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Strain‑induced quantum 
Hall phenomena of excitons 
in graphene
Oleg L. Berman1,2, Roman Ya. Kezerashvili1,2*, Yurii E. Lozovik3,4 & Klaus G. Ziegler5

We study direct and indirect pseudomagnetoexcitons, formed by an electron and a hole in the layers 
of gapped graphene under strain-induced gauge pseudomagnetic field. Since the strain-induced 
pseudomagnetic field acts on electrons and holes the same way, it occurs that the properties of single 
pseudomagnetoexcitons, their collective effects and phase diagram are cardinally different from those 
of magnetoexcitons in a real magnetic field. We have derived wave functions and energy spectrum of 
direct in a monolayer and indirect pseudomagnetoexcitons in a double layer of gapped graphene. The 
quantum Hall effect for direct and indirect excitons was predicted in the monolayers and double layers 
of gapped graphene under strain-induced gauge pseudomagnetic field, correspondingly.

In this study we focus on the influence of strain on the properties of excitons and their collective properties in 
mono and double layers of gapped graphene. It was predicted that an in-plane distortion of the graphene lat-
tice due to non-uniform strain is equivalent to creation of large, nearly uniform pseudomagnetic fields (PMF), 
acting on electrons, which lead to the formation of Landau levels (LLs) and zero magnetic field Quantum Hall 
effect (QHE) for electrons1–5. Note that the Quantum Hall phenomena in graphene and graphene based struc-
tures in a high magnetic field attracted the great interest6–8. Landau quantization of the electronic spectrum for 
highly strained nanobubbles was experimentally observed, and PMFs in excess of 300 T have been measured9. 
A 2D electron gas (2DEG) in graphene in a high strain-induced PMF attracted strong interest very recently10. 
Topological features of neutral particle-hole pair excitations of correlated quantum anomalous Hall (QAH) 
insulators have been studied with application to broken-symmetry spontaneous QAH insulators in substrate 
aligned magic-angle twisted bilayer graphene11. The optical properties of interlayer excitons have been analyzed 
in heterobilayer transition metal dichalcogenides, where the moire pattern is introduced in heterostructures, in 
comparison with that introduced by twisting (and/or lattice mismatch)12.

We consider excitons in the QHE regime, where the uniform pseudomagnetic field can be produced by 
strain13. The gap and the strain field have a different origin in graphene: The gap appears when we break the 
sublattice symmetry (e.g., by doping with hydrogen), whereas the strain is caused by smooth deformations of 
the graphene sheet. Therefore, both effects can be engineered independently.

Consider strained gapless graphene. Due to the symmetry of its lattice, graphene has two independent chiral 
valleys: K and K ′ . Clockwise and counterclockwise polarized photons are absorbed in different valleys. Strain-
induced effective pseudomagnetic field has the opposite direction in the K and K ′ valleys3. This is due to the 
fact that there is no violation of invariance with respect to time reversal symmetry in the strained graphene, in 
contrast to the case with a real magnetic field.

When photons from beam with circular polarization are absorbed, two types of pairs of electrons and holes 
arise in one of the valleys: an electron with spin up and a hole with spin down, or vice versa. As a result of the 
relaxation of electrons and holes with the emission of phonons, two types of intravalley excitons, that are bound 
state of the electron and hole from the same valley, arise: singlet and triplet state excitons. Due to the spin con-
servation during recombination, triplet excitons are long-lived, dark, and singlet excitons are bright. Consider 
now pumping by a linearly polarized light beam. A linearly polarized photon is a quantum superposition of two 
opposite circular polarizations. Therefore, as a result of the absorption of photons from a light beam with linear 
polarization, pairs of electrons and holes appear in both valleys. After relaxation with emission of phonons, 
intravalley singlet and triplet excitons appear the same valley K or K ′ , namely, two singlet ones, with a spin up 
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electron and a spin down hole and vice versa, as well as two triplet, with a spin up electron and a spin up hole 
and with a spin down electron and a spin down hole. Therefore, there are eight types of intravalley excitons. It is 
worth noting that the recombination of intervalley exciitons with photons radiation is forbidden due to a large 
momentum between the valleys in comparison with momentum of a photon, i.e. intervalley exciitons are dark 
exciitons. By taking into account spins, there are also eight types intervalley excitons with an electron from the K 
valley and a hole from the K ′ valley or vice versa. Due to the symmetry of the K and K ′ valleys and the negligible 
spin-orbit interaction in graphene, all sixteen types of excitons have the same energy. The latter means that the 
degeneracy factor is 16. In particular, for this reason, intravalley excitons have the same binding energy and the 
same dependence of the energy on momentum. In a real magnetic field, singlet excitons in the K and K ′ valleys 
also have the same binding energy, the same continuous dependence on the magnetic momentum, and the con-
served value in the magnetic field. The conservation is associated with the invariance of the system with respect 
to translation and gauge invariance17. As a result, the 2D magnetoexciton spectrum is a set of allowed energy 
bands separated by distances between Landau levels14. Due to this, singlet intravalley excitons have the same 
collective properties, and they form a Bose-Einstein condensate (BEC) at low temperatures (ideal for spatially 
direct excitons in a single-layer system, see15,16 and references therein). For triplet intravalley and intervalley 
excitons, one should take into account the interaction of the spin with the real magnetic field, which leads to 
the Zeeman splitting.

It is important to note that in intravalley excitons electrons and holes are affected by the same PMF inherent 
in a given valley. In intervalley excitons, opposite PMFs acts on electrons and holes. This leads to completely 
different properties of intravalley and intervalley excitons.

