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Purpose: Myelin has long been the target of neuroimaging research. However, most 
available techniques can only provide a voxel-averaged estimate of myelin content. 
In the human brain, white matter fiber pathways connecting different brain areas and 
carrying different functions often cross each other in the same voxel. A measure that 
can differentiate the degree of myelination of crossing fibers would provide a more 
specific marker of myelination.
Theory and Methods: One MRI signal property that is sensitive to myelin is the 
phase accumulation. This sensitivity is used by measuring the phase accumulation 
of the signal remaining after diffusion-weighting, which is called diffusion-prepared 
phase imaging (DIPPI). Including diffusion-weighting before estimating the phase 
accumulation has two distinct advantages for estimating the degree of myelination: 
(1) It increases the relative contribution of intra-axonal water, whose phase is related 
linearly to the thickness of the surrounding myelin (in particular the log g-ratio); and 
(2) it gives directional information, which can be used to distinguish between cross-
ing fibers. Here the DIPPI sequence is described, an approach is proposed to estimate 
the log g-ratio, and simulations are used and DIPPI data acquired in an isotropic 
phantom to quantify other sources of phase accumulation.
Results: The expected bias is estimated in the log g-ratio for reasonable in vivo 
acquisition parameters caused by eddy currents (~4%-10%), remaining extra-axonal 
signal (~15%), and gradients in the bulk off-resonance field (<10% for most of the 
brain).
Conclusion: This new sequence may provide a g-ratio estimate per fiber population 
crossing within a voxel.

K E Y W O R D S

diffusion MRI, magnetic susceptibility, myelin, phase imaging, white matter

www.wileyonlinelibrary.com/journal/mrm
mailto:﻿
https://orcid.org/0000-0003-4679-7724
https://orcid.org/0000-0003-2095-8665
https://orcid.org/0000-0001-6611-6362
https://orcid.org/0000-0002-2511-3189
https://orcid.org/0000-0003-3234-5639
http://creativecommons.org/licenses/by/4.0/
mailto:Michiel.Cottaar@ndcn.ox.ac.uk


      |  2619COTTAAR et al.

1  |   INTRODUCTION

Myelin is one of the main constituents of the brain’s white 
matter1 and plays a key role in modulating the speed of action 
potentials in axons.2,3 The degree of myelination has been 
shown to change over the lifespan4 with different white mat-
ter tracts myelinating at different stages during childhood.5,6 
Activity-dependent changes in myelination have also been 
found in adults.7 The amount of myelin typically decreases 
during aging and has been found to be altered in a variety of 
pathologies,4 such as leukodystrophies, multiple sclerosis,8 
and schizophrenia.9 Accordingly, producing accurate in vivo 
maps of myelin content has been a longstanding goal in brain 
imaging.

A common metric to quantify the degree of myelination is 
the g-ratio, which is defined as the inner over the outer radii 
of the myelin sheath.2 Using multiple MRI modalities one 
can obtain an estimate of the average voxel-wise g-ratio in 
a voxel in vivo by combining measurements of myelin and 
axonal volume fractions.10-13 The axonal volume fraction can 
be estimated from diffusion MRI, using a multicompartment 
fit to the diffusion-weighted signal.14-18 A wide variety of 
different MRI modalities have been proposed to estimate the 
myelin volume fraction.19,20 Most of these rely on directly im-
aging the myelin water, which can be distinguished from the 
rest of the water based on its short T2 using multiecho spin-
echo sequences,21-23 its short T∗

2
 using multiecho gradient-

echo sequences,24,25 its short T1 using an inversion-recovery 
sequence,26 or based on magnetization transfer between the 
myelin macromolecules and water.27

The interpretability of estimating the g-ratio from vol-
ume fractions is limited, as it only gives an average g-ratio 
per voxel. It is an average across both myelinated and unmy-
elinated axons28 because the method assumes that all axons 
have the same g-ratio.11 It is also an average across fiber 
populations in voxels where multiple fibers cross each other, 
which is a common configuration in the human brain.29,30 
Furthermore, this approach relies on the accuracy of the 
volume fraction estimates,31 which has been questioned for 
both the axonal volume fractions32 and the myelin volume 
fractions.13,19,20 Here we aim to overcome these limitations 
by proposing a novel sequence, which is directly sensitive to 
the g-ratio (rather than the volume fractions) and allows to 
distinguish between crossing fibers.

Diffusion-weighting gradients can be used to distinguish 
between crossing fibers. Diffusion-weighting has previously 
been combined with all of the myelin-sensitive metrics listed 
above to obtain tract-specific metrics, namely T2,

33,34T∗
2

,35,36 T1,
35,37 and magnetization transfer.38 Unfortunately, 

diffusion-weighted gradients take such a long time to build 
up this sensitivity to fiber orientation that there will be very 
little signal left associated with the myelin water because of 

its short T2.
39 Rather, after diffusion-weighting, the signal 

mainly comes from water relatively distant from the myelin, 
which reduces the sensitivity of the relaxation and magneti-
zation transfer properties to myelin.

On the other hand, the off-resonance magnetic field gen-
erated by the myelin magnetic susceptibility not only affects 
the local myelin water, but also has an effect throughout the 
intra- and extra-axonal spaces in nearby tissue.40-44 This pro-
vides a means to detect the properties of myelin from more 
long-lived T2 species still visible after diffusion-weighting. 
Hence, we propose a sequence called diffusion-prepared 
phase imaging (DIPPI), where we estimate the myelin-
induced phase accumulation in the MR signal still visible 
after diffusion-weighting.

In this work, we first derive how the phase accumula-
tion measured by DIPPI is related to the g-ratio in crossing 
fiber bundles. We then use simulations and data in an iso-
tropic phantom to show under which conditions we can re-
liably estimate the myelin-induced phase accumulation and 
hence the g-ratio from DIPPI, despite many potential con-
founds, namely eddy currents, nonmyelin sources of suscep-
tibility, and remaining signal from extra-axonal water after 
diffusion-weighting.

2  |   THEORY

2.1  |  Overview

The DIPPI sequence consists of a standard diffusion-
weighted spin-echo sequence to which we have added an 
additional refocusing pulse and readout. The acquisition win-
dow of the second readout is offset from the second spin echo 
by a tuneable delay, which we refer to as the phase accumu-
lation time tphase (Figure 1A). The phase difference between 
these two readouts allows us to estimate the off-resonance 
frequency of the water still visible after diffusion-weighting 
without being confounded by any phase accumulation during 
the diffusion-weighting.

