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Abstract
Model-based meta-analysis (MBMA) is a quantitative approach that leverages published summary data along with internal 
data and can be applied to inform key drug development decisions, including the benefit-risk assessment of a treatment under 
investigation. These risk–benefit assessments may involve determining an optimal dose compared against historic external 
comparators of a particular disease indication. MBMA can provide a flexible framework for interpreting aggregated data 
from historic reference studies and therefore should be a standard tool for the model-informed drug development (MIDD) 
framework.
In addition to pairwise and network meta-analyses, MBMA provides further contributions in the quantitative approaches 
with its ability to incorporate longitudinal data and the pharmacologic concept of dose–response relationship, as well as to 
combine individual- and summary-level data and routinely incorporate covariates in the analysis.
A common application of MBMA is the selection of optimal dose and dosing regimen of the internal investigational molecule 
to evaluate external benchmarking and to support comparator selection. Two case studies provided examples in applications 
of MBMA in biologics (durvalumab + tremelimumab for safety) and small molecule (fenebrutinib for efficacy) to support 
drug development decision-making in two different but well-studied disease areas, i.e., oncology and rheumatoid arthritis, 
respectively.
Important to the future directions of MBMA include additional recognition and engagement from drug development stake-
holders for the MBMA approach, stronger collaboration between pharmacometrics and statistics, expanded data access, and 
the use of machine learning for database building. Timely, cost-effective, and successful application of MBMA should be 
part of providing an integrated view of MIDD.
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Introduction

During clinical drug development, the primary efficacy and 
safety outcomes of clinical trials conducted by the sponsor 
typically determine the selected dose of a novel molecule, as 

individual patient data provide a rich source of information. 
However, benefit-risk assessments of the treatment under 
investigation are often made with limited internal data. 
Using internal data along with external data may improve 
internal decision-making and decrease the failure rate of 
the clinical trials for novel therapeutics. Model-based meta-
analysis (MBMA) is a quantitative approach that leverages 
external published summary data for indirect treatment 
comparisons and may be used to determine an appropriate 
dose relative to established comparators. Hence, MBMA is 
a critical component of a successful model-informed drug 
development (MIDD) framework.

Despite the essential value that MBMA could provide 
to the drug development process, the role, and contribu-
tions of MBMA within MIDD have not been recognized 
as much as conventional statistical meta-analysis as shown 
in the PubMed search on "model-based meta-analysis" and 
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“meta-analysis” (620 vs. 226,627 citations respectively, as 
of October 22, 2021). However, Fig. 1 indicates an increase 
in the number of MBMA papers in PubMed.gov, which 
reflects recent interests in the field. Additional recognition 
and engagement from drug development stakeholders for 
the MBMA approach are essential to continue progress in 
the timely, cost-effective, and successful applications of 
MBMA.

One of the challenges that contribute to the scarcity of 
MBMA publications and applications is that decision mak-
ers in the drug development process may not be sufficiently 
trained to interpret MBMA results. At times, a lack of under-
standing of the assumptions and uncertainties in the MBMA 
approach may translate to general skepticism regarding 
the value of MBMA. A "communication gap" that exists 
across disciplines, both within industry and between indus-
try, and regulators regarding MIDD approaches appears to 
be another reason for the relatively scarce application of 
MBMA. In a survey conducted in 2017 among clinical 
pharmacology and pharmacometric colleagues across the 
industry, United States Food and Drug Administration (US 
FDA), and European Medicines Agency (EMA) to under-
stand current and future roles of MIDD, the authors of the 
study suggested that key stakeholders in industry and regula-
tory authorities become more engaged in MBMA training 
in order to gain additional trust and confidence this type 
of quantitative evaluation to provide indirect comparative 
efficacy and safety information [1].

Publications about the use of MBMA in a regulatory con-
text have been limited. The US FDA published a draft guid-
ance for conducting meta-analysis to evaluate the safety of 
human drugs or biological products [2], but currently there 
is no specific guidance on MBMA. Similarly, the sixth 
iteration of the Prescription Drug User Fee Act (PDUFA 
VI), which was reauthorized in 2017 as part of the US FDA 
Reauthorization Act (FDARA) through September 2022, 
includes the evaluation of model-based strategies to support 

drug development but contains only a single sentence on 
meta-analysis, without specific mention of MBMA [3]. In 
addition, the Efficacy Working Party of the EMA published 
a Points-to-Consider guideline, which discusses the diffi-
culty in the validity and interpretation of the meta-analysis 
in applications for the marketing authorization of medicinal 
products and use of meta-analysis or MBMA for drug devel-
opment decisions was out of the scope of the guideline [4]. 
Nevertheless, a more prominent endorsement and promotion 
of the benefits of MBMA from global regulatory agencies 
could greatly boost application.

Here we provide an overview of meta-analysis concepts, 
focusing on the various aspects of model-based meta-analy-
sis, as well as two case studies to demonstrate the successful 
applications of model-based meta-analysis in clinical drug 
development.

Types of meta‑analyses

Pairwise Meta‑Analysis

Although analyzing data from individual clinical trials 
remains the gold standard for evaluating the efficacy and 
safety characteristics of a drug, meta-analysis of aggregated 
published trial data is a commonly accepted statistical tech-
nique in drug development to supplement individual-patient 
level analyses. Meta-analysis is routinely leveraged to pro-
vide a more precise estimate of the overall treatment effect 
compared to the individual clinical trials contributing to the 
pooled analysis, to evaluate efficacy and safety response in 
a subgroup of patients and to improve the estimation of the 
dose–response relationship [4].

Definitions and techniques of meta-analysis have evolved 
with increasing specificity and complexity. Standard pair-
wise meta-analysis (PMA) began to appear regularly in the 
medical literature in the late 1970’s and is recognized as the 
highest level in the hierarchy of evidence for evidence-based 
medicine, as the approach involves a strictly defined pool of 
similar studies from a systematic review [5].

PMA is limited to comparisons of two treatments at a 
time, using treatment arms directly evaluated in head-to-
head trials. Variability in efficacy or safety response is 
expected among different clinical trials comparing the 
same treatments, and a weighting scheme is implemented 
to reflect the different values of evidence source [5]. How-
ever, in order to reduce the heterogeneity in the data, studies 
included in a PMA tend to have similar patient populations 
in terms of the entry criteria for the studies [6].

