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Abstract 

Introduction: Chronic obstructive pulmonary disease (COPD) is an independent risk factor of 
non-small cell lung cancer (NSCLC). This study aimed to analyze the key genes and potential molecular 
mechanisms that are involved in the development from COPD to NSCLC. 
Methods: Expression profiles of COPD and NSCLC in GSE106899, GSE12472, and GSE12428 were 
downloaded from the Gene Expression Omnibus (GEO) database, followed by identification of the 
differentially expressed genes (DEGs) between COPD and NSCLC. Based on the identified DEGs, 
functional pathway enrichment and lung carcinogenesis-related networks analyses were performed and 
further visualized with Cytoscape software. Then, principal component analysis (PCA), cluster analysis, 
and support vector machines (SVM) verified the ability of the top modular genes to distinguish COPD 
from NSCLC. Additionally, the corrections between these key genes and clinical staging of NSCLC were 
studied using the UALCAN and HPA websites. Finally, a prognostic risk model was constructed based on 
multivariate Cox regression analysis. Kaplan-Meier survival curves of the top modular genes on the 
training and verification sets were generated. 
Results: A total of 2350, 1914, and 1850 DEGs were obtained from GSE106899, GSE12472, and 
GSE12428 datasets, respectively. Following analysis of protein-protein interaction networks, the 
identified modular gene signatures containing H2AFX, MCM2, MCM3, MCM7, POLD1, and RPA1 were 
identified as markers for discrimination between COPD and NSCLC. The modular gene signatures were 
mainly enriched in the processes of DNA replication, cell cycle, mismatch repair, and others. Besides, the 
expression levels of these genes were significantly higher in NSCLC than in COPD, which was further 
verified by the immunohistochemistry. In addition, the high expression levels of H2AFX, MCM2, MCM7, 
and POLD1 correlate with poor prognosis of lung adenocarcinoma (LUAD). The Cox regression 
prognostic risk model showed the similar results and the predictive ability of this model is independent of 
other clinical variables. 
Conclusions: This study revealed several key modules that closely relate to NSCLC with underlying 
disease COPD, which provide a deeper understanding of the potential mechanisms underlying the 
malignant development from COPD to NSCLC. This study provides valuable prognostic factors in 
high-risk lung cancer patients with COPD. 
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Introduction 
The morbidity and mortality of lung cancer 

remain on the top of malignant diseases worldwide. It 
has been reported that 2.1 million new lung cancer 
patients were associated with 1.8 million deaths in 
2018, which corresponds almost to 18.4% of cancer 
related deaths [1]. Non-small cell lung cancer 
(NSCLC) accounts for about 80% of lung cancers, with 
the majority of the cases first diagnosed at advanced 
stages and with 5-year survival rate less than 20% [2]. 

Chronic obstructive pulmonary disease (COPD) 
is characterized by emphysema and air-flow 
limitation of lung [3, 4]. As an independent risk factor 
for developing lung cancer [5], COPD is a common 
comorbidity in lung cancer patients, characterized 
with variable prevalence in different studies from 28% 
to 40% [6]. Both COPD and lung cancer share 
common pathogenesis factors, such as tobacco 
smoking, gene methylation, environmental factors, 
and chronic inflammation [7]. The long-term airway 
inflammation of COPD patients possibly leads to the 
changes of the bronchial epithelium, which initiates 
carcinogenesis [8]. Sandri et al. identified the gene 
expression patterns that distinguish COPD cohort in 
patients with or without lung cancer, suggesting that 
extracellular matrix (ECM) and PI3K-Akt signaling 
pathways are potentially involved in the malignant 
transformation, as these pathways were over- 
represented in the tumor and adjacent tissue but not 
in normal tissues [9]. However, diverse studies have 
yielded diverse results and the global perspective of 
genomic changes from COPD to lung cancer is still 
unclear. Thus, this study aimed to identify the specific 
genetic signatures on the transcriptome level in the 
COPD-cohort that promote lung cancer. 

Based on the high-throughput sequencing and 
microarray technologies, the expression changes of 
the genes in different samples under certain biological 
conditions can be simultaneously observed. 
Microarray profiling has shown great potential in 
obtaining and understanding of the molecular 
mechanisms by analysis of thousands of genes [10, 
11]. There are many studies describing the usage of 
integrated bioinformatics approach of multiple 
datasets for the identification of reliable and 
reproducible genetic changes involved in 
tumorigenesis [12, 13]. 

