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Purpose of review

The aims of this review is to suggest a new nomenclature and classification system for the diseases currently
categorized as neurodegeneration with brain iron accumulation (NBIA) or dystonia-parkinsonism, and to
discuss the mechanisms implicated in the pathogenesis of these diseases.

Recent findings

NBIA is a disease category encompassing syndromes with iron accumulation and prominent dystonia–
parkinsonism. However, as there are many diseases with similar clinical presentations but without iron
accumulation and/or known genetic cause, the current classification system and nomenclature remain
confusing. The pathogenetic mechanisms of these diseases and the causes of gross iron accumulation and
significant burden of neuroaxonal spheroids are also elusive. Recent genetic and functional studies have
identified surprising links between NBIA, Parkinson’s disease and lysosomal storage disorders (LSD) with the
common theme being a combined lysosomal–mitochondrial dysfunction. We hypothesize that mitochondria
and lysosomes form a functional continuum with a predominance of mitochondrial and lysosomal pathways in
NBIA and LSD, respectively, and with Parkinson’s disease representing an intermediate form of disease.

Summary

During the past 18 months, important advances have been made towards understanding the genetic and
pathological underpinnings of the pallidopyramidal syndromes with important implications for clinical
practice and future treatment developments.
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INTRODUCTION

The term pallidopyramidal degeneration (PPD)
was first introduced by Davison in 1954 [1] who
described a series of five patients presenting with the
triad of progressive parkinsonism, spasticity and
dystonia combined with pyramidal and pallidal
lesions and blue discoloration of the globus pallidus
following the initial report by Hunt in 1917 [2]
of a single case with juvenile parkinsonism and
eosinophilic spheroidal structures. Subsequently,
Hallervorden and Spatz in 1992 reported a family
with five affected sisters with brown discoloration of
the globus pallidus [3], a syndrome that was named
Hallervorden–Spatz syndrome.

During the past decade, the advent of genetic
technologies has allowed a more systematic delinea-
tion of the clinical presentations and genetic under-
pinnings of PPD starting with the identification
of the first mutations in PANK2 [4], a finding
that led to the renaming of this disease class to
neurodegeneration with brain iron accumulation
Health | Lippincott Williams & Wilk
(NBIA) [4,5]. Despite the fact that a molecular diag-
nosis and modern neuropathological analysis is not
possible for the initial cases described by Davison
due to the lack of preserved tissue and blood, it is
likely that the brown–blue discoloration of the
globus pallidus represents gross iron accumula-
tion and the eosinophilic formations neuroaxonal
spheroids, and that all belong to the modern disease
entity of NBIA (Fig. 1a).
ins www.co-neurology.com



KEY POINTS

� We suggest the use of the more general term
‘pallidopyramidal syndromes’ instead of NBIA when
referring to syndromes with prominent dystonia–
parkinsonism, and an alternative clinicopathological
classification system for these diseases better suited to
clinical practice.

� Neuroaxonal spheroids are a common feature in a
variety of seemingly unrelated neurodegenerative
disease including pallidopyramidal syndromes,
hereditary diffuse leukoencephalopathy with spheroids,
Wilson’s disease, pigmented orthochromatic
leukodystrophy and traumatic brain injury.

� Recent evidence indicates a combined mitochondrial–
lysosomal dysfunction in pallidopyramidal syndromes,
lysosomal storage diseases and Parkinson’s disease.

� Stochastic shifting between mitochondrial and
lysosomal pathways could be responsible for the
inconsistent and variable pathology seen in certain
genetic forms of Parkinson’s disease.

� Lysosomal dysfunction is probably responsible for
a-synuclein dyshomeostasis and accumulation in
diseases with Lewy bodies.

