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Fourier transform infrared spectroscopic imaging of colon tissues:
evaluating the significance of amide I and C–H stretching bands
in diagnostic applications with machine learning
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Abstract
Fourier transform infrared (FTIR) spectroscopic imaging of colon biopsy tissues in transmission combinedwith machine learning
for the classification of different stages of colon malignancy was carried out in this study. Two different approaches, an optical
and a computational one, were applied for the elimination of the scattering background during the measurements and compared
with the results of the machine learning model without correction for the scattering. Several different data processing pathways
were implemented in order to obtain a high accuracy of the prediction model. This study demonstrates, for the first time, that C–H
stretching and amide I bands are of little to no significance in the classification of the colon malignancy, based on the Gini
importance values by random forest (RF). The best prediction outcome is found when supervised RF classification was carried
out in the fingerprint region of the spectral data between 1500 and 1000 cm−1 (excluding the contribution of amide I and II
bands). An overall prediction accuracy higher than 90% is achieved through the RF. The results also show that dysplastic and
hyperplastic tissues are well distinguished. This leads to the insight that the important differences between hyperplastic and
dysplastic colon tissues lie within the fingerprint region of FTIR spectra. In this study, computational correction performed better
than optical correction, but the findings show that the disease states of colon biopsies can be distinguished effectively without
elimination of Mie scattering effect.

Keywords Fourier transform infrared spectroscopic imaging . Colon polyps and cancer . Correcting lens approach . Machine
learning . K-means clustering . Random forest supervised classification

Introduction

Colon cancer is a disease in the large intestine in which abnor-
mal cells divide uncontrollably. Most cases of the colon cancer
begin as a small adenomatous polyp which lines the inner

surface of the colon [1]. In the UK, colon cancer is the fourth
most common cancer with 16,000 deaths every year, making it
the second most common cause of cancer death in 2016 [2].
Early detection of colon cancer can help reduce mortality and
morbidity. The current diagnostic approach for this disease in-
cludes biopsy collection followed by histopathology during co-
lonoscopy or surgery. In recent years, FTIR spectroscopy has
been shown as a promising technique to enhance the clinical
diagnosis in a label-free way by investigating the chemical
content of the biopsy samples [3–6].

Although FTIR spectroscopy has the potential as a clinical
prognostic tool, there are several challenges associated with it,
most notably the reflection and scattering contribution (‘dis-
persion artefact’) that arise from the spatial inhomogeneity of
the sample. In fact, the dispersion artefact is found to be large-
ly dominated by resonant Mie scattering in pure transmission
experiment, as opposed to measurement in transflection mode
where the reflection artefact becomes significant [7]. The
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scattering contribution can lead to spectral distortion, for ex-
ample, a decrease in the absorbance of the amide I band, and
to a greater extent, manifest itself as a derivative-like baseline
at the high wavenumber side of the amide I band. It can also
result in significant frequency shifting of spectral bands that
are used extensively to classify biological specimens. To be
able to interpret FTIR spectra correctly, it requires the correc-
tion of the dispersion artefact aforementioned. The origin of
dispersion artefact and their subsequent effect is detailed in
published articles [7, 8].

Resonant Mie scattering (RMieS) algorithm developed by
Bassan et al. was proved to be successful at correcting the
‘dispersion arterfact’ [7]. This algorithm is used in this manu-
script; however, the correction algorithm is computationally
intensive and time consuming. In addition, physical alteration
of imaging set-up for measurements in transmission by
employing an additional lens on top of the window that forms
pseudo-hemisphere has shown to be effective at producing
aberration-free and high-quality spectra from tissues and from
cells [9–12]. The other challenge in FTIR spectroscopic mea-
surements is the presence of spectral bands of water vapour in
the sample spectra, which hampers the analysis of protein
secondary structure in the amide I region (1700–1600 cm−1)
[13–15]. This water vapour interference can be minimised by
computational subtraction of the pure water vapour spectrum
from the sample spectrum, with algorithm described by Brunn
et al. [16].

