
lable at ScienceDirect

Animal Nutrition 3 (2017) 313e321
Contents lists avai
Animal Nutrition

journal homepage: http: / /www.keaipubl ishing.com/en/ journals /aninu/
Review Article
Weaning stress and gastrointestinal barrier development:
Implications for lifelong gut health in pigs

Adam J. Moeser a, b, c, *, Calvin S. Pohl a, Mrigendra Rajput a

a Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East
Lansing, MI 48824, USA
b Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
c Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
a r t i c l e i n f o

Article history:
Received 9 December 2016
Received in revised form
15 June 2017
Accepted 20 June 2017
Available online 29 June 2017

Keywords:
Intestinal barrier
Pigs
Stress
Weaning
Gut health
Mast cells
* Corresponding author.
E-mail address: moeserad@cvm.msu.edu (A.J. Moe
Peer review under responsibility of Chinese Assoc

Veterinary Medicine.

Production and Hosting by Else

http://dx.doi.org/10.1016/j.aninu.2017.06.003
2405-6545/© 2017, Chinese Association of Animal Scie
an open access article under the CC BY-NC-ND licens
a b s t r a c t

The gastrointestinal (GI) barrier serves a critical role in survival and overall health of animals and
humans. Several layers of barrier defense mechanisms are provided by the epithelial, immune and
enteric nervous systems. Together they act in concert to control normal gut functions (e.g., digestion,
absorption, secretion, immunity, etc.) whereas at the same time provide a barrier from the hostile
conditions in the luminal environment. Breakdown of these critical GI functions is a central patho-
physiological mechanism in the most serious GI disorders in pigs. This review will focus on the devel-
opment and functional properties of the GI barrier in pigs and how common early life production
stressors, such as weaning, can alter immediate and long-term barrier function and disease susceptibility.
Specific stress-related pathophysiological mechanisms responsible for driving GI barrier dysfunction
induced by weaning and the implications to animal health and performance will be discussed.

© 2017, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The gastrointestinal (GI) epithelium and underlying lamina
propria are continually exposed to a harsh luminal environment,
which includes massive amounts of toxins, antigens, pathogens,
etc. In this environment, the gut must provide a barrier to patho-
genic and antigenic components in the lumen to prevent an over-
whelming immune activation and potentially sepsis, which is
critical for host survival. However, simultaneously, the GI system
must efficiently transport luminal nutrients, water, and electro-
lytes, which are vital for maintenance and growth, and selectively
uptake dietary and microbial antigens to facilitate proper
ser).
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development and education of the mucosal immune system. To
perform these divergent functions, the GI system is equipped with
multiple layers of sophisticated barrier mechanisms. This review
will focus on the postnatal development of specific barrier prop-
erties, which are provided by the GI epithelium and enteric im-
mune and nervous systems. This review will also provide the
supporting evidence from the literature on the impact of common
early life production stressors, such as early weaning stress, on the
developmental trajectory and long-term integrity of GI barrier
properties and insight into the pathophysiologic mechanisms
driving these changes. Whereas the microbiome has receivedmuch
attention as an important defense barrier through several proposed
mechanisms, reviewing the body of microbiome studies is beyond
the scope of this review, but we direct readers to other excellent
reviews on the topic (Backhed et al., 2005; Honda and Littman,
2016; Kelly et al., 2015).
2. Gastrointestinal barriers and their importance to GI health
and disease resistance

The GI barrier is comprised of a multi-layered system of host
defense mechanisms provided by the intestinal epithelial cells, and
ction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is
nses/by-nc-nd/4.0/).
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components of the immune and enteric nervous system. Given the
importance of these barrier mechanisms to health and disease, a
large amount of research has been conducted on these specific
functions and a number of review papers have been published;
therefore, an extensive review of these functions is beyond the
scope of this review. However, to provide the framework for the
relevance of the GI barrier mechanisms in animal production,
nutrition and health, a brief overview of the major GI barrier
mechanisms is provided below.