Combining diffusion-weighting with phase imaging 
provides two advantages for measuring the degree of my-
elination of individual tracts. First, it increases the relative 
contribution of the intra-axonal water to the final signal, par-
ticularly at high b values.45 This has the advantage that while 
the myelin-induced magnetic field offset has a complicated 
spatial profile in the extra-axonal and myelin space (Figure 
1B,C), it is uniform within the intra-axonal space. For a sim-
plified model of myelinated axons as infinite cylinders, this 
myelin-induced off-resonance frequency in the intra-axonal 
space (�myelin) is given by:40

(1)�myelin = −
3

4
�0�Alogg sin2�,
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where �0 and �A are constants (respectively, the Larmor fre-
quency and the anisotropic component of the myelin susceptibil-
ity) and � is the angle between the fibers and the main magnetic 
field, which we estimate using the magnitude data from DIPPI. 
We will assume here that the signal is dominated purely by the 
intra-axonal water, although we will investigate the bias that 
this assumption might induce because of the remaining extra-
axonal signal. In the absence of diffusion-weighting, contribu-
tions from all compartments would need to be considered when 
fitting the signal.46 The second advantage of using diffusion-
weighting is that it adds directional information, which allows 
us to measure the relative degree of myelination (ie, log g-ratio) 
between crossing fibers rather than a voxel-wide average.

An additional feature of DIPPI is that we can also exploit 
the bimodal distribution of the intra-axonal off-resonance 
frequency (Figure 1C) to fit a two-population model to data 
acquired with multiple phase-accumulation times (tphase

). Though for a single tphase, we can obtain the average log 
g-ratio across both the myelinated and unmyelinated axons, 
the two-population model allows us to estimate their relative 

signal fractions, as well as the average log g-ratio of the my-
elinated axons.

To explain the analysis, we split it into three parts. First, 
we estimate the susceptibility-induced off-resonance fre-
quency of diffusion-weighted water taking into account other 
sources of phase accumulation (ie, movement during the dif-
fusion encoding and eddy currents). Then we discuss how 
to subtract out the off-resonance frequency caused by sus-
ceptibility sources other than myelin. Finally, we relate the 
myelin-induced off-resonance frequency to the average log 
g-ratio of crossing fibers.

2.2  |  Estimating the off-resonance frequency

The DIPPI signal is modulated by both the diffusion-
weighting gradients (ie, the b value and orientation ĝ) and 
the phase accumulation time tphase. For each set of b values, 
gradient orientations, and tphase, we acquire two images, one 
during the initial spin-echo readout (SSE) and one during the 

F I G U R E  1   A, Proposed diffusion-prepared phase imaging (DIPPI) sequence to measure the off-resonance frequency of diffusion-weighted 
water. The sequence consists of a standard Stejskal-Tanner sequence followed by a second echo-planar imaging readout in an asymmetric spin 
echo. B, Illustration of white matter with axons as parallel cylinders, some of which are myelinated (myelin sheaths are hashed). Overlaid is the off-
resonance field induced by the myelin according to the hollow-cylinder model.40 C, The distribution of the field is shown in B in the intra-axonal 
(orange), extra-axonal (green), and myelin (blue) compartments. After diffusion-weighting the signal will be dominated by the intra-axonal water 
in axons perpendicular to the diffusion-weighting gradient. For this intra-axonal water, the off-resonance frequency has a bimodal distribution 
corresponding to the unmyelinated and myelinated axons with the latter having an off-resonance frequency proportional to the log g-ratio
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second asymmetric spin-echo readout (SASE). In this work, 
we assume that all data have been acquired with a single b 
value (in addition to b = 0 scans), although the model can be 
extended to multiple b values by fitting all parameters inde-
pendently at each b value, except for the fiber orientations 
and degree of myelination.

For a single tphase, the expected signal across multiple gra-
dient orientations is given by:

where we sum the signal contributions from multiple crossing 
fiber populations k in an effort to estimate the phase caused by 
the off-resonance frequency associated with each fiber popula-
tion �susc;k. The other terms are explained below.

The first part of these equations (ie, AASE/SE,ke−bΔDk(ĝ ⋅ n̂k)
2

)  
is concerned with the magnitude of the image (Figure 2B). 
As we are mainly interested in the phase, we fit to the magni-
tude the simplest model that can distinguish between crossing 
fibers, namely one where the signal profile for each crossing 
fiber is given by a Watson distribution with an amplitude Ak 

and width ΔDk. This is the signal profile expected if the sig-
nal for each fiber population can be modeled by an axisym-
metric diffusion tensor with eigenvalues �‖,k and 𝜆⊥,k and 
volume fraction fk. In that case, the amplitude corresponds to 
Ak = S0fke−b𝜆⊥,k and the width to ΔDk = 𝜆‖,k − 𝜆⊥,k.

The width of these Watson distributions (ΔDk) only de-
pends on the diffusion-weighting; hence, it should be the 
same for both the symmetric and asymmetric spin echoes. 
The signal amplitudes (Ak), on the other hand, will decrease 
over time based on T2 and T ′

2
 dephasing, which means that we 

will have a different amplitude for each readout: ASE,k and 
AASE,k. Using multiple phase-accumulation times, it is possi-
ble to use the dependence of AASE,k on tphase to estimate both 
the T2,k and T ′

2,k
 of the diffusion-weighted signal for each fiber 

population.
The phase accumulation before the first readout will be 

affected by many factors, such as eddy currents or movement 
during the diffusion encoding larger than a few tens of mi-
crometers. As such movements are unavoidable in in vivo 
MRI, we simply consider the phase at the first readout to be 
a random number that has to be estimated independently for 
each volume (�SE). Our interest here is in the phase accu-
mulation between the two readouts, which is induced by the 
off-resonance frequency of any eddy currents (Δ�eddy) and 
the brain’s susceptibility (�susc; Figure 2C,D).