FTIR spectra contain a wealth of information about the
sample. As such, in analysis of spectra of biological systems,
multivariate statistics and machine learning algorithms are
frequently applied to extract the important information. The
two main strategies in chemometrics used to analyse FTIR
spectral data are unsupervised learning and supervised learn-
ing. The variety of the methods is detailed by Goodacre [17].
The aim of this paper is to utilise the well-established machine
learning approach, random forest in this case, to examine the
spectral ranges that could potentially contain the most impor-
tant spectral biomarkers that distinguish between colon spec-
imens of various degree of malignancy.

Materials and methods

Sample preparation

The samples are formalin-fixed paraffin-embedded (FFPE)
colon biopsies at different disease stages of malignancy (hy-
perplasia, dysplasia, and cancer), provided by St. Mary’s
Hospital (Imperial College London, UK), following standard
clinical protocols. The samples were microtomed at 3 μm
thickness from a specimen block and mounted onto a 2-mm-
thick CaF2 window (Crystran Ltd., UK) for FTIR analysis.
The adjacent section was mounted onto a glass slide, stained

with haematoxylin and eosin (H&E) and assessed by a trained
pathologist. The sections deposited on CaF2 windows were
deparaffinised as per the procedure described by Song et al.
[18, 19] and stored with a desiccant before use.

FTIR spectroscopic imaging measurements

The experiments were carried out in transmission mode at × 15
magnification (NA = 0.4), with a Hyperion 3000 FTIR micro-
scope coupled to Tensor 27 FTIR spectrometer (Bruker Corp.).
A liquid nitrogen cooled 64 × 64-pixel focal plane array (FPA),
which has a field of view of 170 × 170 μm2, is used for simul-
taneous acquisition of FTIR spectral dataset. As imaging was
combined with mapping, 3 × 3 individual images were stitched
into one, resulting in a total measured area of 510 × 510μm2 for
each tissue. The spectral images from 12 sample areas were
acquired. A new background was recorded before measuring
each individual image. All measurements were taken in the
mid-IR range from 3900 to 900 cm−1, at 4 cm−1 spectral reso-
lution and with 521 co-added scans. An additional CaF2 lens,
which has been shown to significantly reduce Mie scattering
[12], was also employed for imaging of the exact same tissue
areas. The design and set-up of the lens for combining imaging
with mapping were described in details by Kimber et al. [20].
To put it briefly, the added lens is kept in focus with an external
holder whilst the stage is shifted in x- and y-direction for dif-
ferent areas to be measured.

The additional lens implemented to correct for the chromat-
ic aberration in infrared measurement is referred to as
‘correcting lens’ from this point onwards in this paper. To
the authors’ knowledge, the assessment of the performance
of the correcting lens has not been closely examined with
advanced machine learning approaches.

Data processing and chemometric analytical
procedure

The spectral data were processed with MATLAB R2018b
(The MathWorks, Inc.). The spectral data in the range of
1800–1000 cm−1 and 3000–2800 cm−1 were used for further
analysis. The region between 2800 and 1800 cm−1 contains no
important spectral information whilst the region > 3000 cm−1

is sensitive to water content within the tissues. Baseline cor-
rection and water vapour subtraction were not applied to the
data. Second derivatives of the obtained spectra were calcu-
lated with Savitzky-Golay 9-point smoothing, which were
then vector normalised. The spectra, second derivatives, and
normalised second derivative data were then separately sub-
jected to unsupervised machine learning, in this instance, the
K-means clustering algorithm (tested for 2 to 6 clusters, each
with 5 replicates and infinite iteration until the solution con-
verges to a local minimum). A total of 2000 individual sample
spectra were recorded and used for machine learning. Only
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eight chemical images of the different tissue sections are
shown here for demonstration purpose. Training and test
models were created, each made up of 500 random spectra
sampled from each cluster without replacement, for tissue at
the same disease stage. In other words, the model consists of
2000 spectral data (500 for healthy (H), 500 for hyperplastic
polyps (HY), 500 for dysplastic polyps (D), and 500 for can-
cer sections (C)) which are identified by H&E staining. The
models were from different individuals ensuring that the inter-
patient variability is included in the study. Employing ma-
chine learning to study imaging data has been demonstrated
in previous works [17, 21].