Three data sets with a large sample size, 
including GSE106899 [14], GSE12472 [15], and 
GSE12428 [16], were analyzed in this study. Due to 
the complex evolutionary mechanism from COPD to 
lung cancer, a multi-omic approach was performed to 
identify gene expression patterns in COPD stroma 
and NSCLC. Besides, based on the module gene 

signatures, a prognostic risk model was constructed 
by using the multivariate Cox regression analysis. 
This study may provide deeper understanding of the 
potential mechanisms involved the development of 
NSCLC from COPD, providing meaningful factors for 
surveillance of NSCLC in high-risk COPD patients. 

 

 
Figure 1. The workflow of the study. COPD, Chronic obstructive pulmonary 
disease; NSCLC, non-small cell lung cancer; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; PPI, protein-protein interaction; PCA, principal component analysis; SVM, 
Support vector machines; LUAD, lung adenocarcinoma. 

 

Materials and Methods 
Retrieval of microarray datasets and the 
workflow of this study 

“COPD” and “Lung cancer” were sued as the 
key words for searching and retrieving the 
transcriptome profiles of COPD and lung cancer 
datasets from the NCBI GEO database (http:// 
www.ncbi.nlm.nih.gov/geo/) [17]. Microarray data 
that met the following criteria were included in the 
next study: 1) studies contained both COPD and Lung 
cancer tissues; 2) Homo sapiens origin. After further 
manual retrieval, three data sets were finally 
incorporated in our study, GSE12472, GSE106899 and 
GSE12428. All of the datasets contained both COPD 
and NSCLC samples. As shown in Figure 1, upon 
downloading of the expression profiles of these three 
datasets, the differentially expressed genes (DEGs) 
between COPD and NSCLC were identified. Then, 
based on the DEGs in the intersection by Veen 
analysis, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis and protein- 
protein interaction (PPI) network were performed. 
After identification of the modules with higher gene 
overlap, the shared modular gene signatures were 
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considered to play a significant role in the 
development from COPD to NSCLC. Subsequently, 
the ability of the modular gene signatures to 
distinguish between COPD and NSCLC samples was 
validated by principal component analysis (PCA), 
cluster analysis, and support vector machines (SVM) 
analysis. Finally, based on the multivariate Cox 
regression analysis, a prognostic risk model for 
NSCLC was established. 

Data preprocessing 
GSE106899 contained 22 COPD samples and 22 

NSCLC samples, which were sequenced by the 
Illumina HiSeq 2000. GSE12472 contained 10 normal 
samples, 18 COPD samples, and 18 NSCLC samples. 
Microarray data of GSE12428 included 18 COPD 
samples and 18 NSCLC samples. All of the microarray 
data of the GSE12472 and GSE12428 were detected by 
the Agilent-012391 Whole Human Genome Oligo 
Microarray G4112A (Feature Number version) 
platform. All the data were downloaded in August 
2019. 

For GSE106899, the original count matrix of the 
genes was first obtained, and then the raw count was 
normalized using the topological map-matching 
(TMM) algorithm in the edgeR package (Version: 3.4, 
http://www.bioconductor.org/packages/release/ 
bioc/html/edgeR.html) [18, 19]. Subsequently, the 
normalized data was converted to logCPM values for 
further analysis. For the GSE12472 and GSE12428, the 
annotation files of the platform were firstly 
downloaded and followed by matching the probe 
number and the Gene symbol one by one. The probes 
that do not match to the Gene symbol were removed. 
When different probes map to the same gene, the 
mean values of the different probes were considered 
as the final expression rate of the gene. Then, the 
expression matrices of GSE12472 and GSE12428 were 
obtained. 

Identification of the DEGs between COPD and 
NSCLC 

For GSE106899, based on the logCPM values, the 
DEGs between COPD and COPD with NSCLC were 
identified by the edgeR package. For GSE12472 and 
GSE12428, the classical Bayesian method provided by 
the limma package was used to analyze the DEGs [20] 
(Version 3.10.3, http://www.bioconductor. 
org/packages/2.9/bioc/html/limma.html). The 
Benjamini & Hochberg method was used to perform 
multiple test calibration on the p.value and logFC 
values of the above genes to obtain the corrected p 
value (adj.P.Value). The adj.P.Val<0.05 and 
|logFC|>0.585 were selected as the threshold for the 
following analysis. 

Veen analysis of the DEGs 
The DEGs in the intersections of GSE106899 vs. 

GSE12428, GSE106899 vs. GSE12472, and GSE12428 vs. 
GSE12472 were identified for the further analysis. The 
intersections of any two data sets were used as the 
training set and the remaining data was used as the 
verification set. 