(2)SSE

(
b, ĝ

)
=

∑

k

ASE,ke−bΔDk(ĝ ⋅ n̂k)
2

ei�SE ,

(3)SASE

(
tphase, b, ĝ

)
=

∑

k

AASE,ke−bΔDk(ĝ ⋅ n̂k)
2

ei(�SE +Δ�eddy +�susc;k),

F I G U R E  2   Illustration of the signal estimated from Monte Carlo simulations of two fiber populations (one fully myelinated with a g-ratio of 
0.7 and one fully unmyelinated) crossing at right angles and perpendicular to the main magnetic field (A). For ease of illustration, we only consider 
gradient orientations in the plane of the crossing fibers, but the same principle holds for a three-dimensional (3D) acquisition. The magnitude is 
fitted as a sum of 2 Gaussians (Watson distributions in 3D), which have maxima perpendicular to the fiber orientation (B). These Gaussians will 
have a much lower amplitude in the second readout, but are assumed to have the same width between the readouts. Although the phase will be 
different for each gradient orientation because of movement during the diffusion-weighting (C), the phase difference between the two readouts still 
provides an estimate of the difference in susceptibility-induced off-resonance frequency of the two fiber populations (D)
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2.3  |  Eddy-current–induced off-
resonance frequency

Eddy currents caused by the strong diffusion gradients in-
troduce a phase offset that is dependent on the gradient 
amplitude and orientation. Here, we are interested in the con-
tribution of eddy currents to the phase accumulated between 
the two readouts (Δ�eddy). We model this phase offset using 
spherical harmonics:

where Ym
l

 are the spherical harmonic functions mapping the pa-
rameters clm onto the sphere. Because the eddy currents decay 
over time following the diffusion-weighting gradients, we can-
not simply model these parameters using a linear equation as 
we will for the susceptibility below.

We can only estimate the odd-order spherical harmonics 
(which are asymmetric), but not the even-order spherical har-
monics (which are symmetric and hence degenerate with the 
susceptibility-induced phase offsets). Fortunately, the domi-
nant component of the eddy current-induced phase offset is 
asymmetric as we will confirm in the Results section.

One exception, where we can estimate part of the even-
order components of the eddy current-induced phase offset, 
is if we acquire a shell with tphase = 0 (ie, both readouts are at 
their respective spin echoes). For this shell, the susceptibility-
induced phase offset is zero, so we can attribute any phase 
accumulated between the two readouts to the eddy currents 
and hence estimate the even components of clm

(
tphase = 0

)
.  

Then, rather than assuming that the even-order components 
of clm

(
tphase

)
 are zero, we can instead model them by as-

suming they match clm

(
tphase = 0

)
. This corrects for any 

eddy current-induced phase accumulation between the spin 
echoes, although it still cannot correct for the evolution of the 
even components of the spherical harmonics during the phase 
accumulation time.

2.4  |  Correcting for the nonmyelin 
susceptibility

The susceptibility-induced off-resonance frequency is not 
only influenced by the local myelin (�myelin), but also by 
many other sources of susceptibility (�bulk):

These other sources of susceptibility include both distant 
sources (eg, the air–tissue interface) and other local sources of 

susceptibility (eg, blood vessels). To resolve between these my-
elin and nonmyelin susceptibilities, we make the assumption 
that any nonmyelin source of susceptibility (ie, �bulk) is equal 
for all crossing fibers. This allows us to estimate the myelin-
induced frequency offset difference between crossing fibers 
(with indices k and k′) as:

This assumption is most accurate if the crossing fibers 
overlap spatially (ie, they interdigitate). On the other hand, 
if the crossing fibers are on opposite sides of a voxel, their 
off-resonance frequency may differ based on any large-scale 
magnetic field gradients or differences in local susceptibility 
field (eg, one fiber population being closer to blood vessels).

Equation 6 only gives the difference in the myelin-induced 
frequency offset between crossing fibers, which would only 
allow one to estimate the difference in myelination between 
crossing fibers. To obtain an absolute estimate of the g-ratio 
for each individual fiber, we need additional information. 
This can be obtained by changing the head orientation, which 
modulates the relation between the off-resonance frequency 
�myelin and the g-ratio (Equation 1). Once the frequency offset 
(Equation 1) has been estimated for multiple head orienta-
tions, the individual g-ratios can be obtained through linear 
regression.

2.5  |  Estimating the g-ratio

One additional obstacle to estimating the g-ratio is that al-
though there is a simple linear relationship between the 
myelin-induced off-resonance frequency and the g-ratio 
within each axon (Equation 1), each fiber population consists 
of many axons with potentially varying g-ratios. We pro-
pose two methods to still obtain a meaningful estimate of the  
g-ratio. Both methods assume that the signal after diffusion-
weighting is dominated by the intra-axonal water, for which 
the myelin-induced phase evolution is given by the hollow 
fiber model (Equation 1).40

The first method is only valid for tphase short enough that 
the signal phase from the most myelinated axons is still in 
rough alignment with the signal phase from the least myelin-
ated axons (ie, the unmyelinated axons with a g-ratio of 1 and 
hence �myelin = 0). In this limit, the myelin-induced phase ac-
cumulation is determined by the average of the off-resonance 
frequency in each axon (weighted by its signal contribution). 
Hence we have:

(4)Δ�eddy

(
ĝ, tphase

)
=

lmax∑

l= 0

l∑

m= − l

clm

(
tphase

)
Ym

l

(
ĝ
)

,

(5)�susc;k =
(
�myelin,k + �bulk

)
tphase

(6)�myelin;k − �myelin,k� =
�susc,k − �susc,k�

tphase

(7)
�myelin,k = −

3

4
�0�A⟨logg⟩ksin2�k,
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where ⟨logg⟩k is the signal-weighted average log g-ratio of the 
fiber population k across both myelinated and unmyelinated 
axons.

For longer tphase, this simple relation above no longer 
holds and we need to adopt a two-compartment model: the 
myelinated and unmyelinated fibers (Figure 1C). For the my-
elinated fibers we assume that the g-ratios are sufficiently 
similar that we can characterize this population based solely 
on their average log g-ratio. Hildebrand and Hahn47 found a 
range of g-ratios from 0.6 up to 0.75 in the spinal cord of vari-
ous mammals. Because this is quite a narrow range compared 
with the g-ratio of 1 for unmyelinated fibers, we expect the 
two-compartment model to be adequate for any reasonable 
tphase (at least in healthy tissue). For this two-compartment 
model, we expect a phase evolution of:

where fmyelin;k is the relative signal fraction of myelinated versus 
unmyelinated axons, ⟨logg⟩myelin;k is the average log g-ratio of 
just the myelinated axons, and “angle” is a function that returns 
the angle of a complex number. Equation 7 is the first-order 
Taylor expansion of Equation 8 with the average log g-ratio 
across all axons defined as ⟨logg⟩k = fmyelin;k⟨logg⟩myelin;k.

