renin-angiotensin-aldosterone system

(RAAS) (158) and leads to RAAS system dysfunction.
5 Pathological damage to
the organism

Infection with SARS-CoV-2 will cause a range of

pathological injuries such as lymphopenia, and lung tissue

damage (159), such as acute respiratory distress syndrome

(ARDS) and respiratory failure, sepsis-induced cardiac injury

and arrhythmia (58), and multi-organ failure. Enhanced

granulocyte and monocyte-macrophage infiltration are

common in critically patients with COVID-19. Monocytes and

macrophages are involved in and exacerbate hypersensitivity

reactions (160), leading to organ damage.
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5.1 Lymphoid tissue damage

Studies have shown a direct relationship between apoptosis

rates and the pathogenicity and severity of COVID-19 (161).

COVID-19 attacks the lymphoid tissue of the body and induces

apoptosis in immune cells. During SARS-CoV-2 infection,

single-cell RNA sequencing showed enrichment of SARS-CoV-

2 RNA in the macrophage population of bronchoalveolar lavage

samples from patients phenomenon, suggesting that the virus

directly infects and attacks macrophages (162) and triggers

macrophage polarization toward a pro-inflammatory

phenotype (163).

Several mechanisms may exist for apoptosis, decreased

expression, and functional failure of immune cells. The

decrease in T-cell numbers was negatively correlated with IL-6

and TNF-a levels (164), suggesting that increased inflammatory

cytokines may promote T-cell failure and apoptosis. Moreover,

the IL-2 signaling pathway is inhibited, negatively regulating

CD8+ T cells (71) and inducing a decrease in lymphocytes.

Besides, some lymphoid organs are attacked by SARS-CoV-2,

which further leads to lymphocyte damage. Similarly, it has been

noted that SARS-CoV-2 ORF3a induces apoptosis through the

extrinsic apoptotic pathway. Caspase-8 activation/cleavage is a

hallmark of the extrinsic apoptotic pathway, and SARS-CoV-2

ORF3a induces caspase-8 activation/cleavage. This process can

induce epithelial apoptosis and inflammatory cytokine

processing in turn, which triggers necroptotic prolapse

pathway caspase-8-mediated apoptotic activation and

inflammatory response, which can induce downstream

immunopathogenesis in lung tissue (165).

Furthermore, elevated blood lactate levels in critically ill

patients with COVID-19 inhibit lymphocyte proliferation of

neutrophils with suppressive properties (e.g., granulocyte

myeloid-derived suppressor cells (G-MDSCs)) (166). They may

inhibit the expansion of CD4+ and CD8+ T lymphocytes (167).
5.2 Diffuse lung injury

Preliminary data suggest that pulmonary vascular injury and

partial loss of alveolar group function are key to developing

severe illness and death in patients with COVID-19 (168).

Clinical data analyzed that after infection with SARS-CoV-2,

most patients develop bilateral interstitial pneumonia with

histology showing alveolar wall edema, protein exudates, and

non-cellular focal reactive hyperplasia with vascular congestion

(169), which also leads to selective death of type II pneumocytes

(170). After type II pneumocyte injury, the inflammatory state

will be supported by macrophage pro-inflammation (M1),

cytokine release, and NF-kB support, further damaging

alveolar cells in a vicious cycle (171). Loss of lung surface
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active gas exchange and vascular abnormalities can lead to

progressive respiratory failure. Pneumonia caused by SARS-

CoV-2 leads to a rapid decrease in arterial pO2 levels

measured by transcutaneous saturation (136) and hypoxemia.

Some scholars have suggested that lung tissue damage may

be associated with the occurrence of NETs in large numbers of

neutrophils, which in turn release toxic enzymes such as elastase

(172), and secrete substances such as cationic histones. These, in

addition to having direct cytotoxic effects, may also enhance

infection of lung cells and thus aggravate the disease (173). In

addition, oxidized phospholipids in macrophages triggering

cytokine production via TLR4-TRIF-TRAF6 can further

aggravate lung inflammation (174).