The training model, after undergoing data dimensionality
reduction with PCA, was subsequently supplied to random
forest (RF) classifier to generate a prediction model on the test
model. RF operates by constructing multiple decision trees for
classification on the data, gets prediction from each tree and
thus outputs the class mode by means of voting. In this study,
bootstrapping as well as a five-fold cross validation of the
dataset is implemented [22]. Among various supervised ma-
chine learning classifiers, RF is preferable since it is faster and
insensitive to over-fitting [23]. The prediction accuracy of the
RFmodel is presented in the form of a confusion matrix. Inter-
model predictability was carried out with independent training
and test set. The size of training to test models was varied from
1:1 to 1:6. The analytical procedure is repeated with the mea-
surement data obtained from the added correcting lens, as well
as for no-lens data but corrected with RMieS algorithm (pro-
vided by Peter Gardner’s Lab, University of Manchester) [7,
24–26]. The parameters of the RMieS algorithm are given in
Electronic SupplementaryMaterial (ESM) (Table S1). Several
machine learning parameters, namely the number of clusters,
the spectral range for supervised and unsupervised classifica-
tion, the size of training and test models, and the variance of
retained PCA, have been tried and tested, to optimise the pre-
diction model. The important features are selected from the
Gini index—a score of the feature importance that is derived
from the training of the RF classifier, which technically cor-
relates to the optimal ‘Gini impurity’ split at each nodes within
the binary trees [27]. Based on the selected features or spectral
range, a flowsheet depicting all the different pathways to re-
training machine leaning in categorising the different stages of
the colon cancer is shown in Fig. 1. The prediction accuracy of
the test models was used as the criteria to cross-check the
spectral range highlighted by the machine learning as the
‘key biomarker’ that can be utilised to understand different
degree of malignancy of colon.

Figure 1 shows all the pathways that are tested with unsu-
pervised and supervised approach via training and re-testing
of the spectral data based on Gini importance (see figure in
section ‘Gini index obtained fromRF classifier’). The features
in this study are not independent of one another; thus, impor-
tant spectral range is discussed instead of the single features.

The paper starts off by describing Mie scattering and the im-
plementation of correcting lens on the FTIR spectra of colon
tissue, followed by the unsupervised learning on the second
derivative spectra without RMieS correction. With supervised
classifier, the performance of both model with and without
any RMieS correction is compared and discussed to establish
a proof of concept that RMieS correction might not be neces-
sary in this case study. On top of that, this paper serves to
demonstrate that amide I band plays a very little role in the
differences between specimens via feature selection in ma-
chine learning. The results are detailed as follows.

Results and discussion

Physical and computational correction of Mie
scattering effect

Mie scattering effect is significantly reduced at the edges of
the tissues when correcting lens is added, shown in Fig. 2,
where increase in absorbance of the amide I band and reduc-
tion in the sharp derivative-like distortion to the spectra at ~
1710 cm−1 are observed. Correction with added lens slightly
shifted the peak position of the amide I band by ~ 1 cm−1 from
1652 to 1653 cm−1. With the added lens, which acts like an
immersion objective as reported by Kimber et al. [20], the
image has ~ 40% increase in magnification (total area of
360 × 360 μm2 compared with 510 × 510μm2 for imagewith-
out lens) and is flipped due to the arrangement of the tissue
during measurement whereby the tissue is placed facing
downwards with the correcting lens added on top of it.
Computation correction with RMieS algorithm was more ef-
ficient at recovering a flat baseline of the spectra (Fig. 3) com-
pared with correction with the added lens but was more time
consuming. The peak position of amide I band was corrected
to where the peak is supposed to be at 1654 cm−1 with the
computational method.