The phase evolution of the signal phase according to 
Equation 8 is shown in Figure 3. At small tphase, the phase 
evolution is approximately linear with a slope of fmyelin�myelin.  
However, as �myelintphase approaches � the phase starts to ap-
proach the phase within just the dominant population (ie, un-
myelinated axons for 0 < fmyelin < 0.5 or myelinated axons for 
0.5 < fmyelin < 1; Figure 3B). By combining data across multi-
ple tphase, we can capture this time-dependent nonlinear phase 
evolution to characterize both the fraction of myelinated 
axons ( fmyelin;k) and their average log g-ratio (⟨logg⟩myelin;k) 

for each crossing fiber population. The evolution of the mag-
nitude also contains information on the myelination (Figure 
3C), but in practice, this will be very hard to disentangle from 
other sources of T ′

2
 dephasing, which we do not consider here. 

For this reason, we will constrain the myelination purely on 
the phase and not the magnitude information.

We directly fit all parameters describing the magnitude 
and phase (Equations 2 and 3) to each voxel of complex 
DIPPI data. An overview of the full model with a descrip-
tion of all model parameters is given in the Supporting 
Information S1 with a summary of which parameters can 
be estimated for different acquisition schemes in Supporting 
Information Table S1. Parameters are optimized using local 
optimization after a multistep initialization process to prevent 
the parameter optimization from getting stuck in local min-
ima Supporting Information S2.

3  |   METHODS

3.1  |  Sensitivity to bias in off-resonance 
frequency

Any difference in the off-resonance frequency between the 
crossing fibers not attributable to the myelin (��) will lead 
to a bias in the log g-ratio (�logg). We can quantify this bias 
using Equation 1 (for �A = − 100 ppb)40:

The sensitivity of logg on any error in the off-resonance 
frequency depends on the angle with the main magnetic field, 
with the sensitivity going to infinity for fibers parallel to the 
main magnetic field (sin2� = 0).

(8)�myelin,ktphase = angle
��

1 − fmyelin;k

�
+ fmyelin;ke

− i
3

4
�0�A⟨logg⟩myelin,ksin2�ktphase

�
,

(9)�logg =
4��

3�0χAsin2�
≈ 0.045

1

sin2�

��

Hz

7T

B0

F I G U R E  3   Signal evolution over time for the sum of unmyelinated axonal water (� = 0) and myelinated axonal water (� = �myelin). Each line 
shows the evolution for a different signal fraction of myelinated axons ( fmyelin; color coded according to legend on the right). A, Shows the signal 
evolution through complex signal space with B and C showing just the phase or magnitude evolution. For only myelinated axons ( fmyelin = 1 in blue) 
the signal traces a circle in complex space with constant magnitude and linearly increasing phase. As the fraction of unmyelinated axons increases, 
the size of this circle shrinks and importantly it no longer centers on the origin, which leads to a nonlinear phase and magnitude evolution
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To quantify the frequency of such fiber orientations, we 
compute the sin2� for two randomly oriented fiber popula-
tions and investigate the distribution of the sin2� for the fiber 
population that happens to be more perpendicular or that 
more parallel to the main magnetic field. These simulations 
were run using either any two random fiber orientations or 
excluding any fiber orientations with a crossing angle lower 
than 45°.

3.2  |  Phantom scan

The DIPPI sequence was implemented on a 7T Siemens scan-
ner. To validate the sequence and to characterize the influ-
ence of eddy currents, we scanned an isotropic oil phantom. 
Because the phantom is isotropic, we attribute any variation 
in the signal phase between different gradient orientations to 
eddy currents, which allows direct estimation of their contri-
bution. Three axial slices were acquired using the sequence 
shown in Figure 1A with the following scan parameters: 
image resolution 2 mm × 2 mm, slice thickness 2 mm, field 
of view 192 mm × 192 mm, 6/8 partial Fourier, 10-mm slice 
gap, echo spacing 0.81 ms, b value 2 ms/µm2. Sixty diffusion 
directions and their reverse were acquired (ie, 120 diffusion-
weighted images in total) as well as 8 b = 0 volumes. The 
effective echo times for the two readouts were 81 and 165 
ms, respectively (tphase = 30 ms). After phase unwrapping 
across gradient orientations (described in the Supporting 
Information S3), the phase offset observed in the b = 0 im-
ages was subtracted. Spherical harmonics were then fitted 
to the phase to estimate the clm in our eddy current model 
(Equation 4). We also directly compare the phase offset for 
two near-orthogonal gradient orientations either without any 
corrections, after subtracting out all odd-order spherical har-
monics, or after subtracting out both the odd-order spherical 
harmonics and the even-order spherical harmonics estimated 
for tphase = 0.

3.3  |  Reference susceptibility-
weighted imaging

To quantify the magnitude of the off-resonance field includ-
ing all sources of susceptibility, we used publicly available 
phase imaging data from the QSM reconstruction challenge 
in Graz.48 This data set was acquired from a healthy volunteer 
using a wave-CAIPI sequence49 with an isotropic resolution 
of 1.05 mm and echo time of 25 ms on a 3T MRI scanner. 
The provided data have already been phase unwrapped. We 
convert the phase image to frequency by dividing it by the 
echo time. Then we compute the magnitude of the local fre-
quency gradient. This gradient gives a rough idea of how 

different the off-resonance field might be for fiber popula-
tions on opposite sides of a voxel.