Fig. 1  Bar chart of PubMed.gov search results of MBMA by year
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Network Meta‑Analysis

Network meta-analysis (NMA) extends the principles of 
PMA to include the evaluation of more than two treatments 
simultaneously. In addition to direct comparisons based on 
data from randomized controlled trials, indirect compari-
sons of treatments that were not investigated in the same 
clinical trial can be inferred through a common comparator 
treatment, such as placebo or standard-of-care (SOC)[7, 8]. 
Because of this ability to combine direct and indirect com-
parisons, NMA is useful as a competitive benchmarking tool 
to examine the comparative effectiveness of multiple treat-
ments, including comparing an investigational drug to mul-
tiple previously approved SOC for a well-researched disease 
area, or when comparing multiple experimental molecules 
that are still under development for the same indication [7]. 
The application of NMA is far-reaching in drug develop-
ment; NMA is widely used within the pharmacoeconomics 
community of practice [9] and is increasingly being used by 
reimbursement agencies to inform decisions about relative 
efficacy and cost-effectiveness based on late stage and post-
marketing evidence [10].

When conducting NMA, a network graph is constructed 
to provide an overview of the amount of information avail-
able for each treatment including the following: the most 
common comparator treatment, the number of studies com-
paring each pair of treatment, the number of studies and the 
number of subjects included in the treatment [11]. Informa-
tion between different drugs from the same class or with 
the same mechanism of action (MOA) can be leveraged, if 
deemed valid, but the inferences made using NMA require 
additional assumptions and data than for conventional PMA. 
One major limitation of NMA is that it does not incorporate 
longitudinal data. Therefore, studies vary substantially in 
treatment duration cannot be sensibly incorporated into a 
NMA [12].

Model‑Based Meta‑Analysis

Meta-analyses that include statistical models for longi-
tudinal disease data or pharmacologic concepts, such as 
dose–response relationships, are often referred to as MBMA. 
Establishing a dose- or exposure–response (E-R) relation-
ship is critical to inform early go/no-go development deci-
sions. Because an MBMA is able to integrate more com-
prehensive information from relevant, publicly available, 
summary-level efficacy and safety data from external clinical 
trials to augment internal data, it can potentially be applied 
earlier in the drug development process to help forecast 
future outcomes and thus provide a more timely benchmark-
ing relative to simpler PMA or NMA based on mature trial 
readouts[13].

A common application of MBMA is the selection of opti-
mal dose and dosing regimen of the internal investigational 
molecule to evaluate external benchmarking and to support 
comparator selection [9, 13]. The relative dose–response 
relationships established by the MBMA can be compared 
by using an overall effect describing the sum of the drug 
effect, placebo effect, and model parameters describing the 
shape of the dose–response curve. The results of MBMA 
should be particularly checked for the differences between 
the observed change from baselines and the predicted change 
from baseline to ensure there is no systematic under- or over-
prediction in respect to drug class, drug, study, or duration 
[11].

As in PMA and NMA, statistical rigor that exists in meta-
analysis in general should be followed in MBMA, especially 
regarding disciplined literature search and model evaluation 
as outlined in the Cochrane handbook, in order to provide a 
consistent approach to the conduct of systematic review [14].

Longitudinal Data

In a basic PMA or NMA, only data at the primary study end-
point is used; intermediate time points are excluded from the 
analysis. However, incorporating longitudinal information 
allows evaluation of the full time-course of the response in 
terms of both its rate of onset and its magnitude, and this fea-
ture of MBMA could provide more accurate estimates of the 
true response and thereby a more valid comparison between 
treatments [15]. MBMA leverages principles from the non-
linear mixed effects modeling approach to handle multiple 
and correlated observations collected from each trial arm in 
longitudinal data [16, 17]. Time-course of response is often 
fitted using an Emax model, potentially including the maxi-
mal effect (Emax), steepness of the curve (Hill coefficient), 
and the time associated with 50% of maximal effect (ET50) 
for individual treatments, if sufficient data is available 
[10]. To describe the dose–response relationship, an Emax 
model, a simpler linear, exponential, or even stepwise (on/
off) model can be used, especially with external summary-
level data, where information from multiple doses might be 
scarce. Based on the assumption that treatments with the 
same MOA should exhibit similar level of maximal effect 
after target saturation, a common time-course effect model 
is often used to fit the longitudinal data from all treatments 
of the same class.

In addition to modeling the dose–response relative to 
placebo or SOC, the longitudinal data of placebo can also 
be evaluated using MBMA, independent of active treat-
ment data, to describe natural disease progression using 
summary-level data. Subsequently, the disease progression 
models based on MBMA could be supplemented with the 
time-course of treatment effects, and the combined model 
can be leveraged for clinical trial design decision purpose by 
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identifying the shortest duration of a trial that would enable 
adequate resolution of treatment effect [9].

Combining Individual‑ and Summary‑Level Data

As aggregated individual-level data is the gold standard for 
characterizing the efficacy or safety response, a potential 
rich source of individual-level data for building a disease 
progression model comes from disease research groups or 
consortia, which are based on the collaboration of multiple 
research entities. However, often the consortia database only 
contains data in the placebo or SOC arms but not in the 
investigational arm of clinical trials, and relevant patient-
level data in the active treatment arms from external sources 
are difficult to obtain for many sponsors [5]. Therefore, an 
opportunity exists to combine individual-level data, either 
from a disease progression database or from internal clini-
cal trial data, with the summary-level data from literature 
sources in a MBMA. This approach would allow a compre-
hensive analysis of available evidence, while also enabling 
the simulation of realistic patient-level data in a clinical trial 
[18].

Although combining individual- and summary-level 
data increases the data resolution for a more thorough data 
analysis and MBMA model building, one drawback is the 
complexity of integrating statistical assumptions across data 
types and potential to introduce bias, as summary-level data 
for a meta-analysis is collected with specific study aims 
and may or may not be representative of the individuals 
that make up a disease population [19]. If the correlation 
between time points for individual patients are assumed to 
be the same as those for treatment arms, this might lead to 
“ecological bias” as there is no guarantee that correlations 
at the individual level would be the same as at the aggre-
gate level [20]. For example, when using summary-level 
efficacy data to construct a MBMA model in Alzheimer’s 
Disease, the time-course of expected disease progression of 
the Alzheimer's disease assessment scale cognitive subscale 
(ADAS-cog) scores for "average individuals" showed neg-
ligible nonlinearity, even though nonlinearities are appar-
ent at the individual level [18]. Therefore, when combining 
individual- and summary-level data in a MBMA, additional 
estimations and assumptions are required to differentiate 
study-level and patient-level variability terms, so that the 
equation for the likelihood describing the individual-level 
data is structured differently than the one describing the 
probability in the summary-level data [19].