Below we show that since the strain induced PMF, in contrast to a real magnetic field, acts on the different 
electric charges from two different valleys in the same way, it leads to novel effects for excitons in PMFs as con-
sidered below. These effects are: i. a discrete energy spectrum of excitons in a PMF in contrast to excitons in a real 
magnetic field, characterized by the continuous energy dependence on the magnetic momentum on each LL14,17; 
ii. rich Quantum Hall phenomena for excitons in a PMF which are absent for excitons in a real magnetic field.

In this work we calculate the LLs of direct and indirect excitons in mono and double layers of gapped strained 
graphene, respectively, in the presence of a PMF. Such excitons we refer to as PMEs. We consider the existence 
of the Integer and Fractional Quantum Hall effects and the state of composite fermions at ν = 1/2 for the PMEs. 
We propose also the experimental methods to observe these phenomena.

This article is organized in the following way. In "Strain-induced pseudomagnetoexcitons" section we con-
sider the formation of PMEs in strained graphene. The Landau levels for the non-interacting electron and hole 
in strain-induced PMF and the wave functions and energy leveles of a PME are presented in “Non-interacting 
electrons and holes in a strain-induced PMF” and “The energy of a PME” sections, respectively. In “Strain-
induced quantum hall phenomena for pmes” in section we discuss strain-induced Quantum Hall phenomena 
for PMEs. Discussions and conclusions related to collective properties of the PMEs follow in “Discussion and 
conclusions” section.

Strain‑induced pseudomagnetoexcitons
A strain-induced gauge field can cause a large PMF to appear for certain selected geometries of the applied strain 
in graphene monolayers3. Specifically, a modest strain field with triangular symmetry results in the motion of 
the charge carriers similar to their motion in the approximately uniform, quantizing magnetic field up of tens 
of Tesla1.

In this section we provide the theoretical formalism for the description of Mott-Wannier excitons in a mon-
olayer or in a double layer of gapped strained graphene. We consider for both cases an equal number of electrons 
and holes, where in the case of the double layer the electrons are in one layer, the holes are in the other layer. 
Then we add strain, which induces a PMF B perpendicular to the layers3. We further assume that we apply a 
strain field that causes a uniform PMF1.

In the following we will study the two-body problem of an electron-hole pair in gapped graphene mono and 
double layers, subject to a strain-induced PMF.

Starting from the effective Dirac Hamiltonian for a single valley of gapped graphene in the presence of a strain 
field with components Ax and Ay

3, we consider the Dirac equation for a pair of an electron at position re and a 
hole at position rh attracting via V(|re − rh|) potential. The corresponding Dirac equation for the spinor � reads

where the Dirac Hamiltonian of the non-interacting electrons and holes is

In Eq. (2) vF is the Fermi velocity, while � is the gap between the conductance and valence bands in the single-
particle spectrum.

Next we consider the situation, when the energies of the electrons in the conduction band above the gap and 
the energy of the holes in the valence bands below the gap are significantly smaller than the energy gap between 
the bands. Below we are using the gaps that are satisfying the condition that the gap is larger than the separa-
tion between LLs. The quadratic dispersion in the absence of strain induced pseudomagnetic field is valid for 
wavevectors k up to k′ ( k′ is is the maximally admitted wavevector where at least several LL are present) when 
�vFk

′ is smaller than the gap. Then we consider pseudomagnetic fields, for which at least two LLs exists in this 

(1)(H0 + V(|re − rh|))� = E� , � =
(

ψ1(re , rh)
ψ2(re , rh)

)

,

(2)H0 = vF
∑

j=e,h

(

2�j/vF i�∂xj + Ax(rj)+ �∂yj − iAy(rj)

i�∂xj + Ax(rj)− �∂yj + iAy(rj) − 2�j/vF

)

.
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energy regime. By decreasing the strain field, we can create more LLs in this regime. Then we can neglect small 
terms in the Dirac Eq. (1) with the Hamiltonian H0 and follow the standard approach (see, e.g., Ref.18) obtain 
the Schrödinger equation.

Now we introduce the effective Hamiltonian operators of an electron and a hole taken either from the same 
valley or from different valleys in the strain-induced PMF. The Hamiltonian operator of electrons near the bot-
tom of the conduction band can be written as

and near the top of the valence band as

where p is the momentum of an electron, c†p and cp are electron creation and annihilation operators; mc(v) ( mc > 0 ; 
mv < 0 ) and Ac(v) are the effective masses and strain-induced vector potentials for electrons near the bottom of 
the conduction band and near the top of the valence band, correspondingly.

The particle-hole transformation of c → h† near the top of the valence band leads to the Hamiltonian for holes

where mh = −mv is the mass of a hole, h†p and hp are hole creation and annihilation operators, and Ah is the 
strain-induced vector potential, acting on a hole. If an electron and a hole are in the same valley, then we get 
Ah = Ac , while for an electron and a hole taken from different valleys, one has Ah = −Ac , since contrary to a 
real magnetic field, the strain-induced PMF does not break the time-reversal symmetry3. Therefore, one has for 
the Hamiltonian operator of the holes, taken from the same valley as the electrons,

while the Hamiltonian operator of the holes taken from a different valley than that of the electrons, is written as

From these considerations we conclude that the PMF acts differently, depending on whether the electron and the 
hole are from the same or from different valleys. In other words, the sign of the vector potential changes when 
we change one of the valleys, either for the electrons or for the holes. Thus, the PMFs acts on an electron and a 
hole from the same valley in opposite direction like a real magnetic field, while it acts on an electron and a hole 
from the different valleys in the same direction, in contrast to a real magnetic field.