3.4  |  Simulations to test extra-axonal 
contribution

The proposed model assumes that any remaining signal after 
diffusion-weighting is intra-axonal. To investigate poten-
tial biases caused by any extra-axonal signal remaining, we 
ran Monte Carlo simulations using Camino’s datasynth50 
of crossing fibers using the default diffusivity of 2 µm2/ms. 
Fibers were crossing at 90° (in the x- and y-directions) with 
both being perpendicular to the main magnetic field (in the  
z-direction). All axons were modeled as perfect cylinders in 
the x-direction or y-direction organized in interleaving single-
axon–thick planes (Figure 2A). The distance between planes 
was fixed to 1 µm. By varying the outer axonal diameter  
between 0.5 µm and 0.98 µm, we vary the extra-axonal vol-
ume fraction from 0.25 to 0.8. Within each plane, half of the 
axons were myelinated (g = 0.7), with the other half being 
unmyelinated. The trajectory of 100,000 simulated spins was 
output.

The spin evolution over the sequence including the effect 
of the myelin susceptibility was modeled for a 7T scanner at 
multiple different b values. The myelin-induced off-resonance 
frequency was modeled according to the hollow-fiber model40 
with myelin susceptibility of � I = − 100ppb (isotropic com-
ponent) and �A = − 100ppb (anisotropic component). In this 
model, the off-resonance field at every point is evaluated as 
the contribution of the surrounding axon’s myelin (if any) 
given by Equation 1 and the sum of the dipole-like extra-
axonal field of all other axons. The simulated data were fit 
using the procedure described in Supporting Information S2 
to estimate the bias due to the signal contribution from extra-
axonal water. The confounds of eddy currents, non-myelin 
contributions to the susceptibility, and measurement noise 
were not included in these simulations. In addition, the my-
elin water itself was not explicitly modeled as its contribution 
is expected to be very small due to its short T2 (in fact the bor-
der between the intra- and extra-axonal water was infinitely 
thin and non-permeable in the simulations).

3.5  |  Simulations to test degeneracy 
between parameters

Finally, we model and then fit DIPPI data using the model 
described in the Theory section to investigate any degenera-
cies between parameter estimates. In these simulations, the 
initial amplitudes and signal widths are set assuming a stick-
like diffusion model (d‖ = 1.7

ms

�m2
), the phase at the first read-
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out (�SE) is set to a random value between 0 and 2� for each 
scan and the off-resonance frequency caused by nonmyelin 
susceptibility (�other) is set to a random large value (so that 
the phase wraps many times between each tphase). The l = 1 
components of the eddy currents are computed from 
a + btphase, where a and b are random numbers drawn from 
Gaussian distributions N (0, � = 1.4rad) and N (0, � = 18Hz),  
respectively. We set T2 = 60 ms51 and T ∗

2
= 35 ms25 as ap-

propriate for 7T. We consider two crossing fibers at 90°, both 
of which have 50% of the axons being myelinated with a g-
ratio of 0.7. Either both fiber populations are perpendicular to 
the main magnetic field or one is parallel and the other is 
perpendicular to the main magnetic field. We also consider 
the case where we have data for both of these fiber configura-
tions with respect to the main magnetic field, which is an 
extreme case of what can be achieved by scanning with mul-
tiple head orientations.

To quantify how large the head rotations need to be to re-
solve the degeneracy between the g-ratio of the crossing  
fibers, we treat it as a linear regression problem. In the case 
of two crossing fibers (labeled k and k’), DIPPI provides for 
each head orientation an estimate of the g-ratio difference 
weighted by sin2�: ⟨logg⟩ksin2�k − ⟨logg⟩k�sin2�k with some 
uncertainty �. We simulate four different head orientations, 
namely rest [B̂0 = (0, 0, 1)], forward [B̂0 = (0, − s, c)], right 
[B̂0 = ( − s, 0, c)], and left [B̂0 = (s, 0, c)], where s = sin� and 
c = cos� for a head rotation of �, which for simplicity we 
assume is the same in each direction. We also assume a uni-
form prior in the log g between log 0.6 and log 1, which has 
a standard deviation of (− log0.6√

12
). We compute the uncertainty 

on the best-fit log g from these linear equations as a function 
of the head rotation �, the uncertainty per head orientation �
, and the two fiber orientations.

4  |   RESULTS

4.1  |  Sensitivity to bias in off-resonance 
frequency

The effect of errors in the off-resonance frequency on the 
estimated log g-ratios is modulated by sin−2� (Equation 9). 
If we consider the fiber orientations in the brain random with 
respect to the main magnetic field, we find that in regions of 
two crossing fibers typically one of them is close to being 
perpendicular to the main magnetic field with sin2� ≈ 1  
(y-axis in Figure 4). The log g estimate for this fiber orien-
tation is relatively insensitive to errors in the off-resonance 
frequency. The other fiber population has a roughly flat 
distribution in sin2� (x-axis in Figure 4), which means that  
although in some voxels it too might be relatively insensitive 
to noise, in other voxels this fiber orientation may be close to 
parallel to the main magnetic field (sin2� ≈ 0), which means 
that even a small deviation in the off-resonance frequency 
will cause a large error in the estimated g-ratio. To convert  
biases in the off-resonance frequency to errors in the esti-
mated g-ratios, we will assume perpendicular fibers (sin2� = 1

) in the data in the section below; however, it should be noted 
that at least for some fiber populations the induced error in 
the g-ratio will be a lot higher.

4.2  |  Bias caused by eddy currents

To investigate the potential bias because of eddy current-
induced phase accumulation, we compare the expected 
myelin-induced phase offsets with the phase offsets induced 
by eddy currents found in an isotropic phantom on a 7T 

F I G U R E  4   Distribution of the sin2� for two randomly oriented crossing fibers, where � is the angle with the main magnetic field. The y-axis 
shows the distribution for whichever of the two fibers happens to be more perpendicular to the main magnetic field and the x-axis the distribution 
for the more parallel fiber. The left panel shows the distribution for any two random fibers, whereas on the right we exclude any configurations 
with an angle between the crossing fibers lower than 45°. Lighter colors indicate higher density
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scanner. The eddy current-induced phase offset is dominated 
by the l = 1 components of the spherical harmonics (Figure 
5A). Fortunately, these and the other odd-order components 
can be estimated even when scanning an anisotropic medium 
like the brain’s white matter. The even components of the 
spherical harmonics (for l ≠ 0) are more problematic as they 
are degenerate with the myelin-induced frequency offset 
between crossing fibers. Fortunately, the power in the even 
components is typically much smaller than in the odd compo-
nents (Figure 5B). Still the estimated l = 2 component could 
cause a bias in the g-ratio in fibers perpendicular to the main 
magnetic field of a few percentile. At the edge of the phan-
tom, this induced bias exceeds 10%. This large l = 2 compo-
nent at the edge of the phantom accumulates mostly between 
the two spin echoes (Figure 5C), rather than between the sec-
ond spin echo and the readout (Figure 5D). This suggests that 
it might be better to approximate the l = 2 component in a 
separate scan with tphase = 0 rather than ignoring it altogether.