Pathway enrichment analysis 
The KEGG pathway enrichment analysis was 

performed on the three intersection DEGs using the 
R-package clusterProfiler (version:3.8.1, http:// 
bioconductor.org/packages/release/bioc/html/clust
erProfiler.html) [21, 22]. A path with p.value < 0.05 
was considered to be a result with significant 
enrichment. 

Construction of the Protein- Protein 
Interaction (PPI) Network 

Based on the STRING database (Version: 10.0, 
http://www.string-db.org/), the interactions 
between gene-encoded proteins can be predicted [23]. 
For the DEGs in the intersection of GSE106899 vs. 
GSE12472 and GSE106899 vs. GSE12428, the PPI score 
was set as 0.4 (medium confidence). Due to the large 
number of DEGs in the intersection of GSE12472 vs. 
GSE12428, the PPI score was set to 0.9 (highest 
confidence) in order to find a more closely interacting 
protein. Then, the Cytoscape software (version:3.4.0, 
http://chianti.ucsd.edu/cytoscape-3.4.0/) was used 
for visualization of the structure of PPI networks [24]. 

Identification of the modular gene signatures 
of the PPI networks 

In the PPI network, cluster analysis was applied 
to identify the functional modules. The MCODE 
plug-in of Cytoscape software with the default 
parameters (Degree Cutoff = 2, Node Score Cutoff = 
0.2, K-core = 2, and Max.Depth = 100) was used for 
obtaining three key modules with high gene 
duplication in three PPI networks, respectively [25]. 
The genes in the intersection of the three modules 
were considered to be closely related to the 
pathological process. Then, KEGG pathway 
enrichment analysis was carried out on the key genes 
of the module, using the R-package clusterProfiler. 
The pathway with p value < 0.05 was regarded as a 
pathway with significant enrichment. 

Verification of the identified modular gene 
signatures for discriminating COPD from 
NCLSC 

For the further evaluation and verification of the 
key genes in terms of clear distinguishing between 
COPD and lung cancer samples, principal component 
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analysis (PCA), cluster analysis, and support vector 
machines (SVM) analysis were performed. For PCA, 
the prcomp function (https://stat.ethz.ch/R-manual/ 
R-devel/library/stats/html/prcomp.html) was used 
to reduce the dimension of the data, and the PCA map 
was constructed by the ggbiplot package (Version: 
0.4.5, https://mirrors.tuna.tsinghua.edu.cn/CRAN/ 
bin/windows/contrib/3.4/ggfortify_0.4.5.zip). After 
PCA analysis, the first two principal components 
were selected, and the distribution of the sample on 
the two-dimensional plane was mapped, according to 
the score of the principal component [26]. The 
classification of the sample can be visually seen by the 
PCA graph. Besides, we also performed cluster 
analysis. For that, the distance between two samples 
was firstly calculated based on the expression data of 
key genes in the module. Then, the clust function of R 
language was used to analyze the samples, based on 
the distance between samples. Finally, the clustering 
results were displayed in a tree diagram. In addition, 
based on the first two principal components obtained 
by PCA analysis, the SVM classifier was constructed 
and the performance of the classifier was evaluated by 
the receiver operating characteristic (ROC) curve. 
Totally, PCA, cluster analysis, and SVM analyses were 
performed for each of the three datasets. 

Expression levels of the modular gene 
signatures in the GSE12472 data set 

The dataset GSE12472, which contained 10 
normal, 18 COPD, and 18 NSCLC samples, was used 
for the evaluation of expression levels of identified 
key genes in the normal, COPD, and NSCLC datasets. 
Firstly, difference analysis was performed for COPD 
vs. Normal and NSCLC vs. Normal based on the 
expression matrix of GSE12472. Then, the multiple 
test calibration of p.value was performed by the BH 
method to obtain the corrected p-value (adj.P.Value). 
Based on adj.P.Value <0.05 and |logFC|>0.585, the 
expression levels of samples were shown in the heat 
map. 

Survival analysis of modular gene signatures in 
the NSCLC 

GEPIA (http://gepia.cancer-pku.cn/) is an 
online tool for visual analysis based on TCGA data 
[26]. The identified modular gene signatures were 
used as the input, and lung squamous cell carcinoma 
(LUSC) and lung adenocarcinoma (LUAD) were 
selected to analyze the correlation between key genes 
and prognosis in lung cancer. The samples were 
divided into high and low expression groups based 
on the median value of Transcripts Per Million (TPM) 
expression of modular gene signatures for 
Kaplan-Meier survival analysis. At the same time, the 

logRank test was performed to obtain significant P 
values. The genes with the P value<0.05 were 
considered to be associated with prognosis. 