2.1. Barrier properties of the GI epithelium

The single layer of epithelial cells lining the GI tract represents
the largest interface between the host and the outside world. The
intestinal epithelium facilitates the breakdown and uptake of
nutrients via brush border enzyme activity and an array of apical
and basolateral nutrient transporters, while at the same time
facilitating a massive amount of bidirectional water movement via
electrolyte transporters, channels and pumps. At the same time,
the epithelium must provide a barrier to the harsh luminal con-
tents, which include pathogens, antigens, toxins, and serves as the
first line of defense. Several extrinsic and intrinsic mechanisms of
defense are provided by the GI epithelium. One of the most critical
mechanisms is the establishment of a permeability barrier, which
is regulated predominantly by the tight junctions (TJs), which
consist of numerous intracellular and apical intercellular mem-
brane proteins (e.g., zonula occludens, occludin, and claudins)
(Edelblum and Turner, 2009; Groschwitz and Hogan, 2009;
Marchiando et al., 2010; Turner, 2009). Tight junction proteins
regulate the leakiness of the epithelium by modulating ion
selectively and pore size of the epithelium known as the “gate
function”. Tight junctions also play a critical role in establishing
epithelial polarity important for the compartmentalization of
apical and basolateral transporter and receptor function known as
the “fence function”. The polarization provided by the fence
function is important to maintain the apical Naþ gradients needed
for efficient nutrient (glucose, amino acids) and water transport.
Whereas a tight or resistant epithelium is critical for barrier
function, the epitheliummust exhibit a normal physiologic degree
of paracellular and transcellular permeability required for solute-
driven water absorption and transcellular antigen uptake (Turner
et al., 1997). The critical importance of the appropriate regulation
of epithelial permeability is highlighted by the number of
important diseases linked with “leaky gut” including chronic in-
flammatory, allergic, and functional disorders and life threatening
conditions such as sepsis and multiple organ dysfunction
(Barbara, 2006; Camilleri and Gorman, 2007; Edelblum and
Turner, 2009; Marchiando et al., 2010). The intestinal epithelial
barrier is also supported by specialized epithelial cell types such
as goblet cells, which provide protective mucous layer and Paneth
cells, which secrete antimicrobial peptides. Intestinal epithelial
cells provide buffering and pH regulation through the secretion of
Cl� and HCO3

� ions, which is performed in large part by the crypt
epithelium. The ability to upregulate ion and fluid secretion is
considered to be an important mechanism to flush out pathogens
in response to stress and pathogenic challenges (Moeser and
Blikslager, 2007). Enteroendocrine cells play important roles in
pathogen sensing and can synthesize and release neuropeptides
such as serotonin and Peptide YY (PYY), which have a diverse
range of physiologic functions from pathogen defense to meta-
bolic regulation of appetite (Argenzio et al., 1997; Duca et al.,
2013; Little and Feinle-Bisset, 2011). The intestinal epithelial
cells act as immune sentinel cells by recognizing pathogenic
signal molecules and secreting interleukins (IL) and growth fac-
tors (e.g., IL-17A, IL-33, IL-23 and transforming growth factor-b),
which have important immunomodulatory properties (Schiering
et al., 2014).

2.2. Barrier properties of the GI immune system

The resident immune cells and related lymphoid structures in
the gut constitute the largest immune organ in the body. Given the
massive antigenic luminal environment and continual exposure to
luminal products, the GI immune system is tightly regulated via a
number of molecular mechanisms, to prevent excessive activation
and inflammation in response to the continual exposure to highly
antigenic and inflammatory substances. However, the GI immune
system must also be able to rapidly and robustly respond to any
breach in the epithelial barrier or in the event of a pathogenic/
antigenic challenge to mobilize innate and adaptive immune re-
sponses, which is critical in preventing the systemic spread of
infection and inflammation. In summary, a delicate balance be-
tween control and reactiveness of the GI immune system is critical
for optimal GI health and disturbances in this balance is central to
GI inflammatory disorders and disorders associated with immune
suppression.