Movement disorders
In this review, we argue that the use of the term
NBIA is not ideal and suggest that the more general
term pallidopyramidal syndromes (PPS) conceived
by Davison would perhaps be more appropriate [6].
In this context, we also suggest a modified classi-
fication system better reflecting the clinical and
pathological phenotypes associated to PPS. Finally,
we outline possible disease mechanisms providing
a mechanistic basis for some of the features unique
to PPS that were first highlighted by Davison, and
suggest a model tying the pathogenesis of lysoso-
mal storage diseases (LSD), Parkinson’s disease,
and PPS.
CLASSIFICATION OF PALLIDOPYRAMIDAL
SYNDROMES

At present, according to the OMIM classification
system, a disease is classified as NBIA based on the
clinical features including Davison’s PPD triad
(Fig. 1b), and gross iron accumulation on T2�

MRI. Further classification in four subtypes depends
on the pattern of iron accumulation on MRI, and on
the underlying mutated genetic locus (Table 1).
Caveats of the current classification system

The current classification system is far from ideal for
two reasons:
382 www.co-neurology.com
(1)
 The use of iron accumulation as a classification
criterion is debatable. Iron accumulation is not a
consistent finding among diseases with other-
wise indistinguishable clinical presentations
[7–10] leading to the use of the oxymoron term
‘NBIA without brain iron’ [10]. Also, the import-
ance of iron for disease pathogenesis and pro-
gression remains elusive [10], especially as
this has been reported in various seemingly
unrelated disorders and even in healthy indi-
viduals [10–12].
(2)
 The use of a classification system based on
mutated genetic loci has two weaknesses. First,
as the complete genetic landscape of NBIA is
unknown, there are several ‘idiopathic’ syn-
dromes that are not included in the current
classification system (Fig. 1c). Second, patients
with mutations in the same gene often present
with substantially divergent clinical features
[8,13].
Taking into account these weaknesses, we
suggest that at present a clinical and pathological
classification system of NBIA would be more suitable
for clinical practice.
Pallidopyramidal syndromes: Proposed
clinical classification system

In our suggested classification system, a disease
must be characterized by Davison’s triad with or
without iron accumulation on MRI to be classified
as PPS. Further sub-classification is based on the age
at onset of symptoms as this feature can serve as a
starting point to prioritise genetic testing (Table 2A).
(1)
 Infantile PPS (iPPS): iPPS presents before the age
of 2 years and includes pantothenate kinase
associated neurodegeneration (PKAN) [4] and
hereditary dopamine transporter deficiency
syndrome (HDTDS) [14]. The symptoms at
presentation are unspecific with feeding diffi-
culties, irritability and/or developmental delay,
followed by the development of severe move-
ment disorders [15]. Optic nerve atrophy and
cognitive decline are seen in infantile neuro-
axonal dystrophy (INAD), whereas cognition is
maintained in HDTDS [14,16]. Disease pro-
gression is usually rapid resulting in death in
approximately 10 years [17].
(2)
 Juvenile PPS (jPPS): jPPS has an onset with spas-
ticity in FBXO7-associated neurodegenetion,
hereditary spastic paraplegia with thinning of
the corpus callosum (HSP-TCC) and Kufor
Rakeb syndrome (KRS) [18–22]. HSP-TCC can
be classified as PPS only in its more rare atypical
Volume 26 � Number 4 � August 2013
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FIGURE 1. (a) Landmarks in neurodegeneration with brain iron accumulation (NBIA) research. (b) Davison’s pallidopyramidal
degeneration (PPD) triad illustrated in the form of Venn diagrams. (c) Classification of pallidopyramidal syndromes (PPS)
according to age at onset and main signs and symptoms. Approximate frequency of each subtype is depicted by the size of
the circle (authors’ unpublished observations). Overlapping circles indicate overlapping clinical presentations.

Table 1. Current OMIM classification of neuro-
degeneration with brain iron accumulation
syndromes

NBIA Disease

NBIA 1 Pantothenate kinase-associated
neurodegeneration (PKAN)(PANK2)

NBIA 2A Infantile neuroaxonal dystrophy
(INAD)(PLA2G6)

NBIA 2B Atypical neuroaxonal dystrophy
(PLA2G6)

Karak syndrome (PLA2G6)

NBIA 3 Neuroferittinopathy (FTL)

ATP13A2

NBIA 4 C19orf12

Not classified yet WDR45, FA2H

The pallidopyramidal syndromes Kara et al.
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forms [19,23
&

]. The recently described b-pro-
peller protein-associated neurodegeneration
(BPAN) is a distinct form of jPPS as onset is at
early childhood with global developmental
delay accompanied by iron accumulation on
MRI preceding the development of prominent
pallidopyramidal signs [24

&&

,25,26
&&

,27
&

,28
&

].