Data processing

Eight different tissue regions, which comprise of 4 training
and 4 test models (as described in data processing procedure),
are measured and analysed. The number of areas taken in total
is 12 (four disease states for three patients). Chemical images
showing the distribution of integrated absorbance, estimated
with trapezoidal rule of integration, at the spectral bands of
1272–1184 cm−1, 1712–1589 cm−1, and 2944–2880 cm−1,
which are assigned to asymmetric phosphate stretching of
nucleic acid, amide I, and CH stretching of lipid respectively
[28], are represented in Fig. 4 (top: training model; bottom:
test model; only eight samples were selected for comparison
here), alongside the H&E stain images, which were used by
pathologists to assign the stage of tissue malignancy. The
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cumulative distribution curves of the pixel count of each inte-
grated absorbance (with the data sorted into 100 bins) are also
shown for easier comparison of the chemical images.
Although the pixel count is by no means an accurate indicator
of the specific variation between disease stages as it is depen-
dent on the area of measurement, it provides a quantitative
means for direct comparison of the chemical images which
is not quite so distinct even after normalisation of the colour
scale.

As can be seen in the curves of pixel count Fig. 4, the
integrated absorbance of nucleic acid band at 1271–
1184 cm−1 is lowest for healthy colon biopsy when a 95%
confidence interval is taken, likewise for amide I band. The
opposite is observed for the lipid spectral band within 2944–
2880 cm−1, whereby the lowest integrated absorbance is

achieved in cancer tissues. This is in agreement with the
high nucleic acid-to-cytoplasmic ratio observed in colon
cancer tissues [29] as well as the loss of normal glandular
architecture. The inner lining or mucosa of healthy colon
is lined with columnar epithelium and large number of
goblet cells, where numerous secretory vesicles contain-
ing mucus (glycoprotein) are present, in addition to the
secreted mucin in the intestinal epithelial surface layer.
Mucus is a complex biochemical layer made up of carbo-
hydrates, antimicrobial peptides, immunoglobulins, elec-
trolytes, and lipids [30]. For diseased tissue, however, the
goblet cells are not differentiated well to perform its func-
tion; instead, they become highly metastasizing cells with
high metabolic rate, which might progress to cancer (an
aggregation of undifferentiated cells).

Fig. 1 Schematic overview of the data processing and machine learning steps explored in this study. The best pathway leading to the optimised result is
highlighted in grey
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The difference between different stages of cancer is
also highlighted in the mean average spectrum obtained
after taking their second derivatives. The evaluation of the
variation is not very straightforward, thus the need for
machine learning to perform the task of classification of
colon disease. The interpretation of the second derivative
spectra is not included in the main discussion as machine
learning only requires the input of ‘features’, which is the
absorbance at various wavenumbers, and ‘label’, the stage
of disease. The second derivative spectral bands and their
corresponding band assignment are, nonetheless, provided
in ESM Fig. S4 and Table S2 to demonstrate the potential
variation that might be picked up by the machine learning
classification model. The most significant differences lie
in the peak shift and the intensity of the trough of the
second derivative data.

Gini index obtained from RF classifier

The choice of spectral wavenumbers for classification, as
mentioned earlier, is based on the Gini index (Fig. 5). The
results show that the fingerprint region (< 1500 cm−1) contains
the most important features (greater than Gini index of 0.015).
This was followed by the lipid region (3000–2800 cm−1) of
secondary importance. Surprisingly, the best prediction accu-
racy is obtained when unsupervised training is applied on the
spectral range of secondary importance, whilst the most im-
portant features are used for supervised training. A similar
machine learning study was performed by Kuepper et al. on
colon cancer; however, the spectral range used for the training
is inclusive of the amide I band [31]. It should be realised that
the amide I region shows no significant importance, based on
the Gini values demonstrated here.

Fig. 3 The raw spectra of 100
random pixels before and after
RMieS correction, shown on the
left and on the right respectively.
Severe Mie scattering effect can
be seen in the figure on the left
prior to correction

Fig. 2 Top: false colour K-means
cluster images of healthy colon
tissue without the lens (left) and
with the lens (right) obtained by
mapping from nine stitched
images. Each of the chemical
images has a size of 510 ×
510 μm2. Cluster represented in
light blue shade (box) indicates
the edges of the tissue. Bottom:
the average measured spectra
from the areas representing the
edges of the tissue
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Unsupervised learning