Unexpectedly, despite subtracting out the phase offset 
caused by the B0 field (estimated using the b = 0 scans) the 
l = 0 component is still substantial (Figure 5B). This means 
that after averaging out all gradient orientations there is a net 
phase offset on the order of 0.5 rad to 1 rad between the b = 0 
and b = 2 ms/µm2 scans. The origin of this component is un-
clear; however, we note that it is swamped by the size of the 
B0 field (discussed below) and will not cause a bias in the fre-
quency offset measured between different fiber orientations.

Figure 6 illustrates the result of the correction of the eddy-
induced phase offset between two nearly orthogonal gradient 
orientations. Without correcting for eddy currents, there is 
a substantial phase offset, which would hide any myelin-
induced phase offsets (Figure 6A). Subtracting out the 
odd-order spherical harmonics gets rid of most of the eddy 
current-induced phase (Figure 6B). The remaining phase de-
viations, particularly at the edge of the phantom, are caused 
by the large size of the l = 2 spherical harmonic components 
(Figure 5A) and can be further reduced by subtracting out the 
phase difference accumulated at tphase = 0 (Figure 6C). The 
histogram of the resulting phase offset does not nicely center 
at zero, which would in this case correspond to a bias in the g-
ratio estimated for fibers perpendicular to the main magnetic 
field of approximately 4%.

4.3  |  Bias caused by bulk susceptibility

The large-scale background off-resonance frequency field 
is much larger than the expected myelin-induced frequency 
offset (Figure 7A). This field can bias the g-ratio estimate if 
crossing fibers do not interdigitate, but are actually on op-
posite sides of the same voxel. In such a case, they may have 
different contributions from the large-scale off-resonance 
field. To estimate the size of this effect, we computed the 

spatial gradient of the off-resonance frequency field (Figure 
7B). For most of the brain, the gradient of this field is so small 
that even if the crossing fibers were on the opposite side of a 
voxel (ie, ~1-mm apart), the resulting frequency offset would 
bias the g-ratio by approximately 5% for fibers perpendicular 
to the main magnetic field. However, close to the major arter-
ies or the air–brain interface (eg, the orbitofrontal regions), 
the gradient of the off-resonance frequency becomes large 
enough to bias the estimated g-ratios by over 10% to 20% in 
the case that the crossing fibers are not interdigitated.

4.4  |  Bias caused by extra-axonal 
water signal

Finally, bias in the estimated parameters can also come from 
the remaining contribution of the extra-axonal water even 
after diffusion-weighting. For reasonable b values (~3 ms/
µm2), we find that the actual off-resonance frequency is 
approximately 10% to 20% smaller than expected for pure 
intra-axonal water (Figure 8A), which would lead to a similar 
underestimation in the logg. This underestimation is caused 
by the approximately 15% extra-axonal signal contribution 
remaining at b = 3 ms/µm2 (Figure 8B), modulated by the 
average off-resonance frequency of the extra-axonal water 
(Figure 8A). Interestingly, in the simulations the 15% extra-
axonal signal contribution was consistent across a wide va-
riety of different axonal densities (color scales). The fiber 
packing configuration will affect both the average extra-
axonal off-resonance frequency41,52 and how fast the extra-
axonal signal decays with b value. The simulations here use 
an unrealistic fiber configuration of perfectly straight cyl-
inders crossing each other at right angles in a perfect grid, 
which means that the bias found here is only a rough estimate 
of the bias size expected in real tissue.

4.5  |  Degeneracies between 
fitted parameters

While Although the eddy currents, gradients in the nonmy-
elin susceptibility, and extra-axonal water all might bias the 
estimated g-ratios as discussed above, a more fundamental 
limitation arises because we can only estimate the difference 
in the myelin-induced frequency between crossing fibers. In 
case of data only acquired with a single head orientation and 
single tphase, we can only estimate a weighted difference in log 
g between two crossing fibers [⟨logg1⟩ sin2�1 − ⟨logg2⟩ sin2�2

]. If both fibers have the same angle with the main magnetic 
field (ie, �1 = �2), this implies we can estimate the difference 
in logg between the crossing fibers, not what the ⟨logg1⟩ and 
⟨logg2⟩ actually are. This case is illustrated in Figure 9A by 
the distributions of blue dots, which all have a very similar 
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⟨logg1⟩ − ⟨logg2⟩, even though the individual estimates of 
logg are unconstrained. On the other hand, if fibers have 
different angles with the main magnetic field, we are less 

sensitive to the logg that is more parallel to the main mag-
netic field, which changes the slope of the degeneracy (ie, 
the line along which the points lie in Figure 9A). The most 

F I G U R E  5   Phase accumulation between the two readouts caused by nonzero eddy currents measured in an isotropic oil phantom at b = 2 
ms/µm2 for a phase accumulation time tphase of 30 ms on a 7T Siemens scanner. The phase accumulation measured at b = 0 is subtracted out (to 
subtract out the susceptibility field); then spherical harmonics are fitted to the eddy current-induced field offset. A, Map of the power in these 
spherical harmonics. B, Histogram of the maps shown in A. Dashed lines show the odd components (that can be corrected for); solid lines show the 
even components (that cannot be corrected for). C, Phase accumulation between the first and second spin echoes (measured using tphase of 0 ms). 
D, Phase accumulation in the 30 ms between the second spin echo and the readout. The x-axis in B–D is given in both the power in the spherical 
harmonics in radians (bottom) and the relative error that this angular offset will induce in the estimated g-ratio for fibers perpendicular to the main 
magnetic field from Equation 9 as a percentile (top)
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F I G U R E  6   Distribution of difference in the eddy current-induced phase offset between two roughly orthogonal gradient orientations without 
correction (A), after correcting only the odd-order spherical harmonics (B), or after also subtracting the even-order spherical harmonics estimated 
at tphase = 0 (C). Top panels show the histogram across all three slices. Bottom panels show the phase map for the center slice. The x-axis in the top 
panel and color bar in the bottom panels show both the angular offset and the relative error this would induce in the g-ratio (in percentile) for fibers 
perpendicular to the main magnetic field. In all panels, this figure shows the phase difference at tphase = 30 ms for an isotropic phantom in a 7T 
scanner