To make our statements more clearly, we have to look at the single-particle energy spectrum shown in Fig. 1. 
As can be seen, there can be two types of excitons: i. the intravalley exciton formed by an electron and a hole 
in the same K (or K ′ ) valley, and ii. the intervalley exciton formed by an electron in the K (or K ′ ) valley and a 
hole in the K ′ (or K) valley. From the different electron-hole symmetries exhibited in the single-particle energy 
spectra, we may expect that the intravalley and intervalley exciton states should display different magnetic-field 
dependencies.

The processes of absorption and emission of photons in graphene (during the recombination of electrons 
and holes or excitons) are governed by the following conservation laws: the laws of conservation of energy and 
momentum and the law of conservation of spins (due to the negligible spin-orbit interaction in graphene). The 
laws of conservation of energy and momentum lead to the fact that when a photon with circular polarization 

(3)Ĥc =
1

2mc

∑

p

(

p− Ac

)2
c
†
pcp,

(4)Ĥv =
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Figure 1.   The schematic band structure and electronic dispersions in the graphene monolayer for bright 
intravalley and dark intervalley pseudo magnetoexcitons in the K and K ′ valleys. The second intervalley PME is 
shown by the dashed curve.
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is absorbed, an electron appears in the upper band and a hole in the lower band only in the same valley, since 
the photon momentum is much less than the difference in momentum between the centers of the valleys. For 
the same reason, an intervalley exciton, the bound state of an electron and a hole from different valleys cannot 
recombine with the emission of a photon. The time scales for intravalley and intervalley excitons are very differ-
ent. The time of life for intervalley excitons is several orders of magnitude longer than for intravalley excitons in 
the absence of energy and momentum conservation. Therefore, the probability of recombination with phonon 
participation is too small. Thus, after short time only intervalley excitons can be observed.

Let us now consider peculiarities of excitons in graphene in a pseudomagnetic field. First, the PMF induced by 
strain does not interact with the spin. Thus, the singlet and triplet intravalley excitons have the same energy. This 
take place also for the singlet and triplet intervalley excitons. In PMF intravalley excitons have the same properties 
as in a real magnetic field. This is due to the fact that the quantity conserved in a pseudomagnetic field (pseu-
domagnetic momentum) has the same form as in a real magnetic field. As a result, PMEs have the same energy 
dependence on pseudomagnetic momentum as magnetoexcitons on magnetic momentum. Their spectrum is 
also a set of bands with allowed energy, separated by distances between Landau levels in a pseudomagnetic field. 
As a result, intravalley PMEs have the same collective properties as magnetoexcitons, that is, they form a BEC 
at low temperatures. Based on this description, we conclude that the photoluminescence signal of the electron-
hole recombination at very short time scale is due to the intravalley excitons. They form an intravalley exciton 
BEC, similar to the BEC of magnetoexcitons in a magnetic field14–16. This is due to the pseudomagnetic field 
that acts on an electron and a hole, forming an intravalley exciton, the same way. These PMEs can form a BEC.

A completely different situation takes place for intervalley pseudomagnetoexcitons. Due to the fact that in 
different valleys the PMF has a different direction, the pseudomagnetic momentum is fundamentally different 
from the magnetic momentum, namely, the pseudomagnetic field acts on electrons and holes in the same way. As 
a result, the spectrum of the PME becomes similar to the spectrum of a 2D electron in a real magnetic field: the 
spectrum is completely discrete. This leads to completely new collective properties of intervalley pseudomagnetic 
excitons. Namely, this leads to the manifestation of a number of phenomena, such as the Integer and Fractional 
Quantum Hall Effect and so on. Thus, in this Paper we will consider only excitons formed by an electron and a 
hole from different valleys.

As it is follows from above discussion, in stark contrast to the vector potential of the electromagnetic field, 
the strain induced effective vector potentials A(re) and A(rh) , acting on an electron and a hole from the different 
valleys, forming a PME, are not coupled to the charges of the particles and have the same sign in the Hamilto-
nian (2), and these potentials act on e and h the same way.

Let us mention that one can consider e and h in different layers, which form indirect17 PMEs in a graphene 
double layer. In this case, the application of different doping to the two graphene monolayers can lead to the 
formation of two different gaps in these graphene monolayers. In such a system the effective masses of electron 
and hole me(h) = �e(h)/v

2
F

19, are not equal: me  = mh.
The Hamiltonian Ĥ of an electron-hole pair, forming a PME in the strain-induced PMF, can be written as

where the Hamiltonian Ĥ0 of non-interacting an electron and a hole in the strain-induced PMF is given by

where A(r1(2)) = B× r1(2)/2 is the strain-induced effective vector potential, in cylindrical gauge, and B is the 
strain-induced PMF. Recently it has been shown that strain pseudomagnetic field in two twisted graphene or 
TMDC layers giving a moire pattern will couple to the valley magnetic moment and contributes a pseudo-
Zeeman term20,21. We are not considering two twisted layers in the present work.

The energy of the e − h attraction V(|re − rh|) in Eq. (8) can be described by the Rytova-Keldysh (RK) 
potential 22,23

or by the Coulomb interaction. In Eq. (7) κ = (ǫ1 + ǫ2)/2 describes the surrounding dielectric environment, 
ǫ1 and ǫ2 are the dielectric constants either below and above the monolayer, H0 and Y0 are the Struve and Bessel 
functions of the second kind, respectively, and ρ0 is the screening length. The results of our calculations with the 
RK potential are compared with those of the Coulomb potential.