(3)
 Adult PPS (aPPS): aPPS has an onset after the age

of 18–20 years and psychiatric features as a
presenting sign are common followed by the
development of rapidly progressive movement
disorders [8,15,29,30].
Often, a differential diagnosis has to be made
from phenocopies (atypical, usually milder presen-
tations of syndromes caused by mutations in differ-
ent genetic loci, reviewed in [9]). However, we do
not include these in the suggested classification
system as they probably do not fit in the nosological
entity originally described by Davison and we thus
www.co-neurology.com 383



Table 2A. Suggested PPS clinical classification system

Infantile PPS Juvenile PPS Adulthood PPS

PLA2G6-associated neurodegeneration
(PLAN) (INAD) (PLA2G6)

Typical PKAN (PANK2) Adulthood PLAN (PLA2G6)

Hereditary dopamine transporter
deficiency syndrome (SLC6A3)

Childhood PLAN (PLA2G6) Atypical PKAN (PANK2)

Typical Pantothenate kinase-associated
neurodegeneration (PKAN) (PANK2)

Fatty acid-associated neurodegeneration (FA2H) Neuroferritinopathy (FTL)

‘Idiopathic’ PPS Hypoprebetalipoproteinemia, acanthocytosis, retinitis
pigmentosa, and pallidal degeneration (HARP) (PANK2)

‘Idiopathic’ PPS

Mitochondrial membrane protein associated neurodegeneration
(MPAN) (C19orf12)

Karak syndrome (PLA2G6)

Kufor Rakeb syndrome (ATP13A2)

Atypical PKAN (PANK2)

FBXO7-associated neurodegeneration (FBXO7)

Hereditary Spastic Paraplegia with thinning of the corpus
callosum (HSP-TCC) (SPG11)

‘Idiopathic’ PPS

Beta-propeller protein-associated neurodegeneration (BPAN)
(WDR45)

Movement disorders
use the term PPS only in the context of NBIA syn-
dromes.
PATHOLOGY OF PALLIDOPYRAMIDAL
SYNDROMES: INSIGHTS INTO
PATHOGENETIC MECHANISMS AND
IMPLICATIONS FOR THE PROPOSED
PATHOLOGICAL CLASSIFICATION
SYSTEM

As only a small number of PPS cases have come
to pathology, our knowledge on the pathological
features of PPS is incomplete. However, there
are two main findings present in all PPS studied
(PKAN, PLA2G6-associated neurodegeneration –
PLAN, neuroferittinopathy, mitochondrial mem-
brane protein-associated neurodegeneration –
MPAN): iron-laden pigmentation and spheroids
with a predilection for pallidal involvement in
PKAN [31,32

&

] but a wider lesion distribution in
the remaining syndromes [33,34

&&

,35
&

]. a-Synuclein
accumulation [36,37

&&

] is an additional feature in a
subset of PPS (PLAN, MPAN) [33,34

&&

,35
&

]. Here, we
discuss the potential pathogenic processes under-
pinning these lesions and their implications for our
suggested pathological classification system.
a-Synuclein and pallidopyramidal syndromes

Although a-synuclein deposition consistently
occurs in various neurodegenerative diseases it is
384 www.co-neurology.com
still unclear whether this is the primary event
driving disease pathogenesis or is just an epipheno-
menon [38

&

].
Here, drawing mainly from studies on Parkin-

son’s disease, we argue that most recent evidence
implicates lysosomal dysfunction and/or lipid
abnormalities in the aggregation and spreading of
a-synuclein and then discuss the implications of
this observation for the pathogenesis of PPS.
Lewy body formation is probably caused by
lysosomal dysfunction

Lewy bodies have been reported in four disease
categories: Parkinson’s disease, PPS, LSD and
dementia with Lewy bodies. Interestingly, the com-
mon denominator in most of these situations with
a-synuclein accumulation appears to be lysosomal
dysfunction:
(1)
 Lewy body pathology [36] is an important
pathological feature of Parkinson’s disease
observed in most genetic forms, and in several
idiopathic cases [39]. However, Lewy bodies in
Parkinson’s disease consistently occur on two
occasions: when the primary genetic defect
lies in the glucocerebrosidase (GBA) or in the
a-synuclein SNCA gene [40