2.3. Enteric nervous system barrier mechanisms

The enteric nervous system contains >100 million neurons,
which is as many as the spinal cord, and plays a central role in gut
and overall systemic health. The enteric nervous system consists
of 2 major neural ganglia located in the muscle (myenteric plexus)
and submucosa (submucosal plexus), which control motility and
peristalsis and mucosal and epithelial functions, respectively. The
enteric nervous system, through the constant release of an array
of neurochemicals, plays a central role in gut motility, secretion
and absorption, and modulation of epithelial permeability. The
nervous system is also a major regulator of systemic and local GI
immune responses via neuro-immune synapses, and can modu-
late bacterial toxin sensing and adherence (Dhawan et al., 2012;
Downing and Miyan, 2000; Fernandez-Cabezudo et al., 2010).
Due to its critical role in normal gut functions, disturbances in
enteric nervous system function can have deleterious impacts on
GI health. This concept is highlighted by the growing evidence for
enteric nervous system dysfunction in as a mechanism in impor-
tant GI diseases states relevant to pig GI health, including secre-
tory diarrhea, altered motility and inflammation. For example,
many diarrheal pathogens including enterotoxigenic Escherichia
coli enterotoxins, rotavirus mediate diarrhea activation of neural
secretory reflexes involving the sensing of toxins by sensory fibers
beneath the epithelium, which in turn convey signals and acti-
vation of secretomotor neuron activation, mediated via release of
neurochemicals vasoactive intestinal peptide and acetylcholine,
which drive electrolyte and fluid secretion (Field, 2003; Lundgren,
2002; Wood, 2010). Stress neuroendocrine mediators such as
catecholamines and adrenocorticotropic hormone (ACTH) can
influence binding and adherence of important swine enteric
pathogens to the intestinal mucosa (Brown and Price, 2008; Chen
et al., 2006; Schreiber and Brown, 2005). Significant alterations in
the enteric nervous system phenotype and function can change in
response to stressors such as weaning (Medland et al., 2016;
Moeser et al., 2007a) and pathogenic challenges from Lawsonia
intracellularis (Pidsudko et al., 2008; Wojtkiewicz et al., 2012).
There is an increased interest in studying the neuron-immune
communication as a way to explain mechanisms of GI diseases.
An important example of such communication in GI disease is
nerve-mast cell interactions, which are increased in IBS (Barbara
et al., 2004, 2007). Similar to human IBS, Pohl et al. (2017)
demonstrated that adult pigs that were previously early weaned
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(16 d wean age) exhibited enhanced co-localization of intestinal
mast cells with enteric nerves, compared with late weaned pigs
(weaned at 28 d of age) (Pohl et al., 2017).
3. The critical window of postnatal GI barrier development

The first three months of postnatal life represent a major
maturational period of GI development in the pig. During this time,
intestinal epithelial, immune and enteric nervous system (ENS)
phenotype and function change dramatically as the neonate adapts
to life in the extra-uterine environment (Fig. 1). Whereas some
developmental changes are a result of intrinsic genetic program-
ming or biological clocks, many changes are influenced by changing
environmental cues. Many developmental processes exhibit a high
degree of plasticity during this time and thus perturbations
occurring in this critical window can largely shape the long-term
phenotype and GI function. The postnatal GI developmental as-
pects in the pig has been reviewed in detail previously (Pohl et al.,
2015) but here we will cover some of the major concepts of post-
natal GI barrier function development relevant to GI barrier com-
ponents discussed above.
3.1. Postnatal intestinal epithelial barrier development

The establishment of the epithelial barrier develops rapidly in
postnatal life and is characterized by a rapid decline in intestinal
permeability. The process is critical to prevent exposure of the
immune system to new environmental antigens from food and the
colonizing microbiota, which would otherwise trigger massive
inflammation. Although species differences exist, in most animals
the development of intestinal epithelial barrier function occurs
within the first 2 to 3 weeks of postnatal life characterized by a
decline in intestinal permeability (Catassi et al., 1995; De Quelen
et al., 2011; Mackey et al., 2016; Patel et al., 2012). The precise
mechanisms driving early postnatal barrier development are not
well-defined but are thought to be driven by several factors
including inherent genetic programming, microbial colonization,
12 to 142.5 to 4 weeks

Fig. 1. Ontogeny of postnatal gastrointestinal (GI) barrier function development in the
significant development. Colostrum and sow's milk initially provides the piglet protective pa
is marked by maturation of the epithelial barrier and transport functions, and immune and
weeks of age. Developmental processes occurring this time exhibit a high degree of plastic
and colostrum and milk factors (Fawzy et al., 2011; Rogier et al.,
2014).