The Schrödinger equations for a ME in a magnetic field and for the PME in a PMF are invariant with respect 
to the magnetic translation and gauge transformations. This invariance for a magnetic field results in the conser-
vation of the operator of the magnetic momentum of the ME ˆ̃P = −i�∇re − i�∇rh −

eB0×(re−rh)
2  , where B0 is the 

magnetic field, which commutes with the Hamiltonian and has the same eigenfunctions as the Hamiltonian14,17,24. 
The dependence of ˆ̃P on the coordinate of the relative motion of an electron and a hole r = re − rh leads to the 
continuous dependence of the ME energy and wavefunction on ˆ̃P . Contrary to a magnetic field, in a PMF the 
simultaneous translation and gauge transformations leads to the operator of pseudomagnetic momentum P̂:

The difference between the expressions for ˆ̃P and P̂ is related to the fact that the PMF acts on e and h the same 
way due to the same sign for the pseudovector potential in Hamiltonian (6). Following the standard procedure 
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for the separation of the center-of-mass and relative motion we introduce the coordinates of the center-of-mass 
R = mer1+mhr2

m1+m2
 and relative motion r = r1 − r2 . In these coordinates for the magnetic momentum operator of 

the magnetoexciton we have

Using these coordinates one can rewrite the operator of pseudomagnetic momentum P̂ as

where

Since in the case of equal electron and hole effective masses at me = mh one has γ = 0 , the third term in the 
r.h.s. of Eq. (10) vanishes, and the PMF acts only on the center-of-mass of an electron and a hole and does not 
affect on their relative motion.

Using the coordinates for the center-of-mass R and relative motion r of the electron-hole system and per-
forming the detailed lengthly calculations given in Supplementary Material (SM) V A, the Hamiltonian (6) for 
non-interacting electron and hole can be written in terms of the operator P̂ as

where

where M = me +mh is the total exciton mass and the operator P̂2 is given by

The operator P̂2 commutes with the Hamiltonian for the non-interacting electro-hole pair in the PMF and 
shares the same eigenfunctions with the Hamiltonian (12). However, the eigenfunctions of ˆ̃P (10) and P̂ (9) are 
different. We will see below that this implies a discrete spectrum for the PMEs contrary to a continuous spectrum 
for the magnetoexcitons. This implies that, in contrast to the 2D many-magnetoexciton system, the collective 
properties of a 2D many-PME system occur to be similar to a 2D electron system in a high magnetic field.

Non‑interacting electrons and holes in a strain‑induced PMF.  Now we study the eigenfunctions 
and eigenvalues of the Hamiltonian H0 (6). Following the detailed lengthly calculations given in SM V A, the 
eigenvalues of H0 of the non-interacting electron-hole pair in the strain-induced PMF can be presented as

where ωc = 2B/M and ω̃c =
(

m2
e +m2

h

)

B/M2µ are the cyclotron frequencies for the center-of-mass motion and 
the relative motion of the non-interacting electron and hole, respectively, while n = 0, 1, 2, . . . and ñ = 0, 1, 2, . . . 
are the quantum numbers. Moreover, according to the calculation in SM V A, for the eigenfunctions we get

where γ is defined by Eq. (11). The R–dependent function ψ(0)
n,m(R) is the wavefunction for a free particle in the 

effective PMF 2B in the cylindrical gauge in Refs.14,17,25. The r–dependent function ϕ̃(0)
ñ,m̃(r) is the wavefunction 

for a free particle the effective PMF B̃ =
(

m2
e +m2

h

)

B/M2 in the cylindrical gauge and it is

where l =
√

�/B̃ is the pseudomagnetic length and L|m̃|
ñ  are Laguerre polynomials.

In the case when me = mh ≡ m0 we have ωc = ω̃c = B/m0 , where m0 = �/v2F for the e and h masses. In 
this case from Eq. (15) we obtain a simple elegant expression for the energy of the non-interacting electron-hole 
pair in the strain-induced PMF:

where ωc = B/m0 is the cyclotron frequency for the motion of the center-of-mass and the relative motion of the 
non-interaction electron–hole pair, n = 0, 1, 2, . . . and ñ = 0, 1, 2, . . . are the quantum numbers for the motion 
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ñ,m̃(r) =

[

ñ!
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of the center-of-mass and the relative motion of a non-interacting electron –hole pair, respectively. Therefore, 
Eqs. (15) and (18) present the quantized eigenenergy of the non-interacting electron and hole in the strain 
induced PMF with non-equal and equal electron and hole masses, respectively. Thus, the energy levels of a 
non-interacting two-dimensional electron-hole system in a PMF are quantized into a discrete set of LLs with 
degeneracy proportional to the area of the system 26.

We use the expressions (15) and (18) to find the spectrum of the corresponding Schrödinger equation for 
the non-interacting electron-hole pair. Let us mention that for the non-interacting electron-hole pair in a high 
strain-induced PMF we obtain that the energy spectrum of both the motion of the center-of-mass and the rela-
tive motion are quantized.

In the case of the double layer when it is also possible that me  = mh , the energy of the non-interacting 
electron-hole pair in the strain-induced PMF can be found by using Eq. (15). In this case due to different band 
gaps in the first and the second graphene layer we have me  = mh . This leads to different cyclotron frequencies 
ωc and ω̃c for the motion of the center-of-mass and the relative motion of the non-interacting electron and hole.