Due to the consideration for model assumptions and 
increased complexity in model development, based on the 
authors’ experience, the implementation combined individ-
ual- and summary-level data for a MBMA is not common in 
practice. In order to reduce model assumptions and expedite 
the completion of the analysis to support end-of-phase II go/

no-go decisions, typically internal patient-level data are also 
summarized to the study arm level to be aggregated with 
external data for MBMA.

Building a model‑based meta‑analysis database

A critical step of any meta-analysis is to ensure that the lit-
erature search is comprehensive and the analysis database is 
relevant to the objectives, and a database building protocol 
should be pre-specified. Database searches should include 
sources from relevant scientific journals, books, Clinical-
Trials.gov entries, and conference abstracts and posters. 
When exploring clinical trial results, recognition of potential 
biases—such as poor quality of study design (unblinding or 
randomization), lack of publication from studies with nega-
tive outcomes, and patients in earlier clinical trials are more 
likely to have received a different type of SOC and non-
pharmacological treatments—are necessary in deciding if 
certain source data should be included for a meta-analysis. 
Such biases are likely impact the estimation of treatment 
effects. An appreciation and understanding of the competi-
tive landscape and the endpoints of interest and cross-func-
tional input from treatment landscape subject matter experts 
is essential for successful application of MBMA.

In addition to the publication title, type, and year, a 
MBMA database should include treatment name, dose, fre-
quency, and duration at the minimum [21]. Efficacy and/or 
safety data based on the endpoints of interest would typically 
be pre-specified, after discussions with the project team, in 
particular the clinical science and epidemiology functions. 
Depending on the objectives of the analysis, summary-level 
covariate information, such as the proportion of a categorical 
variable (e.g. gender, prior treatment status) or the average 
of a continuous measurement (e.g. age, body weight), would 
also be extracted from the publications.

In addition to extracting data reported in literature, data-
base augmentation and methods to standardize variables, 
such as variability terms and treatment dose amount across 
citations, variable naming conventions, and to impute miss-
ing values are expected. Imputations can be performed by 
deriving standard error based on published standard devia-
tion and sample size information, or for missing covari-
ate data by leveraging available information from similar 
patient demographics in other trials. Another consideration 
for database building that is specific to MBMA is digitizing 
longitudinal data, which can introduce additional error [17]. 
A documentation of the literature search process for con-
structing the MBMA database and of the inclusion/exclu-
sion rationale for building the subsequent analysis dataset 
is required in order to justify decisions such as the endpoint 
chosen for the analysis, which can depend on data availabil-
ity, and the exclusion of studies with very small sample size 
(e.g. N = 20), as the patient population in larger clinical trials 
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are more heterogeneous and potentially more informative for 
covariate analysis.

A rigorous methodology using core standards developed 
by the Cochrane Collaboration should be followed, includ-
ing establishing a clear protocols for literature search and 
diagnostic methods for evaluating the analysis outputs [22]. 
A flow diagram is often useful for capturing the number and 
reasons of exclusions to arrive at the studies extracted for the 
MBMA database and data included in the analysis dataset 
[23]. If the application of the MBMA is intended for com-
petitive benchmarking that includes an investigational treat-
ment with an upcoming clinical trial readout, much of the 
database building and even the model building efforts can 
be accomplished in the preparatory stage, while waiting for 
the data from the particular clinical trial to become available. 
In this manner, the MBMA could be re-run quickly with the 
data from the investigational treatment of interest and the 
model-based comparative efficacy results would be available 
to support drug development decisions in a timely manner.

Data resolution for covariate analysis

Common applications of MBMA include supporting selec-
tion of patient subpopulations for a clinical trial design. This 
is feasible because, in contrast to PMA, which tends to select 
studies with similar patient populations in order to reduce 
the heterogeneity in the data, one of the major benefits of 
MBMA is that the impact of covariates on the treatment 
effect is routinely incorporated into the model [24]. There-
fore, the differences in design and population characteris-
tics that could lead to heterogeneity in the treatment effects 
between studies are desirable in some respects for a MBMA. 
However, the few numbers of covariates reported and the 
low resolution of the covariates in literature data may restrict 
the depth of covariate investigation.

To reduce the likelihood of spurious patient factor associ-
ations, a list of clinically plausible covariates should be pre-
specified prior to conducting covariate analysis in MBMA 
model development, and random exploration of covariate 
effects should be avoided. Particularly, in a small MBMA 
database with data from fewer trials, there might not be 
enough power to detect the covariate effects, resulting in a 
greater risk for spurious findings [24].

Across various published MBMA in literature, almost 
all the analyses were performed using NONMEM, R, and/
or BUGS (Bayesian inference Using Gibbs Sampling) soft-
ware. Evaluation of the analysis results includes a forest 
plot showing the predicted effect relative to placebo from 
each study, with the observed estimate and 95% confidence 
interval (CI). Any major differences between the observed 
values and the predicted estimates in the forest plot are scru-
tinized to explain potential sources of the deviation, such as 
study conduct modifications or non-standard study outcome 

reporting. This type of plot can help identify covariates that 
make certain study arms different other arms.

Case studies

The following two case studies will be used to demonstrate 
the different applications of MBMA in supporting various 
aspects of drug development in two well-studied disease 
areas.

Case study 1: Comparative MBMA of ICI safety data 
in monotherapy and combination setting

Multiple clinical trials of immune checkpoint inhibitors 
(ICI) such as cytotoxic T lymphocyte–associated antigen 
4 (CTLA-4) inhibitors, programmed cell death protein 1 
(PD-1) inhibitors, and programmed death-ligand 1 (PD-L1) 
inhibitors, and their combinations published in the last dec-
ade created a unique landscape for the application of the 
MBMA techniques [25]. The value of extracting clinically 
useful safety information via meta-analysis from oncology 
clinical trials has been previously reported in a detailed and 
systematic manner [26].