Protein expression levels of key genes in lung 
and lung cancer tissues 

Based on the Human Protein Atlas (HPA) 
database (https://www.proteinatlas.org/), 
expression of certain proteins in different tissues and 
organs can be studied at the RNA and protein levels 
[27]. In this study, the protein levels of the key genes 
in the lung and lung cancer tissues were investigated 
based on the HPA database. 

Construction of the prognostic risk model 
based on the Cox regression analysis 

Sample clinical phenotypic information, RNA- 
seq data, and sample survival information for TCGA 
LUAD were downloaded from UCSC Xene database 
(https://xenabrowser.net/datapages/) [28]. LUAD 
samples with both survival and RNA-seq information 
were selected for the further study. After converting 
the ensemble IDs into gene symbols, the expression 
values of modular gene signatures were selected for 
the further study. 

Multivariate Cox regression analysis was 
performed on the modular gene signatures, and the 
prognosis risk model was constructed according to 
the following formula: 

𝑅𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 = 𝛽𝑔𝑒𝑛𝑒1 ∗ 𝑒𝑥𝑝𝑟𝑔𝑒𝑛𝑒1 + 𝛽𝑔𝑒𝑛𝑒2 ∗ 𝑒𝑥𝑝𝑟𝑔𝑒𝑛𝑒2
+ ⋯+ 𝛽𝑔𝑒𝑛𝑒𝑛 ∗ 𝑒𝑥𝑝𝑟𝑔𝑒𝑛𝑒𝑛 

where β in the formula is a prognostic 
correlation coefficient of each gene of multivariate 
Cox regression, and “expr” is the expression value of 
the gene. Thus, each sample was characterized by a 
particular risk score. Then, optimal cut-point was 
determined based on the survminer of the R package 
(version 0.4.3). According to the risk score level in 
regard to the optimal cut-point, the samples were 
divided into high (High risk) and low risk groups 
(Low risk). Combined with the data on total survival 
time of the corresponding patients, the log-rank test 
was used to perform K-M survival analysis and the 
survival curve was generated. In addition, the 
expression levels of the modular gene signatures of 
samples were shown in the heat map. About 3/4 
samples were randomly selected as the training set, 
and the remaining 1/4 samples were used as the 
verification set to construct the above model. 

Univariate and multivariate Cox regression 
analysis of clinical features 

In order to determine whether the predictive 
ability of the above prognostic model can be 
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independent of other clinical factors, the risk group, 
age, gender, age of tobacco smoking, and clinical 
stage were used as variables, and Univariate and 
multivariate Cox regression analyses were carried out 
respectively. 

Correlations between modular gene 
signatures and clinical factors of NSCLC, and 
the expression levels of modular gene 
signatures in other cancers 

In order to explore whether key genes were 
associated with clinical pathological staging, their 
expression levels in different clinical stages of LUSC 
and LUAD were analyzed by UALCAN. UALCAN 
(http://ualcan.path.uab.edu/index.html) is a website 
for effective online analysis of cancer, based on The 
Cancer Genome Atlas (TCGA) database [29]. We 
suggested that the above-mentioned identified key 
genes can be potentially related to lung cancer lesions. 
Besides, many reports have shown that tobacco 
smoking was responsible for the majority of lung 
cancer cases [30, 31]. Therefore, the expression levels 
of key genes in smokers and non-smokers of LUAD 
and LUSC were also considered. In this part, the 
expression levels of key genes were shown in 
boxplots. In addition, based on TCGA and GEPIA, the 
expression levels of modular gene signatures in 
cancer and adjacent tissues of 31 cancers were 
explored. 

Results 
Identification of DEGs between COPD and 
NSCLC 

Based on the methods above, total of 2350, 1914, 
and 1850 DEGs (adj.P.Val<0.05 and |logFC|>0.585) 
were identified between COPD and NSCLC in 
GSE106899, GSE12472, and GSE12428, respectively. 
Compared with tissues from COPD, there were 844 
up-and 1506 down-regulated genes in NSCLC 
samples in GSE106899. For other two datasets, there 
were 747 up- vs. 1167 down- (GSE12472) and 785 up- 
vs. 1065 down- (GSE12428) regulated genes. 