K-means clustering are used for intra-tissue classification, by
maximising inter-distance variance between data within a tis-
sue. It is important to recognise here that the optimum param-
eters for clustering in this study, after assessing the outcome of
the supervised predictive model by comparing different spec-
tral ranges and the number of clusters (results not shown), are
based on the second derivative of the spectra between 3000
and 2800 cm−1 (introduced as the ‘lipid region’ henceforth,
although strictly speaking, the spectral band within this region

is not limited to lipid; it is assigned to the C-H stretching of
methyl and methylene groups) [28]. The three clusters identi-
fied are considered sufficient in this study following these
reasoning: first of all, the various tissue morphology
categorised by the clusters are fed into supervised machine
learning independently as a way of phasing out unnecessary
regions of the tissue since not all morphology or clusters show
essentially distinct spectra between different stages of colon
disease; the highest performance is obtained with the spectra
from high lipid region, which can be easily classified with just
3 clusters. Secondly, the higher the number of unsupervised

Fig. 4 FTIR spectroscopic images of the colon biopsy used in the training
models (top) and test models (bottom), depicting the distribution of
different components by evaluating the integrated absorbance at various
spectral ranges, which are labelled at the top of each column. The first

column gives the H&E-stained images identified by the pathologist. Each
image has a size of 510 × 510 μm2.The colorscale of the images is
normalised across each component (column-wise) for comparison of
their absorbances.

Training model 
 H & E Nucleic acids 

1271 – 1184 cm-1
Amide I 

1712 – 1589 cm-1
Lipids 

2944 – 2880 cm-1

H
ea

lth
y 

 
H

yp
er

pl
as

ia
 

D
ys

pl
as

ia
 

C
an

ce
r 

Normalised colorscale 

Pixel Count 
(Cumulative distribution 
function) 

Song C.L. et al.6974



clusters implemented, the higher the degree of similarity of the
spectral data within each cluster; the lower the tolerance for
dissimilarity of the test datasets, in other words, overfitting of
data is introduced. In addition, since K-means is an unsuper-
vised imaging approach, higher number of clusters have a
tendency to cluster data that are close to each other which
should have been treated as one (the sum of squared distances
between each cluster decreases exponentially with increasing
number of clusters). Besides, the main objective of this study
is to assess the importance of lipid and amide bands in the
prediction ability of the RFmachine learning, the least number
of clusters which can output a good predictive performance is
desirable, in this case, three clusters for the intra-tissue

differentiation can warrant a prediction outcome greater than
90% accuracy. Most importantly, higher category of classifi-
cation (> 3 groups) is not needed as the lipid region is of
secondary importance, as discussed before. Although the
higher number of clusters are useful at exploration of the var-
ious histopathological architecture of colon adenocarcinoma,
as analysed by Lasch et al. using similar multivariate imaging
approaches [32], the tissue morphology is not explored in this
paper. The false colour images generated from K-means clus-
tering and their corresponding second derivatives are shown
in Fig. 6.

From the mean second derivative spectra by averaging all
the pixels within the same cluster, the tissue regions are
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Fig. 4 (continued)
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effectively classified into low and high lipid absorbance re-
gion (cluster 1 and cluster 2 respectively), which are fed into
the supervised learning algorithm separately. This reinforces
the findings by Song et al. [18] that spectral bands of lipid are
still useful biomarkers for intra-tissue classification, despite
the lower Gini importance index. The lipid spectral region
contains a wealth of information. Bassan et al. has also dem-
onstrated that the high wavenumber spectral range (O−H, N
−H, and C−H stretches occurring at ca. 3800–2500 cm−1) is
useful for the generation of false colour classification image of
breast tissue microarrays on glass substrate [33]. They are free
from interference with the spectral bands of water vapour and
Mie scattering, with the only possible variation coming from
the deparaffinisation process on the formalin-fixed tissues.
This variation is controlled and minimised by strictly adhering
to the deparaffinisation protocol.