It has been found that patients with ARDS and

extrapulmonary complications have significantly elevated rates

of circulating pro-inflammatory cytokines, chemokines, and

systemic inflammatory markers (175), suggesting that the

organism is in a state of intense inflammatory response. It has

been proposed that severe lung injury in COVID-19 patients is

thought to result from direct viral infection and immune

hyperactivation (114). (Figure 3)

One study reported that phototherapy using red and near-

infrared light reduced lung inflammation and pulmonary

fibrosis in mice by downregulating pro-inflammatory

cytokines, upregulating IL-10 secretion from fibroblasts and

lung cells, and reducing collagen deposition in the lung (176).

Since lung inflammation and pulmonary fibrosis are common

complications in critically ill patients with novel coronavirus
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infections, experiments have shown that 650 nm light-emitting

diode (LED) treatment may alleviate these life-threatening

problems. Compared to conventional laser excitation, 650 nm

LEDs have more desirable safety properties. Under its excitation,

multifunctional NPs can further inactivate the virus by assisting

the photothermal function. In addition, multifunctional

nanoparticles have favorable properties for pulmonary delivery

and retention, which can overcome the limitation of rapid

clearance of antibodies in the lung (177). The unique design of

multifunctional NPs not only enables antibody-mediated

neutralization to capture novel coronaviruses, but also

provides a strategy to mitigate the potential risk of antibody-

dependent enhancement (ADE) and new, more infectious novel

coronavirus variants by inactivating the virus through direct

heating. Together with efficient viral inactivation capabilities, the

superior therapeutic efficacy of multifunctional NPs could be

further enhanced. Future research will be conducted using site-

specific binding approaches, such as site-selective click

chemistry (178) that can increase surface antibody binding

efficiency, control antibody binding sites and orientation and

purify multifunctional nanoparticles to improve their

therapeutic efficacy further.
5.3 Multiple organ injury

According to studies, COVID-19 has been shown over time

to cause multi-system involvement of the cardiovascular system
FIGURE 3

Schematic diagram showing the pathogenic mechanism of diffuse lung injury caused by 2019-nCoV. SARS-CoV-2 binds to ACE2 receptors on
human alveolar epithelial cells via S proteins and enters the cells. NK cells, natural killer cells, macrophages, dendritic cells, monocytes, etc.,
release cytokines (e.g., IL-6, IL-7, IL-8, IL-17, etc.) and chemokines (e.g., CCL-2, CCL-3, CCL-5, etc.). CD8+ T cells secrete substances such as
Perforin, CD107a, and Granzyme B. CD4+ T cells are activated and differentiate into Th1, Th2 effector cells, and other subpopulations (including
Tfh cells, etc.), and also secrete cytokines (e.g., INFg) and chemokines to recruit Immune cells are also secreted (e.g., INFg) and chemokines are
recruited, resulting in a cytokine storm that causes diffuse lung injury.
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(2, 6, 179), the nervous system, the urinary system (2020), and

the hematological system in addition to the respiratory and

immune systems (139, 180). This is partly due to the widespread

expression of ACE2 as a SARS-CoV-2 receptor in tissues and

organs, and partly because SARS-CoV-2 causes a series of

systemic pathological manifestations, such as cytokine storm

and disorders of coagulation mechanisms (74, 181, 182).

In particular, neurological complications have become an

increasingly recognized cause of morbidity and mortality in

patients with COVID-19. The most common of these

neurological symptoms include cerebrovascular events (183),

encephalitis, Guillain-Barré syndrome, acute necrotizing

encephalopathy, hemophagocytic lymphoid tissue hyperplasia,

and acute ischemic cerebrovascular syndrome (184), as well as

neuropsychiatric symptoms such as dizziness, sleep

disturbances, cognitive deficits, delirium, hallucinations, and

depression. In addition, the chronic neurological aspects of

traumatic brain injury, post-stroke syndrome, long COVID-19,

intractable Lyme disease, and influenza encephalopathy have

close pathophysiological similarities, mainly involving positive

feedback loops for TNF maintenance and activation (185), and

cerebral venous sinus thrombosis (CVT) formation is also

associated with infection with SARS-CoV-2 virus (139).

In addition, right ventricular (RV) dysfunction is common

and correlates with poor prognosis in COVID-19 patients (186).

And one experiment found that ACE2 expressed by enterocytes

derived from human colon differentiation is sensitive to SARS-

CoV-2 infection, revealing that IFN-c is a strong driver of

epithelial cell differentiation towards the enterocyte lineage

and leads to high ACE2 expression and increased susceptibility

to SARS-CoV-2 (187).