&&

].
(a) Numerous studies have demonstrated that

GBA is a lysosomal enzyme [41,42
&

,43], a
role which is further emphasized by the fact
Volume 26 � Number 4 � August 2013
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that homozygous mutations in GBA cause
Gaucher’s disease, a LSD. Heterozygous
mutations in GBA are the strongest risk
factor associated to the development of
Parkinson’s disease [44] and dementia with
Lewy bodies [45,46

&&

]. Interestingly, Lewy
bodies is the characteristic feature that
ties these seemingly unrelated disorders as
they are observed in nearly all cases that
come to pathology [40

&&

,47–50]. Recently, a
model based on experimental evidence was
suggested to explain this relation between
GBA and a-synuclein: glysocylceramide
(GlcCer), the substrate to GBA, can stabilize
a-synuclein oligomers which in turn inhibit
GBA function, cause GlcCer accumulation
and further attenuate a-synuclein aggrega-
tion [51,52].

(b) SNCA multiplications [53] and point
mutations [54

&&

,55
&&

,56,57
&&

–59
&&

] are
always related to Lewy-body pathology
[40

&&

]. In the former case, the causative link
is straightforward: increased transcription
results in increased expression levels. In
the second case, however, the exact mech-
anisms resulting in a-synuclein accumu-
lation are not obvious though it is
thought that lysosomal chaperon-mediated
autophagy (CMA) could be impaired
[60–62,63

&

,64
&

]. A similar effect is also
caused by a-synuclein accumulation [65]
probably resulting in a positive feedback
loop [66

&

].
-754
ATP13A2, a gene encoding a lysosomal pro-
(2)

tein [67] mutated in PPS [7,68], Parkinson’s
disease [45,69–71] and LSD [72

&&

,73,74], has
recently emerged as an important lysosomal
factor involved in a-synuclein homeostasis
and as a component of Lewy bodies [7,75

&&

,
76]. In addition, the lysosomal dysfunction
caused by ATP13A2 mutations has been shown
to directly cause a-synuclein accumulation
[77

&

,78
&&

].

(3)
 a-Synuclein homeostasis appears to be affected

in LSD which are often characterised by Lewy
bodies in neuropathology [79]. Neuronal ceroid
lipofuscinosis (NCL) type 10, which is one of
these LSD with Lewy bodies [80,81], is caused by
mutations in cathepsin D (CSTD) that mediates
a-synuclein degradation [82].
On the contrary, Lewy bodies occasionally occur
in some cases without a clear lysosomal involve-
ment. Parkinson’s disease and PPS caused by
mutations in mitochondrial proteins parkin [40

&&

,
83–88,89

&

,90
&

], PINK1 [40
&&

,91], PLA2G6 [35
&

] and
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C19orf12 [33,34
&&

], respectively, frequently have
Lewy-body pathology. Lewy bodies are also
described in most cases with LRRK2 mutations
[40

&&

], a protein whose precise function is currently
unknown. Finally, Lewy bodies are frequent in
‘sporadic’ Parkinson’s disease in similar distribution
and severity to GBA-associated disease [39]. The
significance of these observations and the relation
of a-synuclein accumulation to mitochondrial dys-
function are discussed later.

Interactions between a-synuclein and lipids
both within the lysosomal context [51] and the
cytoplasm [92

&&

,93] also seem to underlie a-synu-
clein homeostasis. Such extensive a-synuclein–lipid
interactions are in keeping with the highlighted
frequent involvement of ceramide metabolism
pathways in parkinsonian disorders with Lewy
Bodies in neuropathology [94]. Given that GlcCer
interactions have been shown to stabilize a-synu-
clein oligomers, we can hypothesize that similar
a-synuclein–lipid interactions in the cytoplasm
could have similar consequences.
Why are Lewy bodies absent from some
pallidopyramidal syndromes but present in
others?