It is possible that the cancerous tissues are more susceptible
to change during solvent-based removal of material, required

prior to the paraffin embedding process. The FFPE process
requires fixation of fresh tissue in formalin for 6 to 24 h, follow-
ed by multiple washes in ethanol/water with increasing ethanol
concentration until water has been removed. Xylene, or possi-
bly isopropanol, is then used to remove the ethanol, taking with
it much of the fats within the natural tissue. Finally, the tissue is
soaked in molten paraffin, usually at 60 °C. Precautions were
taken to conduct the de-waxing process in a closely controlled
manner, so that each of the three samples were treated in the
same way; however, the manner in which the FFPE was first
conducted is out of our control, including the amount of fats and
other materials that may have been removed in that process.
That said, surprisingly, similar observations weremade on pros-
tate cancer tissues that are supplied by different pathologists but
de-waxed with the same procedure [18] that this wavenumber
region (3000–2800 cm−1) is different between normal and can-
cer samples. Thus, the explanation that tissues of different ma-
lignancy retain various amount of fats after deparaffinisation
essentially still offers a different kind of ‘key biomarker’ for
cancer differentiation in FTIR imaging study.

Supervised machine learning

Random forest classifier was shown to be an efficient super-
vised machine learning technique for the classification of
spectral data in previous studies [17, 34, 35]. In this study,
second derivative data (for measurements with and without
correcting lens) from various spectral ranges were used to
train the algorithm—model 1, between 1800 and 1000 cm−1

and 3000–2800 cm−1 (all range); model 2, 1800–1000 cm−1

only (fingerprint region with amide bands); model 3, 1500–
1000 cm−1 only (fingerprint region); and model 4, 3000–
2800 cm−1 only (lipid region). To clarify, re-training and re-
testing of the RF models is still required after Gini selection to

Fig. 5 Plot of Gini importance values obtained fromRF prediction model
against wavenumber of colon biopsy tissue, overlaid on the average FTIR
spectrum of healthy colon tissues (normalised between 0 and 0.040) for
clarification purpose

Fig. 6 Representative colour-coded K-means clustered images of healthy
colon biopsy sections of a test and b training model. Cluster represented
in light blue is for areas dominated by goblet cells (denoted as cluster 2),
dark blue for basal membrane (denoted as cluster 1), and yellow for areas

without tissue. c Average second derivative spectra of the corresponding
clusters in the high wavenumber spectral region (3000–2800 cm−1), fol-
lowing the colour code in K-means cluster
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subjectively assess the prediction performance; hence, the re-
sults are organised in the way shown in the workflow (Fig. 1)
in this manuscript.

The overall prediction accuracy for each model is shown in
Fig. 7. A typical fingerprint region of infrared measurement is
loosely defined to be between ~ 1600 and 1500 cm−1 to
500 cm−1 [13, 36]. To avoid confusion to readers, in this
paper, the fingerprint region is referring to spectral range with-
in 1500–1000 cm−1 inclusive. At this part of the analysis, no
computational correction of Mie scattering is applied.

Figure 7 shows that overall prediction accuracy is higher
for data in cluster 2, region of higher lipid absorbance, than
cluster 1. A comparison of the performance of measurements
with and without correcting lens can be achieved by analysing
cluster 2, which reveals that apart from model 1 and model 4,
the measurements with correcting lens, despite its ability to
minimise Mie scattering at the edges of the tissues, generally
underperform compared with measurements without the
added lens. The lowest accuracy of cluster 2 prediction is
obtained frommodel 3 with added lens. This is because whilst
the added lens approach removes the scattering effect and thus
improves the quality of amide I band, the spectra collected in
the range of 1100–1000 cm−1 suffer from enhanced noise,
which is not an issue with computational approach. This hap-
pens because the additional stacking of lens on top of the CaF2
substrate (from the way the correcting lens is set-up) reduces
the throughput of light. Due to the lower photon counts that
pass through the sample and the fact that CaF2 has a cut-off at
~ 900 cm−1 in transmission, the spectral quality in the low
wavenumber region deteriorates significantly compared with
the set-up without correcting lens.