If one acts by the Hamiltonian of the magnetoexciton on the eigenfunction of ˆ̃P and employs the certain 
variable change, the dependence of the resulting Hamiltonian on the eigenvalue ˜P appears only in one term in 
this Hamiltonian. This term is responsible for the electron-hole Coulomb attraction as the replacement of r by 
r + r0 , where the continuously changing parameter r0 is directly proportional to the eigenvalue ˜P , which can 
vary continuously from 0 to infinity14,17.

Therefore, while the energy spectrum of a magnetoexciton is discrete in the zeroth order with respect to 
the electron-hole attraction, the energy spectrum of a magnetoexciton becomes a continuous function of the 
eigenvalue ˜P in the first order perturbation theory with respect to the electron-hole Coulomb attraction14,17. 
The simultaneous invariance of the Schrödinger equation for a PME in the strain-induced PMF B with respect 
to the translation and the gauge transformations results in the conservation of P̂2 . The difference between the 
third terms of ˆ̃P and P̂ is caused by the fact that while the action of the magnetic field on particles depends on the 
value and sign of charge of a particle, the action of the strain-induced PMF on particles does not depend on the 
value and sign of charge of a particle. Therefore, the strain-induced PMF acts on an electron and a hole the same 
way contrary to the magnetic field, which acts on an electron and a hole differently. Thus, the eigenfunctions are 
different for magnetoexcitons and PMEs because the PMF acts the same way on e and h and the strain-induced 
PMF acts on a PME similar to the action of the magnetic field on two identical charged particles.

The energy of a PME.  Now let us find the energies of a PME in a mono and double layer of strained 
and gapped graphene in the presence of the e − h attraction. Assuming that contribution of V(|re − r2|) to the 
energy of the PME (the binding energy of the PME) is small compared with the difference between the eigen-
values of Ĥ , we start with the zeroth order of the perturbation theory with respect to V(|re − rh|) and find the 
eigenvalues for (8).

The attractive e − h interaction we treat in the framework of the perturbation theory. Neglecting the transi-
tions between different LLs, the first order perturbation with respect to e − h attraction results in the following 
expression for the energy E′ñ,m̃ of a PME:

where ϕ̃(0)
ñ,m̃(r) is given by Eq. (41). One can calculate the energies of a direct and an indirect PME using the Cou-

lomb and Rytova-Keldysh potentials. By substituting these potentials into Eq. (19), and using the wavefunctions 
for the corresponding state, we obtain the analytical expressions for the eigenenergies E′0,0 , E

′
0,1 and E′1,0 . The total 

energy En,ñ,m̃ of a direct or indirect PME in strained and gapped graphene, taking into account e − h attraction, is

where E0n,ñ is given by Eq. (18), for the equal electron and hole masses in a mono or double layer strained and 
gaped graphene or by Eq. (15) for the double layer graphene with different masses of the electron and hole. 
Analytical expressions for the energy E′ñ,m̃ of direct PMEs for the Coulomb and the RK potentials are given in 
SMs V B and V C. The energy of an indirect PME in a double layer of gapped graphene can be obtained by sub-
stituting the Coulomb or RK potentials into Eq. (19). In the case of the Coulomb potential the corresponding 
matrix elements can be evaluated analytically and the results are given in SM  V D. However, in the case of the 
Rytova-Keldysh potential the energy of an indirect PME in a double layer system could be found only numeri-
cally. The expressions for potentials that describe the interaction between the electron and hole which are located 
in different parallel graphene layers are given in SM V D1.

In our calculations the uniform PMF B, acting on e or h, is related to the strain as B = 8�βc
a

1, where a = 2.566 Å 
is the lattice constant27, and the strain parameters β ≈ 2 and c = 10−3 m −1 that are defined in Ref.1. It can be seen 
from Fig. 2 that the energies E′

ñ,m̃ of PME’s are decreasing with the increase of the separation between graphene 
layers. Interesting enough, the comparison of results for the binding energies of the direct and indirect PME 
energies, calculated using the RK and Coulomb potential, for the parameters used are very close and almost the 
same. Also, the magnitudes of PME energies, calculated using the RK potential are a little bit smaller than ones, 
calculated using the Coulomb potential, because the RK potential implies the screening effects. The energies 
Eñ,m̃ of indirect PMEs as a function of the separation D between gapped graphene layers are presented in Fig. 2. 
It can be seen, the energies of indirect PMEs decrease with the increase of D and increase with the increase of B. 
Note that dipolar excitons without magnetic field was analyzed in28,29 and their collective properties are analo-
gous to dipolar ultracold atoms—see review30 . 31,32 The results of calculations for the energies of the PMEs are 
given in Table 1. Following Ref.19 we perform calculations for the gap �1 = 0.25 eV and �2 = 0.5 eV. A gap in 

(19)E′ñ,m̃ =
〈

�n,m,ñ,m̃(R, r)|V(r)|�n,m,ñ,m̃(R, r)
〉

=
〈

ϕ̃
(0)
ñ,m̃(r)|V(r)|ϕ̃(0)

ñ,m̃(r)
〉

,

En,ñ,m̃ = E0n,ñ + E′ñ,m̃,
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graphene is induced due to the breaking the sublattice symmetry. There are many ways to produce the gap. For 
example, by hydrogenation, which gives a gap of 1 eV33. Another proposal is to introduce a structured substrate, 
which can create a gap of 0.2–0.5 eV19 or a gap of 0.2 eV on a SiO2 SiC sublattice34. Small band gaps have been 
observed, when graphene is grown on substrates SiC, i.e. 0.260 eV5 and 0.250 eV6 and gold on ruthenium (200 
meV)7. The gap is indeed smaller on hBN substrates, typically 5–50 meV35. As it is mentioned before, the energies 
of the direct and indirect PMEs obtained using the RK and the Coulomb potentials are very close. The reason 
of this similarity is related to the fact that at large distances the RK potential has the asymptotic behavior of the 
Coulomb potential, while the screening effects, taken into account by Rytova-Keldysh potential, are quite weak. 
As a result the energy E′ñ,m̃ of a PME defined by (19) with functions ϕ̃(0)