Pathologically, PPS can be distinguished into two
categories based on the presence or absence of
a-synuclein accumulation: PKAN and Neuroferritin-
opathy are characterized by well localized defects in
the globus pallidus [31,32

&

] and absence of Lewy
bodies, contrary to PLAN [35

&

] and MPAN [33,34
&&

].
We hypothesize that PKAN and Neuroferritinopathy
are well localized diseases due to the absence of
a-synuclein accumulation and the accompanying
hypothesized self-perpetuating mechanism of dis-
ease spread [95

&&

,96,97
&

,98,99
&

,100,101
&&

,102–104,
105

&

,106
&&

,107–111,112
&

]: the defect initiates from
the globus pallidus but cannot spread to other brain
regions due to the absence of a-synuclein involve-
ment. As recent evidence implicates lysosomal
dysfunction and/or lipid abnormalities in the
aggregation and spreading of a-synuclein, this
observation has two possible implications for the
pathogenic mechanisms of PKAN:
(1)
ins
Probably, lysosomal dysfunction is not a
primary event in the pathogenesis of PKAN.
(2)
 The ceramide lipid metabolism defects observed
in PKAN are unlikely to affect a-synuclein
homeostasis: Pantothenate kinase 2 (PANK2)
encoded by the PANK2 gene, is probably an
exclusively mitochondrial enzyme [113,114

&

]
thus placing a physical barrier between lipids
and (cytoplasmic) a-synuclein.
www.co-neurology.com 385



Movement disorders
Contrary to PKAN, PLAN is characterised by
widespread Lewy bodies in neuropathology [35

&

].
iPLA2 beta which is encoded by the PLA2G6 gene, is
an enzyme involved in phospholipid hydrolysis
with implications for a wide range of cellular func-
tions [115

&&

] probably not necessarily limited to the
mitochondria; thus, lipid accumulation caused by
iPLA2 beta inactivation could be responsible for the
initiation of a-synuclein misfolding and spreading.
Neuroaxonal spheroids: a mitochondrial
trafficking defect?

Neuroaxonal spheroids are mysterious formations
present in various serious neurodegenerative dis-
eases including PKAN [31,32

&

], MPAN [33,34
&&

],
Neuroferritinopathy [116,117], Wilson’s disease
[115

&&

], progressive supranuclear palsy-pallido-
nigro-luysial atrophy variant (PSP-PNLA) [118],
PLAN [35

&

], hereditary diffuse leukoencephalopathy
with spheroids (HDLS) [119,120

&

,121
&&

], pigmented
orthochromatic leukodystrophy (POLD) [122

&&

],
and traumatic brain injury [31]; however, these
are also observed in healthy, aged individuals
[123]. Even though neuroaxonal spheroids have
not been ultrastructurally studied in genetically
confirmed cases and systematically compared
between various diseases, limited electron micro-
scopy studies on nongenetically confirmed HDLS
and on mouse models of PLA2G6 have indicated
that these structures likely contain mitochondria
[124–126] in addition to other molecules [31,32

&

,
35

&

,119]. Given the similarities in the staining
patterns of the spheroids between diseases, it
is likely that they represent identical or highly
Table 2B. Spheroidopathies

A) PPS-suggested pathological classification system

SNCA (þ), spheroids (þ) SNCA (�), spheroids (þ)

PLA2G6-associated neurodegeneration
(PLAN)

Pantothenate kinase-associa
neurodegeneration (PKAN

Mitochondrial membrane protein
associated neurodegeneration (MPAN)

Neuroferritinopathy

B) Non-PPS

PKAN

PLAN

MPAN

Hereditary Diffuse Leukoencephalopathy with Spheroids (HDLS) (CSF1R)

Wilson’s disease

Progressive supranuclear palsy-Pallido-nigro-luysial atrophy (PSP-PNLA)

Traumatic brain injury

Pigmented orthochromatic leukodystrophy (POLD) (CSF1R)

PPS, pallidopyramidal syndromes.

386 www.co-neurology.com
homologous structures, a remarkable finding given
the diversity in clinical presentations of associated
diseases.