Model 2 (with lens) gives a slightly better performance
when amide bands are factored into consideration as added
lens is shown to improve the absorbance of the spectral band
of amide I. Model 4 which considers the data exclusively from
the lipid region is undeterred by the noise introduced by the
extra lens configuration and model 1 which takes into consid-
eration all the spectral regions shows similar performance with
and without additional lens, for reasons discussed above.
Instead of CaF2, a pseudo-hemispherical ZnS lens with infra-
red cut-off at ~ 700 cm−1 was suggested to improve the spec-
tral quality [20]. However, Mie scattering correction does not
play a significant role in optimising the performance of the
supervised learning, reinforced by the finding that the highest
prediction accuracy of 92.7% can be achieved with model 3
(fingerprint region). In other words, the second derivative
spectral data within 1500–1000 cm−1 from cluster of high
lipid absorbance region alone is sufficient to achieve effective
discrimination of all the different grades of colon cancer as the
fingerprint region is least affected by Mie scattering. The in-
terference of the water vapour spectra within this region is also
minimal (as shown in ESM Fig. S5). Therefore, removal of
Mie scattering effect is not necessary as the amide spectral
range (1700–1500 cm−1) does not need to be included in data
analysis at all, as demonstrated here.

On the other hand, model 4 gives the lowest prediction
accuracy; this infers that lipid spectral region (or high wave-
number region) alone is not reliable for supervised training of
the classification model in the study of colon biopsy.
Nevertheless, the possibility of classifying between normal
and cancer state of a biopsy, without classification of the
stages of disease, based solely on the lipid region is not ruled

Fig. 7 The bar chart shows the overall prediction accuracy in percentage of various models for measurement with and without correcting lens (and
without computational correction for Mie scattering effect) for cluster 1 of low lipid absorbance and cluster 2 of high lipid absorbance

Fourier transform infrared spectroscopic imaging of colon tissues: evaluating the significance of amide I... 6977



out. For example, the study by Pilling et al. for different types
of cancer (breast cancer) and using different substrates that
rely on highwavenumber spectral range alone allows for rapid
discrimination between normal epithelium, malignant epithe-
lium, normal stroma, and cancer-associated stroma of breast
biopsies with classification accuracy as high as 95% [37].
However, the categorisation of the different stages of breast
cancer was not shown in their study. The breakdown of the
true positive rates (or true negative rates for non-healthy tis-
sue) of each cancer grade (measurement without additional
lens) is shown for all models of cluster 2 in Fig. 8.

From these results, it is apparent that healthy and malignant
tissues are easily distinguished from other stages of the dis-
ease, whereas dysplastic tissue is often misclassified as hyper-
plasia, if the correct spectral range is not implemented.
Hyperplastic and dysplastic tissues rely heavily on differences
within 1500–1000 cm−1, possibly from the change in concen-
tration of the nucleic acid and carbohydrates in the tissues
[13], and can be classified at a high accuracy when only the
fingerprint region is used. Hyperplasia and dysplasia exhibit
very similar spectral pattern above 1500 cm−1; hence, they are
best differentiated from each other when the amide and lipid
bands, which have higher absorbance and would dominate
over the nucleic acid bands when no vector normalisation is
carried out, are eliminated from the training dataset (model 3).
The results from supervised learning give a significant insight
into assessing the spectral biomarkers of colon cancer.

It is important to note that a high intra-model prediction
(prediction within the training model without test model) does
not warrant a high inter-model prediction (prediction with the
test model). In this case, inter-model prediction is employed as
a better and more reliable guide to verify the efficiency of the
machine learning and should be carried out where possible.

The stability of the training model is confirmed by decreasing
the ratio of the size of training to test models from 1:1 to 1:6;
the error in the prediction accuracy is a mere ± 2.0%. The
optimum variance of PCA for the training of the model is
found to be 99%; ca. 20% of the second derivative data within
the fingerprint region contains useful information for data
classification (see ESMFig. S1 for results tested with variance
of PCA retained ranging from 87 to 100%). The final best
results of the prediction model summarised in a confusion
matrix plot [38] and the corresponding receiving operator
characteristic (ROC) curve of the random forest classifier are
presented in Fig. 9.