3.2. Postnatal intestinal immune barrier development

Birth and weaning represent a major challenge to the devel-
oping immune system as it must adapt to GI microbial colonization
and milk and feed antigens. In addition to a rapid epithelial barrier
establishment, additional exogenous and endogenous factors act to
suppress immune activation. For example, milk-derived immuno-
globulins (e.g., immunoglobulin A, IgA), maternal leukocytes, and
milk glycans can act to modulate and neutralize intestinal mi-
crobes. Additionally, mothers milk provides anti-inflammatory cy-
tokines and peptides, which suppress neonatal toll like receptor
(TLR) and inflammatory cytokine expression (Newburg andWalker,
2007). An additional mechanism to prevent over-activation of the
immune system during GI immune development, neonates are
born with few lymphocytes and reduced co-stimulatory molecules
expression (Nguyen et al., 2010; Upham et al., 2006). The neonates
immune system is biased toward a T helper 2 (Th2: humoral) im-
mune response as their ability to produce T helper1 (Th1) cytokines
such as interferon gamma (IFNg) and interleukin-12 (IL-12) is
suppressed whereas Th2 cytokines such as IL-4, IL-10 and IL-13 are
comparatively higher (Beverley,1997). Additionally, neonatal T cells
show hyper responsiveness to IL-4 and hypo-responsiveness to IL-
12, which further skews the immune response toward Th2
(Beverley, 1997). Moreover, a shorter complementarity-deter-
mining region 3 (CDR3), where binding of molecules to their spe-
cific antigen on T cell receptors (TcR) occur, makes neonatal T cells
less reactive (Garcia et al., 2000). Several weeks after birth, neo-
nates overcome the neonatal immunosuppressive stage when
lymphocytes start developing functionally as well as structurally
(Butler et al., 2000, 2009; Butler and Wertz, 2012). Unweaned
(nursing) piglets achieve a stable number of lymphocytes at about 6
weeks of age (Blikslager et al., 1997). Around the same time, sec-
ondary lymphoid organs such as jejunal and ileal Peyer's patches
rapidly mature characterized by an infiltration of lymphocytes
(Barman et al., 1997; Pabst et al., 1988). Interaction of lymphocytes
 weeks

pig. During the first 12 weeks of postnatal life, the GI system in the pigs undergoes
ssive immunity as well as important growth and immune factors. The postnatal period
enteric nervous systems (indicated by green line) that are almost complete by 12 to 14
ity and shape the adult phenotype and function of the GI barrier.
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to a wide variety of antigen including self-antigen and bacteria,
help in differentiating between self and non-self-antigen and
further facilitate to achieve homeostasis (Martin et al., 2010; Wu
and Wu, 2012). The proper interactions of lymphocytes with anti-
gen also lead to their proliferation, immunoglobulins and balanced
Th1/Th2 cytokine production (Blikslager et al., 1997; Frenyo et al.,
1981; Pomorska-Mol and Markowska-Daniel, 2010). In summary,
several maternal and host mechanisms act to limit immune acti-
vation during early GI development indicating the importance of an
immunosuppressive environment for optimal and long-term
maturation of the immune system. Therefore, inappropriate or
excessive immune stimulation during this critical period has po-
tential to disrupt the development and long-term function of the
gut immune system.

3.3. Postnatal development of the enteric nervous system

During postnatal life, major changes take place in the enteric
nervous system including formation of functional neurocircuits,
gangliogenesis, and changes in the neurochemical phenotype (Lake
and Heuckeroth, 2013; Sasselli et al., 2012). Following neurogenesis
and proliferation is a period of neuronal number decline, or
“neuron pruning”, resulting in the adult neuronal phenotype (Aoki
et al., 2007; Gabella, 1971; Medland et al., 2016; Schafer et al., 1999;
Wester et al., 1999). Cholinergic neurons represent an import
neuronal system that exhibits significant developmental changes in
postnatal life. Cholinergic innervation of the gut is characterized by
the proportion of neurons expressing choline acetyltransferase
(ChAT), the rate limiting enzyme for the synthesis of acetylcholine,
and the major excitatory neurotransmitter in the GI tract. The
proportion of ChAT neurons in postnatal life increases dramatically
and can account for approximately 44% of all neurons in the sub-
mucosal plexus, and 62% in the myenteric plexus by maturity
(Furness, 2000; Hao et al., 2013). In addition to cholinergic neurons,
serotonergic and adrenergic neurons undergo major changes
throughout postnatal GI development (Medland et al., 2016).

In summary, major developmental changes in the GI intestinal
barrier function take place postnatally. The GI systems undergoing
development during this time exhibit a high degree of plasticity
and are modified by environmental cues. Therefore stressful or
inflammatory disturbances during this time can have long-last
consequences. Exogenous and endogenous protective mecha-
nisms discussed, such as rapid epithelial barrier function and an
immunosuppressive immune phenotype, support the concept that
this critical period of development remains protected or undis-
turbed. Unfortunately, this vulnerable developmental period for
the GI system coincides with the most stressful production prac-
tices including early weaning, vaccination, transport, diet change,
and more. Therefore current production practices can have a pro-
found effect on shaping long-term GI development and health of
the pig. Current knowledge on how certain early life stressors
associated with weaning in the pig influence GI barrier develop-
ment and function is reviewed below.