F I G U R E  7   A, Off-resonance frequency distribution estimated for a healthy volunteer at echo time = 25 ms on a 3T scanner (after phase 
unwrapping). B, Distribution of the gradients in the off-resonance field. The x-axis in the histogram shows both the off-resonance frequency 
(gradient) at the bottom and the error this would induce in the g-ratio in percentile for perpendicular gradients. On the right, this error would be 
incurred for crossing-fiber population 1-mm apart in the direction of the maximum gradient
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extreme case of this is when one fiber population is parallel to 
the main magnetic field (eg,sin�2 = 0), in which case we are 
completely insensitive to the myelination of that population 
[ie, ⟨logg2⟩], but can estimate the ⟨logg⟩ of the other popula-
tion (orange in Figure 9A). By combining information across 
multiple head orientations, we can constrain the g-ratios of 
the crossing fibers as the intersection between the different 
degenerate solutions (green in Figure 9A).

Figure 9A considers the case where we aim to estimate 
the average log g across both myelinated and unmyelinated 
axons (Equation 7) using a single tphase. However, as this tphase 
becomes too long, the signal from the unmyelinated and my-
elinated axons become out of phase with each other, and the 
resulting phase approaches that of the dominant component 
(Figure 3B). As a result, the estimated average log g will then 
match that of the dominant component (ie, the myelinated 
axons if fmyelin > 0.5 or the unmyelinated axons if fmyelin < 0.5

; Figure 9B). When we have data across multiple tphase, we can 
exploit this behavior to estimate both the average log g across 
both components and the log g of the dominant component, 
which allows the estimation of both the fraction and g-ratio of 
myelinated axons (Figure 9D,F). In Figure 9D,F, we see that 
this technique works best if the signal is dominated by my-
elinated axons (ie, large fmyelin), although as long as the tphase 
is long enough the fmyelin, and to a lesser extent the gmyelin, 
can be estimated even when the unmyelinated compartment 
dominates ( fmyelin = 0.25, blue-violin plots).

The nonlinear time evolution of the myelin-induced phase 
offset can also be exploited to distinguish it from the nonmy-
elin susceptibility. This leads to reasonable fits to the fraction 
and g-ratio of myelinated axons, even if data were only ac-
quired with a single head orientation (blue in Figure 9C,E). 
With multiple head orientations, these estimates are still sub-
stantially improved (green in Figure 9C,E).

Figure 10 illustrates the precision with which the log  
g-ratio can be estimated as a function of the crossing fiber 
orientations, angle of the head orientations, and precision 
with which ⟨logg1⟩ sin2�1 − ⟨logg2⟩ sin2�2 can be estimated 
for each head orientation. Without substantial head rotations 
the g-ratio of fibers parallel to the main magnetic field is very 
poorly constrained by the data (left in Figure 10A); however, 
we are able to estimate the g-ratio for any crossing fibers 
(right in Figure 10A). This is the equivalent to the orange 
dots in Figure 9A. For two fibers crossing perpendicular to 
the main magnetic field, we can estimate only the difference 
in the log g-ratio, which does little to actually constrain the 
individual g-ratios even if measured with a very high preci-
sion (Figure 10B or blue dots in Figure 9A). Substantial head 
rotations on the order of 20° are required to break this degen-
eracy in the individual log-g estimates. As the fibers are not 
perfectly perpendicular to the main magnetic field, the head 
rotation requirement to break this degeneracy decreases with 
head rotations on the order of 10° being sufficient for fibers 
with a 45° angle to the main magnetic field (Figure 10C).

5  |   DISCUSSION

We propose a sequence, DIPPI, to estimate the g-ratio of 
axons within the white matter by measuring the off-resonance 
frequency of the water remaining visible after diffusion-
weighting. After diffusion-weighting, the signal is domi-
nated by intra-axonal water in axons that run perpendicular 
to the diffusion gradient orientation. We exploit the linear 
relationship between the log g-ratio and the myelin-induced 
frequency offset in this intra-axonal water (Equation 1) to 
estimate the g-ratio after correcting for several other sources 
of off-resonance frequency. DIPPI allows one to go beyond 

F I G U R E  8   Bias on the off-resonance frequency caused by extra-axonal water. A, Average myelin-induced off-resonance frequency in 
Camino Monte Carlo simulations of infinitely long crossing cylinders (half are unmyelinated and half have g = 0.7) with different spacings 
(see color legend). As the b value increases, the off-resonance frequency of the total signal (solid line) approaches that of the intra-axonal water 
(dashed), although some bias to the extra-axonal frequency (dotted) remains. B, This approach is caused by the decrease in the extra-axonal signal 
fraction with b value in these Monte Carlo simulations
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the voxel-wise average estimates of g-ratio to get an estimate 
of the average log g-ratio in every fiber population. For a 
single, short tphase, this log g-ratio is averaged across both my-
elinated and unmyelinated axons. Simulations suggest that at 
7T a tphaseof approximately 20 to 30 ms should allow for suf-
ficient phase accumulation to be robustly observed (Figure 

9B) without significant biases caused by nonlinearities ex-
pected as the phase diverges between the myelinated and 
unmyelinated axons (Figure 3). By varying tphase, we can sep-
arate the myelinated and unmyelinated axons to estimate the 
volume fraction and g-ratio of the myelinated axons in each 
crossing-fiber population. Robust estimation of the g-ratio 

F I G U R E  9   Results for fitting the model with various head orientations (A,C,E) or different phase-accumulation times tphase (B,D,F). We 
either consider data with a single tphase (20 ms in A), where we estimate the average log g-ratio across both myelinated and unmyelinated fibers 
(A,B), or data with four different tphase uniformly distributed from 0 to the maximum tphase (60 ms in C and E) for which we estimate the average 
log g-ratio of the myelinated axons (gmyelin) and the fraction of myelinated axons ( fmyelin). In the left column (A,C,E), each dot represents the 
estimated value for one of 100 different noise iterations for the case where both fibers are perpendicular to the main magnetic field (blue), one 
of the fibers is parallel, and the other is perpendicular to the main magnetic field (orange); or we have multiple head orientations combining the 
information from the first two (green). The ground truth value is given by the black star. The right column (B,D,F) shows the distribution of these 
individual estimates as a function of the maximum tphase for various values of the fraction of myelinated axons (fmyelin) for the case of multiple head 
orientations (green in the left column)
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of myelinated axons may require a maximum tphase above  
approximately 50 ms at 7T (Figure 9D,F). Similar phase  
accumulations can be achieved on a 3T scanner by multiply-
ing the phase-accumulation times by 7

3
.