The findings are reinforced by comparing the prediction
outcome with that obtained from spectral data after correction
with RMieS algorithm (and without the correcting lens). The
performance of the fingerprint region with amide bands after
RMieS correction shows significant improvement in the predic-
tion accuracy compared with the second derivative data before
correction (from 81 to 91% prediction accuracy), despite being
slightly lower than that of the fingerprint region alone, due to
the correction of the amide I band (92%). Correction with the
RMieS algorithm is computational whilst correction with the
added lens is a practical optical approach; thus, as expected, the
RMieS algorithm provides a more precise solution which in-
deed yields a better overall prediction accuracy. The confusion
matrices for both cases are provided in ESMFig. S2 and Fig. S3
respectively. In this study, both correcting lens and RMieS cor-
rection are shown to be useful at correcting the scattering effect
on amide I band but might not be necessary if classification of
the stages of the colon adenocarcinoma via machine learning
technique is the main objective as the training model without
any correction for Mie scattering is sufficient to yield accuracy
comparable with that after correction.

Fig. 8 The bar chart shows the
prediction accuracy of different
stages of colon disease within
each model of cluster 2 (high lipid
absorbance area) for
measurement without lens
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Conclusion and outlook

Spectral data of colon biopsies obtained with a correcting
lens for FTIR imaging show a significant reduction in
spectral aberrations due to inhibiting Mie scattering, as
was shown in our studies with other types of cancer tis-
sues. Optical modification of the FTIR spectroscopic im-
aging with a CaF2 correcting lens has the advantage that
the Mie scattering correction algorithm does not need to
be performed. However, for this study the correction ef-
fect was not as good compared to the computational meth-
od. Here, we report the insignificance of the role of amide
I band in machine learning for the first time. Importantly,
the findings show that the disease states can be distin-
guished without resorting to the correction of Mie scatter-
ing effect. By using K-means clustering and RF classifier
with PCA reduction, our work has demonstrated that op-
timisation of the training model by refining the selected
range of FTIR spectral data can alter the prediction
outcome.

The novelty of this work showed that the best prediction
outcome for the studied colon biopsy samples were obtained
when unsupervised learning of the C-H stretching bands is
coupled with supervised learning of the spectral region be-
tween 1500-1000 cm-1. Hence, whilst the C-H stretching re-
gion is useful for intra-tissue segmentation, only the spectral
range of 1500–1000 cm−1 is important for supervised machine

learning. The amide I band can be excluded from data analysis
altogether, as evidenced in the Gini indices obtained in this
work. In addition, reliance on the C-H stretching spectral re-
gion (3000–2800 cm−1) alone in supervised learning gives the
worst prediction. This exploratory study involving a manage-
able number of datasets successfully highlights the extraction
of the most meaningful parts of the spectral data, which sets a
framework for further validation of the predictive ability of a
more sophisticated deep learning model in future work.

To summarise, further application of this method to
an unknown colon biopsy sample is straightforward and
potentially fully automated with simple programming.
Initial K-means clustering (with the number of clusters
set to two) on the C-H stretching bands alone will pick
up regions of high lipid absorbance which will subse-
quently be fed into the already trained RF model that
predicts the outcome of the malignancy stage of the
specimen. The findings, though significant, are limited
to FTIR spectroscopic imaging of the colon biopsy.
Furthermore, Mie scattering is more pronounced in
single-cell imaging than tissue; the results of this study
are strictly limited to differentiation of disease progres-
sion in colon tissue specimens.
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Fig. 9 a The confusion matrix plot (MATLAB R2018b) shows the best
result that can be obtained from the fingerprint region of the spectral data
with model 3 (C, cancer; D, dysplasia; H, healthy; HY, hyperplasia). The
rows show the predicted class and the columns represent the true class.
The diagonal cells correspond to correctly classified observations, whilst
the off-diagonal cells correspond to observations that are incorrectly clas-
sified. Both the number of observations and the percentage of the total
number of observations are shown in each cell. The column on the right of
the plot shows the percentages of all the examples predicted to belong to

each class that are correctly and incorrectly classified. The row at the
bottom of the plot shows the percentages of all the examples belonging
to each class that are correctly and incorrectly classified. Overall accuracy
of the prediction of the classifier model is given in the cell in the bottom
right of the plot. b The ROC curve illustrates the diagnostic ability of the
classifier system. The area under the curve (AUC) is ~ 1.0, which corre-
sponds to a perfect classifier for the data in this study to distinguish
between diseases
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