ñ,m̃(r) are comparable. However, there are 
significant differences for the energies of indirect PMEs obtained for a double layer system when both layers 
have the same gap � = 0.25 eV and when one layer has the gap �1 = 0.25 eV and the other one �2 = 0.5 eV. The 
difference for the Landau levels of indirect PMEs is due to the dependence of the effective PMF on me and mh.

From Eqs. (15) and (18) one can see that decrease of the gap leads to the increase of the energy levels. There-
fore, the effect of a changing gap in the graphene spectrum on the pseudomagnetic excitons is that the effective 
exciton mass is an increasing function of the gap. Since the difference between the Landau levels is the cyclotron 
frequency, which is a decreasing function of the effective exciton mass, one concludes that the distance between 
the Landau levels is a decreasing function of the gaps. Moreover, our results for gaps �1 = 0.25 eV and �2 = 0.5 
eV is a special case in which the the perturbation and the Schrödinger approaches are valid.

The analysis of the results presented in Table 1 show that even for the large gaps the perturbations by the 
Coulomb or RK potentials are small compared to the non-interacting eigenvalues. Therefore, our assumption 
that the Coulomb energy is a small perturbation compared to the non-interacting eigenvalues, is valid if the 
binding energy of a PME is much less than the distance between the Landau levels. At least two LL should exist 
inside these gaps which will be experimentally achievable36. In this case, mixing between different LLs can be 
neglected in evaluating Eq. (19).

Strain‑induced quantum Hall phenomena for PMEs
The QHE and especially the Fractional Quantum Hall effect (FQHE) has been discussed in length37. Given that 
the pseudomagnetic field acts like a magnetic field on the electrons, the standard theory of the QHE/FQHE can 
be applied without modification.

Figure 2.   Left panel: the dependence of energies E′
n,ñ of indirect PMEs on the separation D between gapped 

graphene layers. Calculations performed for the value of magnetic length l that corresponds to B/e = 50 T . 
Right panel: the dependence of the energies of indirect PMEs E′

ñ,m̃ on the separation D between gapped 
graphene layers and PMF B/e.

Table 1.   Calculations performed for the monolayer strained and gapped graphene, � = 0.25 eV, and for a 
double layer strained graphene with the gap � = 0.25 eV in one layer and � = 0.50 eV in the other. The value 
of magnetic length l corresponds to B/e = 50 T. Two strained and gapped graphene layers are separated by 
D = 1.7 nm by the dielectric with ε = 13.

Energy Potential

Monolayer 2 Layers Landau level, meV 2 Layers Landau level, meV

� = 0.25 eV � = 0.25 eV � = 0.25 eV

�1 = 0.25 eV �1 = 0.25 eV

�2 = 0.5 eV �2 = 0.5 eV

E
′
0,0
, meV

RK 27.001 21.185 131.3 28.402 98.4

Coulomb 27.097 21.187 28.562

E
′
0,1
, meV

RK 13.548 13.013 262.6 14.280 207.8

Coulomb 13.549 13.014 14.281

E
′
1,0
, meV

RK 20.228 15.128 262.6 21.264 185.9

Coulomb 20.322 15.130 21.422
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The conceptual picture of the quantum Hall effect of PMEs is presented in Fig. 3. The suggested bending 
geometry, when the graphene rectangle is bent into a circular arc, would generate a uniform PMF2,38. FQHE can 
be observed for PME in gauge field 15 Tesla as for 2D electrons in real magnetic field39–41. This field can be cre-
ated by uniform stretching using polymer “muscles” as it was demonstrated recently36. While for some physical 
realizations the pseudomagnetic field caused by strain averages to zero (see e.g., Ref.42), we are focusing here 
on a uniform PMF on a finite but sufficiently large region. Let us estimate the conditions for the characteristic 
nonhomogeneous length or size of the system for observing the FQHE. Since the latter is equivalent to the 
IQHE for composite fermions, it is sufficient that the size of the system is substantially larger than the effective 
magnetic length l for composite fermions − by at least one order of magnitude. Therefore, it is sufficient for the 
characteristic energy of geometric quantization �2/MS, where S is the area of the system to be substantially less 
than the characteristic energies for composite fermions.

Another equivalent, more visual physical condition: the finiteness of the system is equivalent to the presence 
of an effective confining potential kr2/2 = Mω2r2/2 . In the presence of a pseudomagnetic field, the problem 
becomes equivalent to the Fock-Darwin problem, but for an effective magnetic field acting on composite fermi-
ons. So to neglect the effect of the finite size it is sufficient to satisfy the inequality: ωc ≫ ω . It easy to show that 
both conditions are almost equivalent.