As neuroaxonal spheroids are present in such a
variety of serious neurodegenerative diseases, the
mechanisms underlying their formation are intrigu-
ing. Here, we hypothesize that spheroids could
result from impaired mitochondrial trafficking as
a reaction to severe neuronal damage drawing from
evidence provided from the study of PKAN.
(1)
ted
)

Specifically in the case of PPS, perhaps their
formation stems from a primary mitochondrial
dysfunction, a relationship that would seem
more clear and convincing in PKAN. As mito-
chondria heavily rely on CoA provision for
energy generation, it is expected that PANK2
mutations would have a devastating effect on
mitochondrial integrity [127

&&

]. The increased
number of large degenerate mitochondria
[127

&&

] could result in the overload of the macro-
autophagy pathway with the formation of large,
indigestible autophagosomes that cannot be
uptaken by the lysosomes [128]; thus, neuro-
axonal spheroids could represent these indiges-
tible autophagocytic vesicles. Alternatively,
damaged mitochondria could impinge on lyso-
somal function indirectly through impaired
microtubule trafficking [129

&&

,130
&

].

(2)
 Mitochondrial trafficking impairment could

occur secondarily to mitochondrial defects. It
has been recently shown that Miro, a mitochon-
drial trafficking protein [131,132], is selectively
targeted by PINK1 and parkin in mitochon-
drial damage in order to halt mitochondrial
SNCA (þ), spheroids (�) SNCA (�), spheroids (�)

None None
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trafficking within neuraxons [133–135,136
&

]
and that spheroid formation is triggered in
the absence of parkin [137

&&

]. Thus, severe
mitochondrial damage could trigger this process
en masse, holding mitochondria within neura-
xons and initiating neuroaxonal spheroid for-
mation [31,32

&

]. This hypothesis is supported by
the observation of tau within the spheroids
[31,32

&

,35
&

].
le 3. Characteristic neuropathological features of pallid

Characteristic neuropathological feature

N a) Isolation of lesions in the GP

b) Minimal involvement of the SN

c) Large and small spheroids strongly A

d) Hemosiderin deposition in neurons,

a) Extensive tau deposition

b) LBs

c) SN depletion

d) Cerebral and cerebellar atrophy

e) Neuroaxonal spheroids

f) Widespread distribution of lesions (sp

N a) Widespread pathological alterations

b) LBs

c) Tau pathology

d) Axonal spheroids

e) Iron in astrocytes and macrophages

roferritinopathy a) Cystic cavitation of GP

b) Iron deposition

c) Spheroids

amyloid precursor protein; GP, globus pallidus; LBs, Lewy Bodies; MPAN, Mito
thenate kinase-associated neurodegeneration; PLAN, PLA2G6-associated neuro
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Implications of neuropathological studies for
pathological classification of
pallidopyramidal syndromes
As neuroaxonal spheroids and Lewy bodies are the
two characteristic neuropathological features that
have shed light into the pathogenetic mechanisms
of PPS, an attempted neuropathological classifi-
cation should probably revolve around these two
features with four categories reflecting the presence
opyramidal syndromes (PPS)

s Reference

[31,32&]

PP positive

astrocytes and in perivascular region

[35&]

inal cord, basal ganglia)

[33,34&&]

[115&&,116,117]

chondrial membrane protein associated neurodegeneration; PKAN,
degeneration; SN, substantia nigra.

ins www.co-neurology.com 387



Movement disorders
or absence of a-synuclein accumulation and/or
Lewy bodies (Table 2B). In addition, as neuroaxonal
spheroids are a common feature of several neuro-
degenerative diseases, we suggest the establishment
of a separate disease category of ‘spheroidopathies’
(Table 2B, Fig. 2, Table 3).
DISEASE MODEL HYPOTHESIS: THE
‘PARKINSONIAN MITOCHONDRIAL–
LYSOSOMAL TRIANGLE’

There appears to be a clear relationship between PPS,
Parkinson’s disease and LSD clinically [9,138,139],
pathologically [33,35

&

,40
&&

,81] and genetically
[7,19,44,68,71,72

&&

,79,140,141,142
&

,143] indicat-
ing that their pathogenic pathways are perhaps
also linked.