Functional enrichment based on the DEGs 
Due to the large number of the DEGs, two 

datasets were randomly selected for intersection 
analysis and the identified DEGs were further 
subjected to functional analysis. As shown in the 
Figure 2A, there were 82 up- and 165 down- regulated 
DEGs were shared by GSE106899 and GSE12472, 
which were mainly enriched in 33 KEGG pathways. 
Besides, the DEGs in the intersection of GSE106899 
and GSE12428 were mainly enriched in 20 KEGG 
pathways (Figure 2B). For GSE12472 and GSE12428, 

the shared DEGs (517 up- and 695 down-regulated 
genes, Figure 2C) were mainly distributed in 63 
KEGG pathways, and the top 20 items are shown in 
the Figure 2C. Among the pathways, the top and 
shared pathways are Human papillomavirus 
infection, Human T-cell leukemia virus 1 infection, 
Cell cycle, DNA replication, and others. The top 20 
KEGG pathways are shown in detail in 
Supplementary Table 1. 

PPI network and modular gene signatures 
involved in the NSCLC 

Based on the studies of GSE106899 and 
GSE12472, interaction pairs involving 196 proteins 
nodes were found, based on the STRING database 
(Figure 3A). Meanwhile, for the DEGs in the 
interaction maps of GSE106899 and GSE12428, total of 
169 proteins were identified and 444 interaction pairs 
were predicted (Figure 3B). In addition, 2699 
interaction pairs and 616 proteins were obtained from 
the interaction tests of GSE12472 and GSE12428 
(Figure 3C). 

Due to the large number of the protein nodes 
and intricate network of functions of the PPI 
networks, we further explored the key modules 
involved in the COPD with NSCLC. Based on the 
MCODE plugin of the Cytoscape software with the 
default value, several modules were obtained (the 
diamond nodes in Figure 3). By comparing the nodes 
of these modules, there were 6 shared proteins, 
namely H2A histone family, member X (H2AFX), 
mini-chromosome maintenance (MCM) proteins 
MCM2, MCM3, MCM7, DNA polymerase δ catalytic 
subunit gene (POLD1), and Replication protein A1 
(RPA1). As shown in the Figure 3D, these genes were 
mainly enriched in the DNA replication, cell cycle, 
mismatch repair, homologous recombination, and 
nucleotide excision repair. 

Verification of the identified modular gene 
signatures for discriminating COPD from 
NCLSC 

The ability of 6 key genes to distinguish COPD 
from NCLSC samples was tested in GSE106899, 
GSE12472, and GSE12428. As shown in the Figure 4A 
and B, COPD and COPD with LUSC samples in 
GSE12472 and GSE12428 could be clearly 
distinguished via these six key genes, applying the 
area under the curve (AUC) of 1.000 in the ROC 
curves. However, these six genes did not completely 
distinguish between COPD and COPD with LUAD 
samples in GSE106899 (Figure 4C), with the AUC of 
0.853 in the ROC curve. 
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Figure 2. The Veen diagrams of DEGs and their enriched KEGG items. The two Veen diagrams on the left show the DEGs between COPD and COPD with lung cancer. The 
diagrams on the right represent the top 20 enriched KEGG pathways of DEGs. A: the DEGs of intersection of GSE106899 and GSE12472; B: the DEGs of intersection of 
GSE106899 and GSE12428; C: the DEGs of intersection of GSE12472 and GSE12472. Compared with COPD, the up-regulated genes in COPD lung cancer are represented in 
red, and the down-regulated genes are shown in green (Veen diagram). For the KEGG pathway diagram (right), GeneRation indicates the ratio of the number of genes enriched 
within a particular pathway to the number of input genes. Besides, the size of bubble indicates the number of enriched genes, and red gradient reflects the significance of the 
pathway enrichment. 

 

The expression levels of modular gene 
signatures in GSE12472 

The expression levels of six key genes of the 
normal, COPD, and NSCLC samples were measured. 
As shown in the Figure 5, there was no significant 
difference in expression levels of key genes between 
normal and COPD samples. However, there was a 
significant difference between COPD and COPD with 
NSCLC. This result was consistent with the 
observations, which are shown in Figure 4. 

The modular gene signatures are closely 
related to prognosis of NSCLC 

The expression of modular gene signatures was 
significantly related to the prognosis of LUAD 
(P<0.05, Figure 6). In general, we observed that the 
gradually higher expressions of H2AFX, MCM2, 
MCM7 and POLD1 were associated with the 
gradually worse prognosis of LUAD. However, the 
expressions of six key genes were not associated with 
the prognosis of LUSC (Supplementary Figure 1). 
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Figure 3. PPI networks and KEGG pathways of modular gene signatures. Red indicates up-regulated proteins and green indicates down-regulated proteins. Diamond indicates 
key module protein and gray line indicates interaction between proteins. A: Based on the interaction of GSE106899 and GSE12472; B: Based on the DEGs in the interaction of 
GSE106899 and GSE12428; C: Based on the DEGs of interaction of GSE12472 and GSE12428. D: Enriched KEGG pathways of modular gene signatures. 