When graphene is under strain, shear strain induces a PMF, while the dilatation gives rise to an effective 
scalar potential which results in the pseudoelectric field, acting on the charge carriers independently of the 
sign of charge, contrary to ordinary electric field2. The pseudoelectric field Epseudo can be chosen to be normal 
to the PMF. The other option is to use laser illumination on the edge of samples, which creates gradients of the 
temperature T and/or chemical potential µ . This drives electrons (e ) and holes (h) in the same direction. The 
latter can trigger the flow of PMEs without breaking the bound states of e and h. Below we show that Epseudo or 
∇µ , or ∇T together with the PMF initiates the QHE for the PMEs. Note that, contrary to PMEs, the electric field 
normal to the magnetic field does not lead to any flow of magnetoexcitons, but only induces the dipole moments 
of magnetoexcitons. Lets us mention that ∇µ and ∇T induce a flow of magnetoexcitons in the directions of the 
gradients, without creating Hall flows, in contrast to PMEs. A PMF leads to quantization of the PME spectrum 
which is discrete. Scattering effects due to random potentials and/or interaction between the PMEs would lead 
to a broadening of the LLs. The resulting multiband structure can be characterized by the Chern numbers of 
these PME bands, which can be observed in the transport properties. The strain-induced PMF causes a flow of 
the PMEs inside the graphene layers. The strain-induced pseudomagnetic and pseudoelectric field or existence 
of ∇µ , or ∇T give rise to the Hall effect for the PMEs, whose Hall conductivity is quantized according to the 
Chern numbers of the multiband structure. This can also be formulated in terms of an effective Ginzburg-Landau 
approach by coupling an additional statistical Chern-Simons gauge field to the bosonic PMEs37,43, where the 
resulting Hall conductivity is related to the Chern-Simons constant. Thus, analogously to the standard Integer 
Quantum Hall effect (IQHE) for the 2DEG in a magnetic field26, we obtain for the system of the PMEs in the 
presence of impurities the occurrence of the set of plateaus in the Hall resistivity ̺xy and conductivity σxy with 
quantized values: ̺ xy = −1/σxy = h/n ( n = 1, 2, 3, . . . is the LL for the motion of the center-of-mass of the PME). 
In the region of the plateau we have ̺ xx = σxx = 0.

The degeneracy d of the LLs n is given by d = 2BS/�0 , where �0 = h/2 is the quantum of pseudomagnetic 
flux and the factor 2 appears due to the same action of the PMF an electron and a hole. Thus, one can control 
the filling factor of the LL ν = N/d (N is the number of the PMEs) either by changing the strain, inducing the 
PMF, or by laser pumping changing the number N of the PMEs. So one can observe not only the IQHE but also 
the FQHE for PMEs. For example, to observe the FQHE at the filling factor ν = 1/3 , it occurs that one needs 
the PMF B corresponding to four (but not three as for the 2DEG in a magnetic field) quanta of pseudomagnetic 
flux accounting for one bosonic PME. In this case, a composite fermion can be formed via attachment of one 
pseudomagnetic flux quantum to one PME, and these composite fermions with three remaining pseudomagnetic 
flux quanta form the FQHE state at ν = 1/3 analogously to the FQHE for the 2DEG in a magnetic field44. Note 
that we also can achieve the state of the PME system analogous to the state of composite fermions at the filling 
factor ν = 1/245, when the filling factor of PMEs ν = 1/3 . Really the latter corresponds to three pseudomag-
netic flux quanta on one PME. When one pseudomagnetic flux quantum is attached to each boson, PME, one 

Figure 3.   Conceptual picture of the quantum Hall effect of PMEs in graphene. The QHE PME flow, shown by 
the blue arrow, is generated by the PMF B , normal to the graphene layer, and a pseudoelectric field Epseudo or 
−∇T , or −∇µ , directed along the graphene layer. The QHE PME flow in the graphene layer is directed normal 
to Epseudo or −∇T , or −∇µ . The strain is created by the normal forces applied at two opposite boundaries and 
their magnitude is gradually decreased, which is indicated by the length of the plotted arrows.
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obtains the system of the composite fermions at the filling factor ν = 1/2 (experimentally observable composite 
fermions, analogously to electrons with two attached magnetic flux quanta45, correspond to the PMEs with three 
attached pseudomagnetic flux quanta). Thus, for the neutral PMEs (bosons) one can observe the IQHE, FQHE, 
and ν = 1/2 phenomena similar to the ones for charged electrons, forming 2DEG in the high magnetic field44.

The characteristic time necessary for the formation of the FQHE state can be estimated as t ∼ �/�E , where 
�E is characteristic energy defined the stability of FQHE (see below) - the energy difference between the state 
with one hole excitation and the ground state of the system (described by the Laughlin-type wave function). The 
estimate of �E below shows that this time is essentially smaller than the lifetime of the exciton. This allows the 
observation of FQHE for PMEs. The allowed temperatures for the observation of FQHE are T < �E/kB . Note 
that there are different estimates of the gap �E associated with different excitations over the ground state of the 
system in the FQHE state- i. the creation of a composite hole; ii. the creation of a Coulomb interacting e-h pair; 
iii. the creation of a collective excitation of the pseudoskyrmions type. The estimates for different excitations do 
not coincide, but they are of the same order of magnitude! (see Ref.46 and references therein).

Discussion and conclusions
Let us now estimate the characteristic energy of interaction of excitons at distances determined by the filling 
of the Landau level. For the FQHE these are distances of the order of several pseudomagnetic lengths l. The 
interaction energy (and consequently the stability of FQHE states) is greater for spatially indirect excitons. 
Spatially indirect excitons (with electron and hole in different layers) have crossover from a Coulomb interac-
tion (on distances of the order of PME radius a = l ) to a weaker dipole-dipole interaction (on distances much 
larger than PME radius l). So on the distances of the order of PME radius l one can use for the estimation of the 
indirect excitons interaction and the stability of corresponding composite fermion state the same expressions 
as for electrons, i.e. the energy difference between the state with one composite hole excitation and the ground 
state of the system (described by the Laughlin wave function) for ν = 1/3 is �E ∼ 0.02/(εdl) , where εd is the 
dielectric susceptibility of the surrounding media (see Ref.46 and references therein); see also Ref.47 and references 
therein); this estimate is in agreement with experimental data for ν = 1/3 (see Ref.48 and references therein).