Adverse event (AE) incidence has been comprehen-
sively evaluated for various organ classes including skin, 
gastrointestinal, renal, hepatic, pulmonary, and others [27]. 
Additionally, it has been shown that the safety profiles of 
immune-mediated AEs (imAEs) differ for the anti CTLA-4 
and anti PD-L1 monotherapies and the AE incidence is fur-
ther increased under combination of these agents [28, 29]. 
Despite such a substantial amount of clinical ICI safety data, 
the exact imAEs mechanisms underlying pathophysiology 
and quantitative relationship with ICIs exposure are still not 
fully understood [30]. Therefore, the primary objective of 
the MBMA was to establish a quantitative framework for the 
analysis of ICI exposure and dosing regimen effect on the 
incidence of specific AE rates.

Exposure‑safety meta‑analysis of immune checkpoint 
inhibitors

Following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines, a total 
of 102 eligible articles and abstracts data sources published 
from 2005 to 2018 were selected for preparation of the 
modeling dataset [31]. The selected articles included 153 
treatment cohorts of 21,305 patients who received PD-1 or 
CTLA-4 ICI monotherapy or combination therapy across 80 
clinical trials. Publication bias analysis via Funnel Plots and 
respective Egger’s statistical test [32] revealed no significant 
heterogeneous asymmetry, indicating no obvious publication 
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bias with respect to both total treatment-related AEs (trAE) 
and tissue-specific imAEs.

A meta-analysis was performed based on a random-
effects meta-regression approach with logit-transformed AE 
rates. For the AE types whose averaged incidences were 
less than 5%, a normal-binomial general linear mixed model 
was used, as normal distribution assumption for within-
trial variability is not valid for rare events [33]. In order to 
combine AEs across different ICI dosing schedules, a new 
model-based approach was proposed to account for the dif-
ferences in ICI exposure and target receptor binding, which 
can address dosing schedule differences among comparators 
(Fig. 2A). In particular, published population pharmacoki-
netic models were used to simulate trough drug concentra-
tion at steady state to obtain a typical ICI exposure from 
each study cohort. The simulated exposure was then adjusted 
by the drug concentration in vitro measured IC50 values, 

which were also taken from the published source. Adjust-
ment of drug exposure by the drug IC50 value allowed the 
aggregation of AE data from different ICIs binding on the 
same target receptor (Fig. 2A). In order to assess the key 
factors influencing the between trial variability the base 
model incorporating dose/exposure dependence was further 
followed with sequential (forward and backward) step-wise 
covariate search [31].

In accordance with the results of single trials, the model 
analysis revealed no significant dose/exposure dependence 
for AEs of PD-1 inhibitor monotherapy [34] (Fig. 2B). Con-
versely, CTLA-4 inhibitor dose/exposure led to significant 
increases in AEs incidence. Interestingly, that for PD-1 
inhibitor + CTLA-4 inhibitor combination therapy, AE rates 
increased intensively and with less dose/exposure of CTLA-
targeting agent (Fig. 2C). Thus, the structural model that 
best described the total grade 3/4 trAE rate dependence on 

Fig. 2  Case study 1: Compara-
tive MBMA of ICI safety data 
in monotherapy and combina-
tion setting. A Estimation of 
adjusted ICIs exposure: step 
1, using published population 
PK models to simulate typical 
ICI exposure in the cohort; 
step 2, exposure adjustment 
based on the published ICIs 
potency data. B Exposure-safety 
dependence of total grade 3/4 
AEs upon PD-1 monotherapy. 
C Exposure-safety depend-
ence of total grade 3/4 AEs 
upon CTLA-4 mono- (red) and 
CTLA-4 + PD-1 combination 
(green) therapy. Individual trials 
used for model calibration are 
shown with circles, diameter 
corresponds to sample size, and 
90% confidence interval are 
represented by respective bands. 
D) Simulation of exposure-
safety dependence of total grade 
3/4 AEs upon PD-1 (green) and 
PD-L1 (blue) monotherapy. E) 
Simulation of exposure-safety 
dependence of total grade 3/4 
AEs upon CTLA-4 mono- (red), 
CTLA-4 + PD-1 (green) and 
CTLA-4 + PD-L1 (blue) combi-
nation therapies

A)

B) C)

D) E)
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adjusted ICI exposure was the model accounting for the syn-
ergistic component, where the total grade 3/4 trAE rate was 
driven by CTLA-4 inhibitor exposure with a PD-1 inhibi-
tor dependent modulation. This model element facilitated 
the explanation of the significantly higher AE rate observed 
with the combination treatment, despite the lower CTLA-4 
inhibitor typical exposure in combination therapy versus 
monotherapy.

Meta-regression analysis was also used to determine 
covariates influencing ICI safety profile and its dose/expo-
sure dependence. Thus, line of treatment and combination 
with chemotherapy were found to be statistically significant. 
This allowed to prospectively predict total grade 3/4 trAE 
rates for treatment options that have not yet been tested in 
clinical trials at time of analysis. In particular, a specific 
treatment of interest consisting of a triple combination of 
PD-1 inhibitor + CTLA-4 inhibitor + standard chemotherapy, 
which was predicted to achieve a grade 3/4 trAE rate of 
50% at lower doses than doses tested in clinical trials of ICI 
dual combination therapy [31]. Interestingly, there were no 
statistically significant differences in AE rates across differ-
ent cancer types. This finding suggests that ICI-related AE 
incidence across cancer types may not significantly differ 
and supports the practice of pooling ICI AE data across dif-
ferent cancer types when performing MBMA [31].

Comparative safety analysis 
of durvalumab + tremelimumab combination

At the second stage of the analysis, the MBMA database 
was extended using data from studies with PD-L1 inhibitors 
given as monotherapy or in combination and from additional 
clinical studies with other ICIs published from 2018 to 2020. 
This led to the compilation of a dataset containing a total of 
201 clinical studies with 400 cohorts and 64,471 patients, 
which to our knowledge, is the largest dataset to date, con-
structed based on publicly available clinical aggregate data 
[35].