4. Early weaning stress and GI barrier development:
Immediate and long-term impacts

In nature, weaning in pigs is a gradual process that approaches
completion at around 10 to 12 weeks of age, which coincides with
the near complete maturation of the GI epithelial, immune and
nervous systems described above. However, in commercial pig
production, weaning is abrupt occurring between 14 and 30 days of
age (Fig. 2). Whereas maternal separation is a major stressor to the
weaned pig, additional psychosocial and immunological stressors,
compound the stress load during this time, including
transportation, mixing, fighting and establishment of a new social
hierarchy, vaccination, etc. The timing of commercial weaning also
coincides with a period of declining passive immunity from sow
milk contributing an additional challenge to the pig. Weaned pigs
are able to survive and overcome the stress of weaning; however, it
is important to recognize early weaning stressors occurs during the
critical window of GI barrier development. Therefore, stressors
associated with early weaning have the potential to disrupt normal
epithelial, immune, and enteric nervous system developmental
processes.

4.1. Weaning and immediate alterations in GI barrier function

In response to weaning there are a number of morphological,
enzymatic, and inflammatory changes, which take place in the GI
tract of pigs and have been reviewed previously (Boudry et al.,
2004; Montagne et al., 2007; Wijtten et al., 2011). Here, we will
focus on the impacts of weaning and associated stressors on critical
components of the intestinal barrier including intestinal epithelial
permeability, immune system activation, and the enteric nervous
system.

Results of several studies have demonstrated that weaning in
pigs induces a breakdown in intestinal barrier function character-
ized by a significant decline in intestinal transepithelial electrical
resistance and increased permeability to paracellular probes in
Ussing chamber experiments (Hu et al., 2013; Moeser et al., 2007a,
2007b). Moeser et al. (2007a) demonstrated that, compared with
age-matched, non-weaned littermate pigs, weaned pigs exhibited
increased intestinal permeability that wasmost pronounced at 24 h
post weaning and then gradually declined over the first 2 weeks
post-weaning (Moeser et al., 2007a; Peace et al., 2011). At the same
time that epithelial barrier function is disrupted, an upregulation of
proinflammatory cytokines has been reported indicating a robust
activation of the GI immune system following weaning (Hu et al.,
2013; McCracken et al., 1999). A specific immune reaction that
plays a central role in the intestinal barrier pathophysiology
observed in theweaned pigs is intestinal mast cell activation, which
is discussed in more detail later in this review (Moeser et al.,
2007b). The influence of weaning on enteric nervous system
function has not been extensively studied in the pig. However,
weaning-induced elevations in transepithelial short circuit current
(Isc), a marker of intestinal secretion, were inhibited with the neural
inhibitor toxin, tetrodotoxin, demonstrating that weaning induced
Isc, and therefore secretory activity is mediated in large part by
activation of enteric nerves (Moeser et al., 2007a).

4.2. The influence of wean age on short and long-term intestinal
barrier function

In commercial pig production, weaning age can vary between 14
and 30 days of age depending on several management factors (e.g.,
lactation space, disease status, and weaning schedule). Our labo-
ratory had demonstrated in several published investigations that
weaning age is a major factor increasing the severity of intestinal
barrier injury following weaning. Compared with pigs weaned at
28 d of age, 21 d weaned pigs exhibit increased intestinal perme-
ability and Isc responses, when measured at 24 h post-weaning
(Moeser et al., 2007b). Smith et al. (2010) demonstrated that in-
creases in weaning age from 15 to 28 d of age results in graded
reductions in intestinal permeability whenmeasured 2weeks post-
weaning.