 

Protein expression and distribution of H2AFX, 
MCM2, MCM3, MCM7, RPA1, and POLD1 in 
lung cancer 

Based on the HPA database, the immunohisto-
chemical levels of each key gene in normal lung tissue 
and lung cancer tissue are shown in Figure 7. It can be 
clearly seen that the protein levels of the six key genes 
were significantly elevated in lung cancer tissues 
compared to normal tissues. 

Construction of the prognostic risk model 
based on the Cox regression analysis 

Based on the above results, the expression levels 
of H2AFX, MCM2, MCM7, and POLD1 correlate 
significantly with the prognosis of LUAD rather than 

LUSC. Thus, a prognosis model containing four 
genes: H2AFX, MCM2, MCM7 and POLD1, was 
constructed for LUAD samples. Total of 514 LUAD 
samples were randomly divided into training and 
verification sets, including 365 and 129 samples, 
respectively. Multivariate cox analysis was performed 
on the four genes in the training and validation sets, 
and the regression coefficients were obtained 
(Supplementary Table 2). 

Compared with the mean and median of gene 
expression, optimal cutoff parameter better enables 
the classification between high and low risk groups 
[32]. The optimal cutoff of the training set is 1.42, and 
the optimal cutoff of the verification set is 0.31 
(Supplementary Figure 2). According to the optimal 
cutoff grouping, the K-M survival curves of the 
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training and verification sets were obtained. Figure 8 
shows that the high-risk group has a poor prognosis, 
both in the training and verification sets. Besides, the 
risk score sorting scatter plot, scatter plot of survival 
time distribution, and gene expression heat maps 
were constructed to observe the relationship between 
the expression levels of the four genes and the risk 
score. As shown in the Figure 9, the higher the gene 
expression, the higher the risk score and the worse is 
the prognosis, which is consistent with our previous 
results. 

Univariate and multivariate Cox regression 
analysis of clinical variables and risk group 

Samples with no missing values for clinical 
phenotype were selected, and 193 LUAD samples 
were included in Cox analysis. As shown in the Table 
1, gender, TNM stage, and risk group are closely 
related to the prognosis of LUAD both in the 
univariate and multivariate Cox regression analysis 
(p<0.05). The results suggested that the predictive 
power of the prognostic model can be independent of 
any available clinical variables (including age, gender, 
smoking period, and clinical stage). Besides, the 
Forest map (Supplementary Figure 3) and alignment 

Diagram (Figure 10) were also created. The 
nomogram made the cox regression results more 
straightforward. Based on the Figure 10, the points 
corresponding to different factors were combined for 
the obtaining of the corresponding survival rate. 

 

 
Figure 5. The expression levels of modular gene signatures in the normal, COPD, 
and NSCLC samples of GSE12472. 

 
Figure 4. The ability of modular gene signatures to distinguish COPD from NSCLC samples. A: GSE12472; B: GSE12428; C: GSE106899. The left diagrams are PCA ordination 
diagrams. The middle diagrams are clustering trees. The right diagrams represent ROC curves. 
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Figure 6. The Kaplan-Meier survival curves of modular gene signatures in LUAD sample. 

 
Figure 7. Protein immunohistochemical levels of key genes in normal lung and lung cancer tissues. 

 

The modular gene signatures are closely 
related to clinical stages 

The expressions of modular gene signatures 
showed an upward trend with clinical stage 
progression in LUAD (Figure 11), and each stage was 
significantly different from the normal state 
(Supplementary Table 3). Meanwhile, levels of 
modular gene signatures were upregulated in LUSC 
grade group, compared with the normal group 

(Supplementary Figure 4). In addition, H2AFX, 
MCM2, MCM7, and POLD1 were highly up-regulated 
in 31 cancer tissues, based on the analysis of TCGA 
data (Supplementary Figure 5). Interestingly, the 
expression levels of modular gene signatures were 
significantly different between the smoking and 
non-smoking groups in LUAD patients rather than in 
LUSC patients (Supplementary Figure 6 and 
Supplementary Table 3). 
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Figure 8. Kaplan-Meier survival curve of high and low risk groups based on Cox regression risk prognosis model. 