The implementation of the previously mentioned novel 
methodology on the database extension led to results con-
sistent with those from the first analysis. Specifically, no 
exposure dependence on safety was found in PD-1 or PD-L1 
inhibitors given as monotherapy, and combination therapy 
of PD-1 + CTLA-4 inhibitors or PD-L1 + CTLA-4 inhibi-
tors is associated with higher AEs frequency than that of 
CTLA-4 monotherapy. Interestingly, the frequency of grade 
3/4 trAEs with PD-L1 inhibitors given as monotherapy was 
lower compared with that of PD-1 inhibitors given as mono-
therapy, 12.4% and 16.1%, respectively (Fig. 2D). In the 
combination therapy setting, CTLA-4 inhibitors combined 
with anti PD-L1 agents also showed lower trAEs frequencies 
than combinations including PD-1 blocking ICIs (Fig. 2E). 
This observation is in the good agreement with prior reports 

and can be caused by the ability of PD-1 antagonists to block 
binding with both ligands, PD-L1 and PD-L2, while PD-L1 
agents unleash only PD-1/PD-L1-driven peripheral immune 
tolerance [36, 37]. These MBMA results were used to sup-
port the phase III dose justification of an upcoming combi-
nation therapy study of durvalumab + tremelimumab.

Case study 2: Clinical trial design using an early 
efficacy endpoint and competitive benchmarking 
of fenebrutinib in patients with rheumatoid 
arthritis

Rheumatoid arthritis (RA) is a well-studied disease area 
with a large number of therapies across various MOAs 
showing efficacy, thus providing an opportunity to conduct 
MBMA based on the abundance of publicly available data 
as a part of a whole suite of MIDD analyses to address dif-
ferent clinical trial questions at various stages of the clinical 
drug development.

Selection of an early efficacy endpoint in a rheumatoid 
arthritis clinical trial

Generally, for registrational trials in RA, the efficacy result 
after 6 months of treatment is regarded as the primary end-
point, whereas an earlier endpoint based on short-term data 
may be preferred in early-stage proof-of-concept (PoC) trials 
to enable earlier go/no-go decisions. In order to assess the 
feasibility of predicting 6-month efficacy from short-term 
data, an MBMA was performed to establish a quantitative 
relationship between short-term and long-term treatment 
effects on efficacy in RA clinical trials [38]. The MBMA 
database was constructed using publications between 1994 
and 2012, as available in the medical literature or acces-
sible from the US FDA or EMA websites as drug labeling 
information. Additional data sources included conference 
abstracts and presentations. The constructed database 
included data in biologic disease-modifying anti-rheumatic 
drugs (DMARDs), as well as synthetic DMARDs approved 
or in development for RA at the time of the analysis. Only 
randomized controlled trials with at least 12 weeks of treat-
ment were included in the analysis, and the clinical efficacy 
endpoints of American College of Rheumatology (ACR) 
20, 50, and 70 responses rates (ACR20, ACR50, ACR70, 
respectively), as well as Disease Activity Score in 28 joints 
(DAS28) were included in the MBMA database. While 
ACR20, ACR50, and ACR70 are binary data at the patient-
level, these efficacy endpoints can be summarized in terms 
of the proportion of patients achieving specified thresholds 
to be modeled in MBMA as a continuous outcome.

Using the analysis dataset developed from the MBMA 
database, the relationship between 3- and 6-month ACR50 
treatment effects was quantified by a generalized nonlinear 
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model, followed by a covariate assessment. The results of 
the MBMA show that ACR50 at 6 months is strongly cor-
related with that at 3 months, moderately correlated with 
that at 2 months, and only weakly correlated with results 
obtained at < 2 months. A scaling factor that reflected the 
ratio of 6- to 3-month treatment effects was incorporated in 
the model development, and the ratio was estimated to be 
0.997, suggesting that the treatment effects at 3 months are 
approaching a “plateau”. In the covariate assessment, drug 
classes, baseline DAS28, and the magnitude of control arm 
response did not show significant impacts on the scaling 
factor.

The MBMA confirms the strong correlation between 
short-term and long-term treatment effects on efficacy in 
RA, indicating that the analysis results quantitatively support 
the use of 3-month efficacy data to predict long-term efficacy 
and to inform the probability of clinical success based on 
early efficacy readout. Consequently, a phase II POC study 
(GA29350) in RA patient was designed with the primary 
efficacy time point at 3 months [39], based in part on the 
results from this MBMA analysis.

Competitive benchmarking of fenebrutinib efficacy

GA29350 was a phase II dose-ranging study to evaluate 
the efficacy and safety of fenebrutinib, a Bruton’s tyrosine 
kinase inhibitor, in patients with moderate to severe active 
RA and inadequate response to previous methotrexate ther-
apy or anti-tumor necrosis factor (anti-TNF) therapy. Three 
dose levels of fenebrutinib (50 mg once daily, 150 mg once 
daily, 200 mg twice daily) were tested in the study to obtain 
a broad range of exposures, with minimal exposure overlap 
among the dose groups, to allow a thorough investigation of 
the E-R relationship in patients with RA. At the end of the 
phase II study, a MBMA was performed to leverage publicly 
available information to enable direct and indirect compari-
sons against competitors and between study populations. 
The methodology and results of the analysis were published 
previously and are summarized here [40].

An efficacy and safety meta-analysis database were con-
structed in part with the existing database that was used in 
the previous MBMA correlating short-term and long-term 
treatment effects on efficacy in RA [38] and contained data 
published in or before 2012. The database was augmented 
with pertinent data published through 2017, using an addi-
tional systematic and quality-controlled procedure based 
on the guidelines in the Cochrane Handbook for System-
atic reviews, to search for relevant published available data 
from the PubMed, Cochrane Library, and Embase databases 
using the search term “rheumatoid arthritis”. Inputs on the 
appropriate efficacy and safety endpoints, pre-specification 
of covariates to be considered for assessment, and com-
parators of interest were obtained from clinical science and 

competitive intelligence functions of the project team for 
database construction.

The summary data of the database were explored system-
atically to determine the amount of data available for each 
treatment, efficacy, and safety endpoint across trials and to 
graphically view the time-course of longitudinal endpoints, 
placebo effect, active treatment effect from each of the com-
parator treatments. Response rates of ACR20, ACR50, and 
ACR70 were the most prevalent efficacy endpoints in the 
database, and therefore, were chosen as the efficacy variables 
for model development using MBMA. Because of the rela-
tively few adverse events observed in the fenebrutinib phase 
II trial in RA, MBMA for safety events was not conducted.