The majority of research on gut function in the weaned pigs has
focused on the first 1 to 2 weeks post-weaning. The long-term
impacts on pig health and gut function have only recently begun
to be realized. Main et al. (2004) demonstrated in a commercial
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Fig. 2. Impact of early weaning on the developmental trajectory of gastrointestinal (GI) barrier function. In nature, weaning is a gradual process occurring at ~12 to 14 weeks of
age, at which time the GI barrier function is near complete. In commercial production systems, weaning is abrupt and compounded by multiple social and environmental stressors
and occurs at the height of GI barrier development between 2 and 4 weeks of age. Early weaning pigs exhibit an altered GI barrier developmental trajectory (red dashed line)
resulting in permanent, suboptimal barrier function and increased disease susceptibility.
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multisite swine production system that increases in weaning age
from 12 to 21.5 d resulted in linear improvements in growth rate,
feed efficiency and reductions in mortality to market (Main et al.,
2004). In agreement with production data provided by Main et al.
(2004), Smith et al. (2010) showed that increasing weaning age
linearly reduced intestinal permeability whenmeasured at 2 weeks
post-weaning and intestinal permeability differences between
early and late-weaned pigs persisted when measured at 9 weeks
post-weaning (Smith et al., 2010). Recent evidence by demon-
strates that functional GI disturbances in GI barrier, immune and
nervous system function in early weaned pigs persists into adult-
hood (Medland et al., 2016; Pohl et al., 2017).

Along with disturbances in intestinal permeability, there is also
accumulating evidence for lasting functional changes in the GI
immune barrier function and disease susceptibility. In response to a
post-weaning F18 enterotoxigenic E. coli challenge, early weaned
pigs (15 to 16 d weaning age) had increased incidence of clinical
disease (diarrhea and growth performance reductions) and
increased intestinal permeability compared with later-weaned pigs
(22 dweaning age) (McLamb et al., 2013). Evaluation of themucosal
innate immune responses in this study revealed that early weaned
pigs exhibited suppressed IL-6, IL-8 and neutrophil responses to
E. coli challenge, comparedwith lateweaned pigs, thus suggesting a
compromised or suppressed immune response in early weaned
pigs. In a study comparing 14 d vs. 21 d weaned pigs, white blood
cell concentrations, specifically lymphocytes, were found to be
higher in 21-d weaned pigs following mixing and resorting at 37 d
post-weaning, whereas no differences were observed after mixing
and resorting in 14-d weaned pigs suggesting a lower immuno-
logical response to commingling stress in early weaned pigs (Davis
et al., 2006). In the same study, lower blood eosinophils were
observed in 14 dweaned pigs at 44 d post-weaning whereas at 65 d
post-weaning, 14-d weaned pigs had higher neutrophil percent but
lower lymphocyte percent compared with 21-d weaned pigs (Davis
et al., 2006). Together, these studies provide supporting evidence
for lasting changes in peripheral and mucosal immune cells as a
result of wean age. Whereas evidence supports a compromised
immune response in early weaned pigs, our laboratory has
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demonstrated that early weaned pigs have marked and persistent
mast cell hyperplasia in the small and large intestine when
measured at 2 and 9 weeks post-weaning (McLamb et al., 2013;
Smith et al., 2010). Recent data form our laboratory confirmed
that mast cell hyperplasia persists into adulthood in early weaned
pigs (Pohl et al., 2017).

As described above, the enteric nervous system plays central
role in the regulation of the intestinal epithelial and immune bar-
riers. In a study by Medland et al. (2016), early weaned pigs
exhibited lasting phenotypic and functional changes in the enteric
nervous system, compared with late weaned pigs. This study
showed that late weaned pigs exhibited a normal decline or
pruning of enteric neurons numbers between 60 and 170 d post-
weaning; however, enteric neuron numbers persisted in early
weaned pigs. A large percentage of the persistent enteric neurons in
early weaned pigs were shown to be positive for choline acetyl-
transferase (ChAT), the rate limiting enzyme in acetylcholine syn-
thesis. An upregulation in acetylcholinesterase activity was also
observe in the early weaned pig. Ussing chambers experiments
revealed that ileum from early weaned pigs exhibited heightened
neural- and CRF-evoked secretory responses that were blocked
with the cholinergic muscarinic receptor blocker atropine.
Together, these experiments demonstrated that early weaning in-
duces a persistent upregulation of the enteric cholinergic system. In
this study, early weaned female pigs exhibited greater neural-
evoked secretory responses and more pronounced cholinergic
activation, compared with early weaned male pigs provided new
evidence for sex-specific changes in the enteric nervous system
triggered by early weaning (Medland et al., 2016). Given the role of
the cholinergic nervous system in modulating immune responses,
secretory diarrhea and the epithelial barrier (Dhawan et al., 2012;
Hirota and McKay, 2006; Matteoli and Boeckxstaens, 2013), there
are potential implications for an upregulated cholinergic system in
early weaned pigs as a pathogenic mechanism for increased disease
susceptibility associated with early life stressors such as weaning
(McLamb et al., 2013).