Many other sources can affect the amount of phase accu-
mulated in the diffusion-weighted signal besides the myelin 
susceptibility. In DIPPI, we measure the phase accumulation 
between the two readouts after diffusion-weighting, which is 
unaffected by any phase accumulated during the diffusion-
weighting (Figure 2). However, phase accumulation between 
these readouts is still affected by remaining extra-axonal sig-
nal, eddy currents, and nonmyelin sources of susceptibility.

In Monte Carlo simulations with greatly simplified geom-
etries, we found that the remaining extra-axonal water signal 
at b = 3 ms/µm2 is approximately 15% (Figure 8B). To first 
order, this extra-axonal water has a similar myelin-induced 
frequency as the water within unmyelinated axons, which 
suggests that this would lead to an overestimation of the frac-
tion of unmyelinated axons (and a corresponding bias in the 
average log g-ratio; Figure 8A).

The phase accumulated because of eddy currents can be 
mostly corrected for by modeling them as depending linearly 
on the gradient orientations. However, not all higher-order 

terms can be so easily corrected. DIPPI data in an isotro-
pic phantom (7T scanner with b = 2 ms/µm2) suggest these 
higher-order terms might bias our g-ratio estimates up to  
approximately 4% to10% (Figure 6).

Given sufficient scanning time, these simulations sug-
gest that acquiring a b value of 3 ms/µm2 or higher might 
be worthwhile to minimize the bias incurred from the 
extra-axonal water signal. The robustness of the results at 
such a high b value might depend on adopting eddy-nulled 
diffusion-weighting sequences to minimize the bias induced 
by the eddy currents. For more limited scan times, a lower b 
value can be used to get more robust, albeit biased, g-ratio 
estimates.

The off-resonance field generated by any nonmyelin 
sources of susceptibility is generally much larger than that 
generated by myelin (Figure 7A). As long as the crossing 
fibers interdigitate, we can assume that the nonmyelin sus-
ceptibility contributes equally to their nonresonance fields, 
which allows us to estimate the difference in myelin-induced 
susceptibility between the crossing fibers. If the fibers do 
not interdigitate, but are instead 1-mm apart, this assump-
tion could lead to a substantial bias, especially close to the 
air–brain tissue boundary and major arteries (Figure 7B). 

F I G U R E  1 0   A-C, Precision with which the log g-ratio can be estimated across multiple head orientations for three sets of crossing fibers. 
The color coding in each panel shows the precision (ie, standard deviation) of the estimated log g-ratio when data are combined across head 
orientations. This final precision is a function of the precision with which the difference in sin2�-weighted log g can be estimated for every single 
head orientation on the y-axis and the angle between the different head orientations on the x-axis. Four head positions were considered (rest, 
forward, left, right) as described in the Methods section. Fiber orientation is given above each panel in (x, y, z) with the main magnetic field 
pointing in the z-direction in the rest head position. D, Shows where these crossing fibers fit in the distribution of crossing fiber orientations with 
the main magnetic field from Figure 4. A yellow color indicates that the precision in the estimated log g is similar to the prior of 15.9% (ie, the data 
did not constrain the log g in a meaningful way)
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Crucially, the fiber tracts do not have to interdigitate at the 
level of individual axons as long as the size of the individual 
fascicles is small compared with the voxel size. This inter-
digitation assumption is likely to hold in the center of white 
matter tracts, where the axonal density can be reasonably 
assumed to not be strongly biased to one side of the voxel. 
Hence, when analyzing crossing fibers in regions with strong 
gradients in the off-resonance frequency (eg, the orbitofron-
tal cortex), it would be prudent to limit oneself to the center 
of the white matter tracts.

Even if fibers interdigitate, the large size of the nonmyelin-
induced field still means that we can only estimate the differ-
ence in myelination between crossing fibers. For data with 
multiple-head orientations, we can get around this limitation 
to get an estimate of the myelination for each crossing-fiber 
population (Figure 10). However, this technique will not 
work in single-fiber regions. There are alternative approaches 
that do not require multiple-head orientations. Background 
field removal might be sufficient to remove �bulk under the 
assumption that the local susceptibility is dominated by my-
elin,53-55 or the bulk off-resonance frequency might be esti-
mated from the off-resonance in the extra-axonal water by 
combining data across multiple b values with different extra-
axonal contributions. Alternatively, the curvature of white 
matter tracts naturally varies the angle between the fiber ori-
entation and the main magnetic field, which we can exploit 
under the assumption that the fiber myelination is constant 
along the tract. The reliability of these various approaches 
will be investigated in future work.

When fitting the two-pool model to estimate both the frac-
tion and g-ratio of the myelinated axons, additional sources 
of bias might occur. These estimates rely on the time depen-
dence of the off-resonance frequency caused by the differ-
ence in off-resonance frequency between myelinated and 
unmyelinated axons (Figure 3). Hence, the estimates will be 
biased by any other sources of time dependence in the off-
resonance frequency, which could arise by having multiple 
compartments with different T2 and off-resonance frequency. 
However, we are unaware of any evidence for such time  
dependence in the off-resonance frequency at these long echo 
times.

Finally, we note that there are substantial uncertainties 
in our estimates of the anisotropic component of the myelin 
susceptibility (�A)43 limiting the accuracy of the resulting 
g-ratio. A reliable estimate of this constant is crucial to ac-
curately map the g-ratio to the intra-axonal myelin-induced 
frequency offset (Equation 1).

The combination of theory, simulations, and phantom 
data presented here suggests that DIPPI may be able to obtain 
a reliable measure of the g-ratio in crossing fibers. We plan 
to further explore this using both in vivo and ex vivo data in 
future work.
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