The MBMA model incorporated the effect of placebo or 
active treatment as a function of time, as well as the effects 
of drug doses, and patient population characteristics. ACR 
endpoints in terms of the proportion of patients achieving 
specified thresholds are continuous outcome variables at the 
summary-level, and an exponential function reflecting the 
increase to a maximum effect was used to describe the time-
course of ACR20, ACR50, and ACR70 simultaneously. As 
data from different dosing schedules were available, the dose 
was normalized to total amount in one week in order to pool 
data for the same treatment across multiple trials, and the 
dose–response of fenebrutinib on ACR response endpoints 
in the MBMA model was informed by leveraging exposure-
efficacy model parameters estimated using patient-level data. 
Model evaluation was performed using convergence diag-
nostics and internal validation to assess goodness of fit based 
on posterior predictive checks [18].

The results of the MBMA showed that the ACR20, 
ACR50, and ACR70 response rates in the placebo and 
active control (adalimumab) arms of the fenebrutinib phase 
II trial were found to be consistent with historical data for 
these treatments. Covariate analysis found a high proportion 
(> 80%) of patients who had inadequate response to previous 
anti-TNF therapy, the percentage of patients who had failed 
previous methotrexate treatment, and concurrent metho-
trexate therapy had statistically significant impact on ACR 
response rates. Simulation based on the developed MBMA 
model showed that the highest fenebrutinib dose tested 
(200 mg twice daily) was predicted to have similar efficacy 
in terms of ACR20, ACR50, and ACR70 benchmarked to the 
registrational doses of adalimumab and tofacitinib (Fig. 3), 
based on direct and indirect comparison, respectively, in 
patients who had failed previous methotrexate treatment (but 
are anti-TNF naïve) at 12 weeks after initiation of treatment.

Even though the efficacy of fenebrutinib beyond 12 weeks 
is unknown and the correlation between short-term and 
long-term treatment effects on efficacy in RA may not apply 
to a molecule with a new MOA, such as fenebrutinib, the 
results from the MBMA show that fenebrutinib would not 
have superior efficacy when compared to multiple approved 
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competitors of interest. Therefore, although the trial results 
were positive, the results from the MBMA supported the 
company’s decision to terminate clinical development of 
fenebrutinib in the RA indication, as the highest dose tested 
in the clinical trial would not be able to provide substan-
tially greater benefits to patients as compared to existing 
therapeutic options.

Discussion

The two case studies provided applications of MBMA in 
biologics (durvalumab + tremelimumab) and a small mol-
ecule (fenebrutinib) to support drug development decision-
making in two different but well-studied disease areas. To 
increase the likelihood of success into phase III in clini-
cal development, it is imperative to confirm that adequate 
target site exposure, target binding, and target engagement 
are established during the dosing interval before going into 
larger patient studies [41]. However, in the two case stud-
ies where treatment options already exist for the disease 

indications, the clinical development success of the investi-
gative treatment also depends upon determining an optimal 
dosing regimen that provide greater efficacy benefit and/or 
fewer safety risks compared to previously approved thera-
pies, potentially including other experimental molecules that 
are still under development for the same indication, either 
from the same sponsor or from the multiple pipelines of 
different sponsors.

Overall, the case study of fenebrutinib clinical trial in 
RA illustrates the positive impact such approaches can 
have on decision-making and clinical trial efficiency, first 
by allowing a shorter POC study with earlier primary 
efficacy endpoints to be conducted, and second by end-
ing a project with low probability of success. The use of 
early endpoints enabled early planning and presumptively 
early initiation of phase III trials, and information on 
treatment/class effect, such as E-R estimates (e.g., Emax, 
EC50) from patient-level data, could be incorporated 
into the MBMA model to expedite the modeling effort, 
especially in treatments with novel MOAs, such as fene-
brutinib. Other longitudinal MBMA models in RA have 

Fig. 3  Simulations based on the 
rheumatoid arthritis MBMA 
model
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been published [15, 42, 43], and existing MBMA mod-
els can be applied for drug development in novel MOA 
using extrapolation, with assumption and caveats of the 
MBMA modeling approach presented to the project team 
in a transparent manner.

Although MBMA are commonly conducted for efficacy 
evaluations, MBMA and meta-analysis in general can assess 
safety and is used by regulators to evaluate drug safety [21], 
especially in less frequent safety outcomes, which is neces-
sary to rely on pooled analysis [4]. In the case study with 
ICIs, the compiled database included reported publications 
from scientific journals, conference abstracts, and public 
presentations, and the integration of drug exposure level 
and potency into the MBMA framework allowed compara-
tive landscaping from studies with different treatments to 
support dose justification for combination phase III study 
of durvalumab + tremelimumab.

Covariate analysis

In both case studies, covariate analysis was performed as 
part of the MBMA model development. Summary-level 
data used for covariate analysis are generally not as granu-
lar or informative compared to individual-level data [15]. 
Therefore, covariate relationships established at the sum-
mary-level may not always be equivalent to those uncovered 
through patient-level mixed-effects analysis [9, 13]. Further-
more, MBMA covariates identified through statistical testing 
should not be interpreted solely based on a mechanistic con-
text [44]. For example, one common prospectively explored 
covariates in MBMA is publication year of the citation in 
the database as a potential predictor of the endpoint, as the 
background therapy in clinical trials might change over time 
and could confound the treatment effect [45]. Nevertheless, 
the covariates found in the two case studies should be further 
confirmed by the individual-level data [46].

Model evaluation

The MBMA models developed in the two case studies were 
evaluated using posterior predictive check, in which simula-
tions were performed using the fitted models, and the results 
of the simulated data were summarized across time or drug 
exposure and compared to the observed data, as shown in 
Fig. 2B and 2C, to identify any biases and outliers. Addi-
tional methods to check for the adequacy of model fits can 
also include goodness-of-fit plots and summary forest plots 
of observed distributions vs. predicted values. Furthermore, 
sensitivity analyses can be conducted to assess the impact 
of using alternative derivation of data or a subset of data on 
the model development or fitting.