 
Figure 9. The risk score sorting scatter plot (top), scatter plot of survival time distribution (middle), and gene expression heat maps (bottom) of training (left) and verification 
(right) sets. 
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Figure 10. Nomogram predicting 1, 3, and 5-year overall survival for LUAD patients. The point’s scale of variables was added up. The total points projected on the bottom scales 
indicate the probability of 1, 3, and 5-year survival. 

 
Figure 11. The expression levels of 6 genes at different clinical stages of LUAD. 

 

Table 1. Univariate and multivariate cox regression analysis of 
clinical phenotypes on LUAD samples 

Variables Univariate analysis Multivariate analysis 
HR 95 % CI P value HR 95 % CI P value 

Gender       
Male/Female 2.068 1.264-3.382 0.003807702 1.852 1.124-3.054 0.01565781 
Age       
>60/≤60 1.273 0.752-2.158 0.368987051 1.293 0.754-2.216 0.35075578 
TNM stage       
Stage III-IV/ 
Stage I-II 

3.019 1.760-5.179 0.00006 2.414 1.374-4.241 0.00216557 

Smoke years       
>15/≤15 1.194 0.569-2.503 0.639280745 0.990 0.464-2.112 0.98036512 
Risk group       
High/Low 2.412 1.320-4.407 0.003807702 2.217 1.198-4.102 0.01124920 

Discussion 
 This study aimed to identify the specific genetic 

signatures on the transcriptome level in the COPD 
cohort that promote NSCLC. Compared with similar 
published studies on COPD, this study systematically 
integrated three independent data sets which 
contained COPD and NSCLC samples, and had a 
large sample size. The results we obtained were 
robust and strong. Based on the shared DEGs between 
COPD and NSCLC samples, several highly connected 
modules were identified. Among of the overlapping 
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genes, a panel of module gene signatures of MCM2, 
MCM3, MCM7, H2AFX, POLD1, and RPA1, which 
could robustly distinguish COPD from NSCLC, were 
considered to be highly associated with the 
development and prognosis of NSCLC. In addition, 
the predictive power of the Cox regression prognostic 
model containing MCM2, MCM7, H2AFX, and 
POLD1, can be independent of other clinical variables 
in LUAD. 

According to KEGG pathways enrichment 
analysis, it is possible to systematically dissect a large 
number of genes that refine key related biological 
pathways. In our study, DEGs were found to be 
enriched in many infection-related pathways, such as 
in Human papillomavirus infection, Human T-cell 
leukemia virus 1 infection, and others. Human 
papillomaviruses refer to DNA tumor viruses that 
infect keratinocytes in the epithelia, which have been 
reported to be a high risk factor for lung cancer 
development [33]. The oncogenicity of human 
papillomaviruses was mainly focused on P53, which 
may be inactivated by virus infection [34]. Human 
T-cell leukemia virus 1 infection can induce T cell 
leukemia, megalocytic leukemia, etc. [35]. Shan et al. 
stated that the key genes involved in human T-cell 
leukemia virus 1 infection pathway may play an 
important role in the hepatocellular carcinoma 
development [36]. However, there were few reports 
about the correlation of the human T-cell leukemia 
virus 1 infection and lung cancer. 

In our study, H2AFX, MCM2, MCM3, MCM7, 
POLD1, and RPA1 were associated with the 
development of NSCLC from COPD. The pathways, 
enriched by the module gene signatures, were 
reported to be involved in the processes of DNA 
replication, cell cycle and mismatch repair, which 
have significant role in lung carcinogenesis [37, 38]. 
For example, the mismatch repair pathway is 
involved in the correcting the DNA base mismatches 
during DNA replication and recombination [39]. Base 
excision repair pathway plays important role in the 
DNA repair process [40]. Mismatch repair pathway 
and base excision repair pathway together with cell 
cycle and DNA replication pathways are 
determinants of the cell fate [41, 42]. The Fanconi 
Anemia pathway is a complex mechanism containing 
homologous recombination, nucleotide excision 
repair, and mutagenic translesion synthesis [43]. 
Saviozzi et al. reported on the upregulation of genes 
related to homologous recombination and DNA 
replication pathways in the samples of NSCLC 
patients, which is consistent with the results of our 
study [44]. 