So for initial bosons (PMEs) with Landau level filling factor ν = 1/4 and resulting composite fermion 
(PMEs with attached pseudomagnetic field flux quantum) with Landau level filling factor ν = 1/3 , we have 
�E ∼ 0.02/(4εdl).

The stability of the integer quantum Hall effect for PMEs is determined by the energy gap between Landau 
levels, which is proportional to the pseudomagnetic field. Landau level quantization for PMEs can be revealed 
by optical spectroscopy. To reveal IQHE Hall quantization by transport experiments for PMEs the following are 
needed: i. the plateau formation due to localization on impurities; ii. all states at Landau level must be filled. The 
latter is impossible for Bose quasiparticles, but for PMEs it is possible only for composite fermions formed due to 
exciton-exciton interactions. The composite fermion stability is also defined by the energy gap �E proportional 
to the characteristic energy of interaction of excitons �E at a distance r = l corresponding to the filling of the 
Landau level ν = 1 . Thus the energy corresponding to forming IQHE plateau in contrast to fermion, electron 
system has the order of �E ∼ e2/εdl and the necessary temperatures for the observation IQHE for PMEs in 
transport experiments are T < �E/kB.

In conclusion, we propose the zero magnetic field quantum Hall phenomena for excitons in a high PMF. 
The Hall valley flows of direct and indirect PME’s, similar to Hall currents of charged particles, can be excited 
in a mono or double layer of the gapped graphene, respectively. In order to observe the quantum Hall effect for 
PMEs, one has to measure the PME flows. We suggested the existence of PMEs and calculated their properties. 
Moreover, we considered the variety of collective properties of PMEs analogous to 2DEG: IQHE, FQHE, and 
the state of composite fermions at ν = 1/2 . The spectrum of direct and indirect PMEs can be studied by using 
the photoluminescence.

The observation of LLs quantization and the gap �E in FQHE state for PMEs can be achieved by two ways: i. 
using a THz spectroscopy for transitions between neighboring LLs in the same band; ii. using an optical spectros-
copy for transitions between LLs of neighboring bands with |n1 − n2| = 1, where n1 and n2 are quantum numbers 
of LLs in lower and upper band, respectively. Fractional statistics of composite fermions can be revealed in inter-
ference experiments. There are two possible spectroscopical manifestations of Landau quantization and PME 
formation for intraband transition between filled and empty pseudo Landau levels in THz spectral region and 
interband transition between filled and empty pseudo Landau levels in IR spectral region. The difference is due 
to the interband energy gap denoted as the gap � estimated for calculations as 0.25 eV or 0.5 eV. In the absorp-
tion spectrum one can observe the resonance, caused by the transitions between the Landau levels. Initially, the 
resonance in the emission spectrum is caused by the recombination of the free electron-hole pairs. Subsequently 
after the PME formation the exciton recombination contributes to the photoluminescence spectrum. These pos-
sible resonances in the radiation spectrum due to the transitions between PME energy levels are represented in 
Fig. 4. According to Fig. 4, the emission spectrum of the direct PMEs in a single graphene layer depends on the 
gap. The emission frequencies are the order of 190–180 GHz for � = 0.25 eV and 90–80 GHz for � = 0.5 eV.

The experimental observation of FQHE states for PMEs is possible at temperatures T < �E/kB , where kB 
is the Boltzmann constant and �E is the energy between the excited and ground states of the system. For the 
observation of FQHE for indirect excitons in suspended double layer graphene in PMF B/e ∼ 20 T at the lowest 
FQHE plateau (at Landau filling ν = 1/k with lowest k and small interexciton separations), where the interaction 
between indirect excitons are almost the Coulomb one, plausible temperatures are the same as for the FQHE for 
electrons, i.e. order of 20 K. This is the most optimal value for experiments. The plausible temperature for the dou-
ble layer in the surrounding media with dielectric susceptibility εd is order of 20 K/εd (see Ref.48 and references 
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therein). It is worth to notice that for the larger k indirect exciton interaction is weaker and corresponding �E 
and temperatures are lower and for direct PMEs even more lower due to weaker exciton-exciton interactions.

The intervalley excitons give a hierarchy of states of the integer and fractional quantum Hall effect, as diss-
cused above. Thus, after the formation of excitons, two subsystems with radically different properties can arise. 
Their mutual influence will not be considered in this article. Bright excitons will quickly die out and only a 
system of dark excitons survive. It is possible to increase the lifetime of bright excitons using the engineering of 
the optical cavity, as suggested in Ref.49. Experimental observation of dark excitons can be done by using Förster 
resonant energy transfer from a dark exciton to neighboring light excitons or molecules (for example, adsorbed 
on graphene, or in the van der Waals structure of a graphene—2D molecular crystal), etc.50.

The results of our study could provide a novel route to quantum Hall physics of PMEs valleytronics in 
graphene. The presented Quantum Hall phenomena for the PMEs are important, since they imply that the 
Quantum Hall physics can be observed in the novel system of neutral bosons without magnetic field. Besides, 
the system considered due to its discrete spectra can be used as a new realization for a qubit system for quantum 
technologies.
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