Limitations of model‑based meta‑analysis

Certain challenges are inherent to MBMA and to meta-anal-
yses in general, and some of the concerns are related to the 
source data, such as publication bias. Publication bias arises 
when trials with positive outcomes are more likely to be 
published and thus included in the meta-analysis database. 
To assess publication bias, funnel plots showing the relation-
ship between the treatment effects and the standard errors 
of the trials included in the analysis should be examined 
for symmetry, and associated statistical testing, similar to 
Egger’s regression in the ICI case study, can be performed 
to detect the significance of the publication bias.

The major constraint of MBMA lies in its prominent 
use of publicly available summary-level data, which is not 
granular enough to address certain research questions that 
involve covariate analysis from an extensive list of potential 
prognostic factors. This limitation is most often mentioned 
by stakeholders when the researcher has access to a large 
database of randomized clinical trials that contain individ-
ual-level data from patients in the target population with 
standard-of-care treatments. Furthermore, for comparative 
efficacy or safety applications, relying solely on published 
data might not be sufficient, when the focus of stakeholders 
is on proprietary data that are not yet released by the com-
petitors, in particular when the molecules from various spon-
sors are in similar stages of drug development. However, 
especially for therapeutic areas in which the individual-level 
data is scarce or when indirect comparison to a treatment not 
tested in the clinical trial, resources should be allocated to 
construct a MBMA database and conduct an analysis, as the 
insight provided by MBMA would be invaluable to support 
various drug development decisions.

Additional model‑based meta‑analysis applications

Despite the aforementioned limitations of MBMA, besides 
comparative efficacy and safety as presented in the two case 
studies, other successful applications of MBMA have been 
published and a partial list with brief descriptions are shown 
in Table 1. Many examples in the list leveraged MBMA for 
multiple applications, such as the fenebrutinib case study, 
where a longitudinal model was developed to conduct a 
more comprehensive efficacy comparison.

An early use of MBMA involves using summary-level 
data available in the literature to establish population PK 
models for approved molecules that have published popula-
tion PK models based on individual-level data (Table 1). 
Instead of trying to collect dense concentration–time pro-
files in individual patients, which are often not feasible in 
the post-approval setting, one potential approach that can 
be used to overcome this issue is to develop a population 
PK model using a large collection of therapeutic dose 
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monitoring data [47]. Alternatively, MBMA can integrate 
individual- and summary-level PK data reported in various 
studies to construct a relatively complete population PK 
model [6, 48–50].

The placebo effect can be incorporated as "baseline" 
treatment effect in the model and the magnitude of the drug 
effect could be estimated [13]. The placebo effect over time 
can also be quantified separately and then be used to adjust 
for treatment effects, to avoid introducing bias in the esti-
mation of relative effects of the active treatments [10, 51]. 
Establishing a placebo response model would be helpful for 
understanding the disease progression and for identifying 
predictors that would impact the disease progression. The 
placebo response model developed using MBMA could be 
leveraged to optimize clinical trial design, including the 
determination of entry criteria and maximization of relative 
active treatment effect [46], as well as to create a virtual 
comparator arm or a hybrid comparator arm, by incorporat-
ing the MBMA as a Bayesian prior, and thus reducing the 
number of patients needed to achieve the necessary statisti-
cal power [45]. One important consideration of developing 
a placebo response model using data from multiple clinical 
trials is when placebo-controlled trials are qualitatively dif-
ferent from head-to-head trials (e.g., different susceptibility 
to reporting bias), combining data from these two types of 
trials may introduce bias, if assumptions are not examined 
and addressed [7].

Collaboration between pharmacometrics and other 
drug development functions

The two case studies illustrate the application of MBMA 
to support drug development decisions using a MIDD 
approach, and the analyses were conducted through the col-
laborations between a pharmacometrics group and various 
other functions of the project team. Based on the authors’ 
experience, the extent of accepting and leveraging MBMA 
results to support internal decisions varies greatly across 
project teams. It is critical that important data sources are 
included in the analysis database, particularly for compara-
tive benchmarking, where an appreciation of the competitive 
landscape and present state of the standards of care for the 
disease indication of interest is critical to achieve the goals 
of the analysis [9]. The clinical science, competitive intel-
ligence, and/or epidemiology functions should be consulted 
to obtain the most relevant and current information on the 
competitors of interest and to understand the placebo/dis-
ease progression. Additional collaborations are also possible 
with the health economics and outcomes research (HEOR) 
function, with which outputs from the MBMA could be 
integrated into other, non-clinically focused models, such 
as cost-effectiveness models or financial forecasting models, 
potentially leading to improved commercial and financial 
strategies [45]. Therefore, continued education and commu-
nication among project stakeholders, team collaborators, and 

Table 1  Examples of MBMA applications

Type of analysis Applications References

Population pharmacokinetic model development Describe the population pharmacokinetic in a molecule with a 
lack of published model or to describe the pharmacokinetics in 
special populations

[6, 47–50, 64–67]

Longitudinal treatment effect Characterize the time-course of efficacy endpoints (e.g., viral 
response) with repeated measurements per reporting unit

[12, 15, 16, 53, 68–79]

Covariate investigation Merge data from multiple studies for the determination of covari-
ate effects not explored in a population pharmacokinetic model

[80–85]

Dose–response (efficacy or safety) estimation Combine data of molecules in the same class or indication to 
obtain an overall trend of the treatment effect

[43, 76, 86–91]

Disease progression characterization Provide longitudinal profiles of the natural disease progression or 
of placebo treatment

[18, 46, 92–95]

Comparative efficacy and/or safety Competitive benchmark and rank the treatment effects among 
molecules of interest

[10, 11, 31, 40, 44, 51, 
85, 96–106]

Aggregation of individual data Leverage the basic definition of MBMA, i.e., model development 
based on data from multiple studies

[19, 107–110]

Correlation between early and late endpoints Allow the use of a biomarker or an early clinical efficacy time 
point to detect a signal of the treatment effect

[38, 42, 63, 111]

Pharmacokinetic and pharmacodynamic relationship Establishing the relationship between exposure and an efficacy 
or safety biomarker, possibly a less frequently reported one and 
would need data from a large population to be detected

[41, 112–117]

Simulation of established MBMA models Simulate various scenarios using established MBMA models to 
optimize clinical trial design

[62, 118]

Pharmacoeconomics Incorporate cost-effectiveness into a MBMA model [119]
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other pharmacometric specialty experts regarding MBMA 
and MIDD approaches in general are warranted [1].