A panel of module gene signatures, H2AFX, 
MCM2, MCM7, and POLD1, were highly related to 

NSCLC; and the high expression levels of MCM2, 
MCM7, H2AFX, and POLD1 were also correlated 
with poor prognosis, suggesting their potential role in 
tumorigenesis. MCMs are protein family with 
fundamental functions in the replication of eukaryotic 
cells and are essential for initiating the DNA 
replication [45]. MCMs were suggested to serve as 
good markers of the degree of proliferation activity 
[46]. Many studies have shown that MCMs are 
predictors of patient survival and biomarkers of 
various cancers, such as lung cancer [47, 48], bladder 
cancer [49, 50], prostate cancer [51], salivary gland 
tumors [52]. Ramnath et al. showed that immuno-
staining of tumor cells for MCM2 is an independent 
prognostic factor for survival of NSCLC patients [53]. 
Liu et al. suggested that expression of MCM7 in 
tumor tissues may be a potential marker of poor 
prognosis in patients with NSCLC, whereas 
overexpression of MCM7 is more common in poorly 
differentiated tumor tissues. [54]. In our study, the 
expression levels of MCM2, MCM3, and MCM7 were 
higher in NSCLC than in COPD samples. Besides, the 
levels of MCM2 and MCM7 were significantly 
associated with the prognosis of LUAD. The results of 
our study are consistent with the previous reports. 

Exome-sequencing results based on the TCGA 
analysis indicated the specific association of POLD1 
mutations with hyper-mutated cancers [55]. Wang et 
al. found that POLE/POLD1 mutations could be 
promising potential predictive biomarkers for 
positive immune-checkpoint inhibitor outcomes [56]. 
In addition, many carcinogenic factors promote the 
expansion of the cancer cells through the upregulation 
of POLD1 [57]. We found that the expression of 
POLD1 is significantly upregulated in the NSCLC and 
that high POLD1 expression indicates a poor 
prognosis in the LUAD. As a member of the histones 
family, H2AFX has been reported to be involved in 
the DNA repair pathway [58, 59]. Several studies 
showed the dysregulation of H2AFX in the lung 
cancer [60-62]. However, there were few reports on 
the potential mechanisms underlying the effect of 
H2AFX in lung cancer. Further studies are required to 
figure out the potential role of H2AFX in NSCLC. 

 Our study showed that high levels of H2AFX, 
MCM2, MCM7, and POLD1 suggest poor prognosis 
of LUAD rather than LUSC. This difference may be 
due to the high heterogeneity between LUAD and 
LUSC [63]. LUSC is characterized with higher 
background of the mutation rates than LUAD, 
suggesting probable difficulty in prognosis prediction 
of LUSC using a small number of genes [64]. On the 
contrary, based on the expression levels of H2AFX, 
MCM2, MCM7, and POLD1, the Cox regression 
prognostic model was successfully constructed for the 
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LUAD samples and the predictive power was 
independent of other clinical variables. The 
expression levels of gene profiles were used to predict 
the overall survival times of the patients. Survival 
prediction is usually considered as a regression 
problem to model patients’ survival time and, thus, 
Cox regression models are generally used for 
construction of the risk prognosis model [65, 66]. Our 
model showed a higher predictive ability both in 
training and testing sets in LUAD samples. 

Besides, H2AFX, MCM2, MCM7, and POLD1 
were highly up-regulated in 31 cancer tissues. A 
previous shown that MCM2 was up-regulated in 
cervical carcinogenesis [67]. Ramsauer et al. 
uncovered that MCM7 expression was upregulated in 
upper proliferating keratinocyte layers of papillomas 
[68]. Moreover, POLD1 was reported associated with 
colorectal cancer [69, 70]. Interestingly, the expression 
levels of modular gene signatures were significantly 
different between the smoking and non-smoking 
groups in LUAD patients rather than in LUSC 
patients. The results were further shown that the 
modular gene signatures were risk genes. 

However, there are still some limitations in this 
study. Further studies with much larger sample sizes 
will be needed. In addition, the data used in study are 
downloaded from publicly available databases, 
lacking of any original datum from our own study. 
Further validation, either in vivo or in vitro experiment 
will be needed. The molecular signaling pathway and 
function should be explored by further experiments 
or clinical study. Relevant experiments will be 
performed to verify the multiple candidate targets 
identified from our bioinformatics analyses. 

In conclusion, the expression levels of H2AFX, 
MCM2, MCM7, and POLD1 were significantly 
different between COPD and NSCLC samples. The 
modular gene signatures were mainly enriched in the 
pathways of DNA replication, cell cycle, and 
mismatch repair. The high expression levels of 
H2AFX, MCM2, MCM7, and POLD1 were correlated 
with poor prognosis of LUAD. 
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