As genetic and functional studies have demon-
strated, defects in two main organelles can cause
Parkinson’s disease, PPS or LSD: mitochondria
Table 4. Molecules that genetic studies have implicated
Parkinson’s disease and Lysosomal storage disorders

Molecule
Organelle of
function Function

Parkin Mitochondria
[144–151,152&&,
157&&]

Ubiquitin ligase targeting
mitochondrial membrane pro
[144–151,152&&,158&]

PINK1 Mitochondria
[144–151,152&&]

Regulation of parkin in mitocho
[144–151,152&&]

C19orf12 Mitochondria [33] Limited information

iPLA2 beta Mitochondria [159] Phospholipid hydrolysis

ATP13A2 Lysosomes [67] SNCA homeostasis
[75&&,76,77&,78&&]

Glucocere-
brosidase

Lysosomes
[41,42&,43,51]

PANK2 Mitochondria Pathway of CoA synthesis

WDR45 Limited information Vesicular trafficking Autophagy
[24&&,26&&]

VPS35 Limited information Vesicular trafficking [161,162]
Mitochondrial function [163&

LRRK2 Inconclusive evidence Autophagy [165&,166&&,167&]
Vesicular trafficking [168&&]
Mitochondrial function [169,

a-synuclein Inconclusive evidence Synaptic function, microtubule
trafficking (reviewed in [92&&

LB, Lewy body; PD, Parkinson’s disease; SN, substantia nigra.
aFor full references concerning the pathological features see [40

&&

].
bEven though GBA mutations can cause both Parkinson’s disease and Lysosomal sto
exclusively Parkinson’s disease both in homozygosis and in heterozygosis [172

&&

] s
glucocerebrosidase in the pathogenesis of Parkinson’s disease [173

&

,174
&

]; certain
development from lysosomal dysfunction.
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[127
&&

,144–151,152
&&

,153
&

,154
&

] and lysosomes
[79,142

&

,155
&

,156
&

]. Interestingly, for some of the
mutated molecules involved in the dysfunction of
these two organelles, there is functional and neuro-
pathological evidence mapping them clearly in one
of the two pathways. However, for the rest there
seems to be an overlap: even though for each
mutated gene there is strong functional evidence
that only one of the two organelles should be
affected, there are circumstantial pathological fea-
tures indicating that perhaps the second organelle is
affected too (Table 4).

Thus, in general, Lewy bodies consistently occur
in cases with mutations in lysosomal enzymes
whereas these are found only occasionally in
relation to mutations in mitochondrial proteins.
This observation would support the hypothesis that
mitochondrial dysfunction does not directly cause
a-synuclein accumulation; indeed, to date, there
is not strong enough functional evidence that
in the pathogenesis of pallidopyramidal syndromes,

Usual
neuropathological
featuresa

Findings inconsistent with the primary
function of the molecule (assuming that
LB formation is secondary to lysosomal
dysfunction)a

teins
SN cell loss without

LBs
Occasional presence of LBs [157&&]

ndria Unknown LBs in the single case studied

LBs, spheroids, tau LBs

LBs, spheroids, tau LBs

Unknown Mitochondrial abnormalities [160&&].
Mutations can cause PPS, PD or
Lysosomal storage disorders
[7,68,71,72&&,73,74].

LBs –b

Spheroids –

Unknown Limited information

]
No LBs in a single

case studied
[161,162,164]

Limited information

170&]

Variable (LBs, tau,
TDP43) [171]

Limited information

])
LBs –

rage disorders, the recent identification of a variant (E326K) that causes
uggests a separate regulatory rather than metabolic effect of
ly though, this observation does not disassociate Parkinson’s disease
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mitochondrial dysfunction impacts directly on
a-synuclein homeostasis [175

&

,176
&

], though there
is some evidence supporting the opposite [98,175

&

,
177

&

,178,179
&&

,180
&

,181
&

].
Such an overlap in pathologies would suggest

that there is a functional link between lysosomes
and mitochondria and that unknown events (or
perhaps even stochasticity) could shift the balance
between the two pathways and some well deter-
mined genetic forms of Parkinson’s disease develop
inconsistent pathological features. We term this
functional continuum ‘Parkinsonian mitochon-
drial–lysosomal triangle’ and suggest that PPS and
LSD lie in the extreme ends of this triangle with
Parkinson’s disease as an intermediate form of dis-
ease (Fig. 3a).