Another important ally of MIDD approaches is from sta-
tistics. In a survey conducted in 2017 in clinical pharma-
cology and pharmacometric field, the authors of the study 
suggested the need for greater engagement with statistical 
colleagues on using pharmacology principles to maximize 
the value of MBMA [1]. Recently a new International Soci-
ety of Pharmacometrics (ISoP) Statistics and Pharmaco-
metrics Special Interest Group sub-committee in MBMA 
was created, in collaboration with the American Statistical 
Association. The core team members of the MBMA sub-
committee include those from the biotechnology/pharma-
ceutical industry, contract research organization, and regu-
latory agency, collaborating on work streams and building 
a MBMA community of practice within and outside of the 
pharmacometrics community, with major objective to ini-
tiate communication with statisticians about MBMA prin-
ciples and to educate statisticians in the utility of MBMA 
through the identification of training opportunities [52]. 
Such jointly established community of practice through a 
professional association would further increase and solidify 
the collaboration and cooperation between the pharmaco-
metric and statistical practices in the future.

Databases and information sharing

A major impediment to conducting MBMA is associated 
with difficulties in constructing MBMA databases. Data 
sharing of summary-level data through consortia is one 
potential solution, but with increasing access to patient-level 
clinical trial data and real-world data from the clinical prac-
tice settings, the lines between patient-level and trial-level 
are getting increasingly blurred [9]. Most meta-analyses only 
include data from randomized clinical trials, but there has 
been a growing interest in applying to real-world data [53].

Innovative data sharing and crowdsourcing strategies 
[54], where a large group of people are given access to a 
valuable set of data to achieve a common project goal, may 
help unlock the full potential of meta-analyses for drug 
development. The crowdsourcing approach has recently 
been adopted by the US FDA as a pilot project to examine 
pooled analyses using data from pediatric clinical trials [55]. 
The crowdsourcing platform has also been implemented to 
identify a prognostic model for the prediction of survival 
in patients with metastatic castration-resistant prostate can-
cer in a crowdsourced Dialogue for Reverse Engineering 
Assessments and Methods (DREAM) challenge [54]. The 
participants of the DREAM challenge received data from 
the placebo and active control arms, including 150 clinical 
variables from the clinical trials. A major feature of this 
crowdsourcing effort was the removal of privacy and legal 
barriers associated with open access to phase III clinical 

trial data through a not-for-profit initiative by a consortium 
that broadly shares de-identified patient-level oncology clini-
cal trial data with researchers [54]. In addition to provid-
ing a rich set of open-data that can be mined, the modeling 
results from such crowdsourcing platforms could advance 
future model development faster and further than individual 
research organizations working separately and would result 
in more efficient clinical trial design industry-wide.

Machine learning in model‑based meta‑analysis

Another aspect of data science that has great potential to 
further expand the implementation of MBMA in drug devel-
opment is machine learning (ML). As modeling, simula-
tion, and ML are often used for the same purpose, these 
three approaches could join forces to exploit their relative 
merits [56]. One such realization involves the automation 
of many steps of the systematic review process, including 
search, screening, and data extraction [57, 58], which can 
greatly expedite the MBMA database-building process. 
Initial screening through abstract reviews is typically the 
most labor-intensive and time-consuming step of conducting 
a meta-analysis because the traditional systematic review 
process is rigorous but not efficient. Conducting a single 
systematic review requires more than 1000 h of highly 
skilled labor [57], but is associated with a low yield rate 
of approximately 2.94% [59]. A particular subfield of ML 
called natural language processing (NLP) can significantly 
reduce the manual workload of the systematic review pro-
cess by performing text mining and classification of the 
publication abstracts and even data extraction [57]. ML 
methods can also be leveraged to estimate the probability of 
whether an abstract should be included, which can alleviate 
the amount of manual labor required to construct a MBMA 
database [57]. However, even with the implementation of the 
currently available ML approaches, the MBMA database-
building process would be semi-automatic at best, and the 
NLP-based procedures should still be followed by human 
review of identified studies and extracted data.

A major feature of ML is its ability to process large-scale 
data, and sophisticated methodologies have been devel-
oped in the ML field to cope with data management and 
modeling issues. For example, ML-based statistical meth-
ods can improve the convergence of the regression meth-
ods utilized in the development of predictive models [60], 
including those used for MBMA. Also, ML-based methods 
have been developed for the imputation of missing features 
as a function of all other features and could be leveraged 
in MBMA as well. Another potential future use of ML for 
missing features in MBMA databases is the implementation 
of deep learning algorithms, which can learn features from 
the data without assumptions and may outperform previous 
approaches in imputation tasks [61].
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Conclusion

There are various aspects of the MBMA database-building 
and model development steps, as shown in Fig. 4, that will 
improve as the field continues to expand. In the past, publi-
cation bias had been a genuine concern in conducting meta-
analysis, when clinical trials with positive results were more 
likely to be published than those with negative or inconclu-
sive results. However, after the US FDA Amendment Act 
(FDAAA) mandated clinical trial registration and reporting 
of results on ClinicalTrials.gov in 2007, some of the publica-
tion bias concerns have been reduced [24].

In general, information provided by a MBMA can be used 
to: (i) compare new compounds to hypothetical controls 
comprised of either emerging or historical, existing treat-
ment options, (ii) link short-term (e.g. biomarker) responses 
to long-term clinical efficacy and safety end points, (iii) 
integrate internal and external data to better character-
ize dose–response and optimize dose selection and, (iv) 
identify or bridge a target population for trial design [24, 
62]. By summarizing the overall evidence from multiple 
studies, MBMA is an integrated component of the MIDD 
toolbox. MBMA results often inform molecule-level “go/
no-go” decisions but also can shape portfolio-level strategy 
when comparing multiple internal assets developed for a 
common indication [63]. MBMA is a holistic approach that 
examines the totality of available evidence and allows bet-
ter informed decision-making to speed up development of a 
drug candidate with improved benefits for patients, consist-
ent with model-based strategies in PDUFA VI to support 
drug development.
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