In summary, the pathogenic mechanism of COVID-19 involves

the combined effects of characteristic structures, genes, enzymes,

and immune responses. The pathological manifestations and

damage caused are manifested as a process in which the lung is

the main object of damage and can cause extensive extrapulmonary

partial damage as the disease progresses.
6 Conclusions and challenges

Studies on the pathogenic characteristics of neocoronaviruses

and the sites of action have demonstrated that among all functional

proteins of neocoronaviruses, the S protein is the main antigenic

component that binds to host cell receptor proteins, promotes viral

invasion of host cells, and stimulates host immune responses. ACE2

is the main receptor infection target. Serine proteases, cysteine

proteases, lysosomal proteases, and other enzymes are the main

proteases that activate S proteins. Therefore, the S protein can be

selected as an important target for vaccine development. For clinical

treatment, ACE direct injection can increase the expression of

recombinant ACE2 protein and therapeutic vectors that deliver

an expression of high levels of ACE2, which is used to overcome
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virus-induced ACE2 deficiency by increasing the expression of

ACE2 protein. Alternatively, ACE inhibitors can balance ACE/

ACE2 function by inhibiting the activation of S proteins through

the inhibition of related enzyme activities (188). The study of viral

exosomes can also be further explored to explore the possible target

proteins and signaling molecules for exosomal-cell fusion, thus

obtaining new ways to inhibit virus transmission.

During the immune system dysregulation caused by a new

coronavirus, the virus modifies its RNA, generates an immune

escape mechanism, antagonizes the immune response, and

induces apoptosis of immune cells. This phenomenon suggests

that viruses change by adapting to new environments, and it is

speculated that a new epidemic involving coronaviruses may

break out in the future. COVID-19 is highly infectious and has a

long incubation period, resulting in a rampant epidemic with a

complex and variable disease course, which poses a great

challenge to the control of the epidemic. Up to now, no

targeted vaccine or effective drug has been developed.

According to the pathogenic mechanism of neo-coronavirus,

treatment is still mainly based on antiviral, anti-infective, and

symptomatic supportive therapy. Many drugs have been

introduced for the treatment of neo-coronavirus pneumonia; for

example tetracycline and doxycycline can act as inhibitors of ACE2

binding (28); niclosamide can inhibit RNA viruses during the post-

entry phase of viral RNA replication and also exhibits anti-

inflammatory activity (189); chloroquine reduces the production

of cytokines and damage-associated molecular patterns by

interfering with the innate immune pathways of multiple

immune cells, thus preventing experimental sepsis and infectious

shock (190, 191). In addition, combination therapies have been

introduced, such as early triple antiviral therapy with interferon

beta-1b, lopinavir-ritonavir, and ribavirin, which shortens the time

to viral shedding, reduces cytokine responses, relieves symptoms,

and promotes the discharge of patients with mild to moderate

COVID-19 (192). The discovery and study of the pathogenic

mechanism of neocoronaviruses can bring the course of action of

existing drugs into more explicit articulation at the cellular or

molecular level to align with clinical applied medicine with more

rationalized, standardized, institutionalized, and scientific research.

In addition, we believe that a large number of experiments and

research records can provide detailed statistics on drug efficacy,

efficiency, and the number of stable cases, which can also help

promote the organic combination of pathogenesis research and

clinical drug action process analysis. We also suggest that a series of

accurate and standardized target models may be constructed, and

the criteria for clinically effective associations may be derived

through model experiments. The establishment of model systems

may be expected to be a reference for subsequent studies on

preventing and treating other large epidemic diseases.

SASRS-CoV-2 is another highly lethal virus after SARS-CoV

and MERS-CoV. COVID-19 epidemic is a major public health

emergency in China and the world. The epidemic is spreading

globally and the situation has been dire so far. Further experimental,
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as well as clinical solutions to the currently unresolved and

controversial issues, are still needed. Understanding the

pathogenesis of neocoronaviruses and developing therapeutic

regimens based on the complex pathogenesis of the pathological

damage produced by neocoronaviruses is of great importance in

response to COVID-19 and possible future epidemic viruses.
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