If this theory holds true, we can make two
interesting hypotheses:
(1)
FIGU
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muta
meta
lysos
expe
are r

1350
Parkinson’s disease should share some patho-
logical features of LSD. Although no lipofuscin
inclusions have been observed in Parkinson’s
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RE 3. (a) The Parkinsonian mitochondrial–lysosomal triangle: V
), lysosomal storage disorders (LSD) and Parkinson’s disease overl
ge arrow in the bottom indicates that the mitochondrial–lysosoma
g which can result in an array of disorders, with PPS and LSD bei
iddle. Blue arrows indicate that lipid metabolism could be implic
mitochondrially, intralysosomally and cytoplasmically/cell membr

inson’s disease as heterozygous mutations result in Parkinson’s dis
verlap as a-synuclein pathology is observed in both Parkinson’s d
een PPS and PD as SPG11 can have a clinical presentation very
lap between PPS, Parkinson’s disease and LSD as mutations can c
rozygous mutations appear to be a risk factor). Leukoencephalopa
tions in FA2H can cause both diseases and neuroaxonal spheroid
chromatic leukodystrophy is both a leukoencephalopathy and a L
omal–mitochondrial link. This is based on neuropathological repo
rimental evidence for the functional role of these genes. The recta
elated to defects in particular molecules (listed on the top of the fi
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disease, somebody could argue that Lewy bodies
represent a form of lysosomal inclusions as they
contain ATP13A2 [75

&&

], GBA [182] and numer-
ous lysosomal molecules [183

&

,184].

(2)
 How can lysosomes and mitochondria be func-

tionally connected? Though the exact nature
of this link is unknown, it is thought to take
the form of mitophagy [185] and to be bidirec-
tional (Fig. 3b). Indeed, there is evidence
suggesting that the dysfunctional lysosomes
‘attack’ mitochondria in ATP13A2 patient fibro-
blasts [160

&&

] and that lysosomal dysfunction
could result in an accumulation of dysfunctional
mitochondria in mouse models of LSD [186].
Conversely, damaged mitochondria can impact
on autophagy through impaired microtubule-
mediated vesicular trafficking resulting in a
more generalized lysosomal dysfunction (includ-
ing inhibition of a-synuclein degradation)
[129

&&

,157
&&

]. The molecules most recently impli-
cated in the pathogenesis of Parkinson’s disease
and PPS, VPS35 [161,162,187

&

–190
&

] and
chondrion

Lysosome

C9orf12

o
th

er
Progranulin

Sortilin

Cell membrane

Mitophagy

Vesicular
circulation

ids tau Lewy body pathology LSD

enn diagram depicting that pallidopyramidal syndromes
ap pathologically, genetically and/or clinically. The
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ane). GBA is placed in the overlap between LSD and
ease but homozygous in LSD. SNCA is also placed in
isease and LSD. SPG11 is placed in the overlap
similar to either PD or PPS. ATP13A2 is placed in the
ause all three disease entities (in Parkinson’s disease
thies are placed in the bottom between PPS and LSD as
s have been reported in relation to both diseases. Also,

SD [79]. (b) Simplified diagram depicting the suggested
rts for carriers of mutations in specific genes and
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WDR45 [24
&&

,26
&&

], could fit nicely into this
model as it is thought that they are involved in
Endoplasmic Reticulum (ER)-Golgi vesicular traf-
ficking [168

&&

,191
&

,192
&

] and autophagy, respect-
ively. Interestingly, the ER was recently shown to
participate in autophagy initiation through a
mitochondrial interaction [193

&

]. A putative role
for LRRK2 in autophagy is also beginning to
emerge [165

&

,166
&&

] together with a functional
link with microtubule trafficking [168

&&

,
191

&

,194] and mitochondrial dysfunction in
mutation carriers [170

&

]. It has also intriguingly
been hypothesised that MAPT variants could
impact on the type of pathology exhibited with
LRRK2 mutations shifting the balance between
tau and Lewy bodies [195,196

&

,197
&

]. Finally,
there is evidence for interaction between a-syn-
uclein and microtubules [92

&&

,198–200] and for a
role of MAPT mutations in the development of
parkinsonism [201

&

,202
&

].
CONCLUSION

We propose a simplified classification of PPS that
allows incorporation of the increasing genetic find-
ings. Although the precise pathogenic underpin-
nings of PPS are far from clear, numerous reports
suggest interesting links on multiple levels between
PPS, Parkinson’s disease and LSD with a central role
for combined mitochondrial and lysosomal dys-
function, a relation which will be further dissected
as identification of novel disease-causing genes adds
the missing pieces to the puzzle [203

&&

].
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