5. Mechanisms driving intestinal barrier dysfunction in early
weaned pigs

Weaning encompasses several stressors (e.g., maternal separa-
tion, mixing stress, transportation, diet change, etc.), which
collectively contribute to compromised gut health and well-being
of the weaned pig. The impact of weaning on GI health and dis-
ease has long been known; however, the underlying mechanisms
remain poorly understood. This knowledge gap is a key factor
limiting targeted interventions to ameliorate the adverse effects of
weaning on gut function.

5.1. Stress signaling and the intestinal corticotropin releasing factor
(CRF) system

Weaning is a stressful event in pigs as evidenced by the acti-
vation of hypothalamic pituitary adrenal axis (HPA) and elevation
of stress related mediators, including CRF and cortisol in the cir-
culation. Activation of the HPA axis is a critical survival mechanism
to respond to a stressor and return to homeostasis. The precise role
of this system in modulating GI physiology remains poorly under-
stood in the pig. Serum CRF levels were shown to be elevated
followingweaning for the first week post-weaning, whichmirrored
changes in intestinal transepithelial permeability and electrogeni
ion transport properties (determine by measurement of trans-
epithelial Isc) in pigs weaned at 19 d of age (Moeser et al., 2007a). In
the same study, serum cortisol was also elevated in response to
weaning; however, cortisol levels remained elevated throughout
the post-weaning period and thus did not coincide with post-
weaning changes in GI barrier function. During the first week
post-weaning, early weaned pigs had greater serum CRF levels but
lower cortisol levels compared with late-weaned pigs (Moeser
et al., 2007b). At the intestinal level, the expression of CRF re-
ceptors in the jejunum, ileum, and colon were upregulated in early
weaned pigs but not in late-weaned pigs (Moeser et al., 2007b). At 2
weeks post-weaning, early weaned pigs had higher jejunal CRF
levels and decreased intestinal mucosal expression of CRF receptor
subtypes, which might indicate a downregulation of CRF receptor
expression in response to chronically elevated CRF ligand (Smith
et al., 2010). In contrast, glucocorticoid receptor expression was
found to be markedly higher in the jejunum of early weaned pigs
compared with late weaned pigs (Smith et al., 2010). More
importantly, administration of CRF receptor antagonists to early
weaned pigs at weaning, or 9 weeks post-weaning, reduced the
early (Moeser et al., 2007a) and chronic (Smith et al., 2010) eleva-
tions in intestinal permeability thus demonstrating a central role
for the intestinal CRF receptor system in modulating intestinal
permeability in the weaned pig. In addition weaning-associated
changes in the expression of the CRF system, we have also
demonstrated that the CRF system is upregulated in pigs under-
going other stressors including Salmonella typhimurium challenge
(Boyer et al., 2015) and chronicmixing and crowding stress (Li et al.,
2017), suggesting a potential common pathophysiologic mecha-
nism underlying stress-induced gut dysfunction in pigs. Together,
these studies demonstrate that weaning and other stressors induce
early and long-term changes in the intestinal CRF systemwhich are
central to intestinal barrier disturbances in pigs.

5.2. The role of intestinal mast cells in gastrointestinal barrier
dysfunction induced by early weaning in pigs

Mast cells are hematopoetically-derived innate immune cells
that play important roles in host defense and disease pathogenesis.
Mast cells are strategically located at host-environmental interfaces
such as the skin and gut mucosa and serve as important immune
sentinel cells and immune modulators (Abraham and St John,
2010). Mast cells are required for host defense and wound heal-
ing; however, excessive activation of mast cells is a central patho-
physiologic mechanisms in inflammatory disease such as allergy
and asthma and functional stress-related GI disorders including
irritable bowel syndrome in humans (Boeckxstaens, 2015; Galli and
Tsai, 2012; Hamilton et al., 2014; Wouters et al., 2016). Intestinal
mast cells were shown to be activated within 24 h of weaning in
pigs (Moeser et al., 2007b). Wean age has a major impact on in-
testinal mast cell activity in pigs. Compared with late-weaned pigs,
early weaned pigs exhibit greater intestinal mast cell activation
measured at 24 h post-weaning (Moeser et al., 2007b) and develop
a persistent intestinal mast cell hyperplasia that was evident at 9
weeks post-weaning (Smith et al., 2010) and into adulthood (Pohl
et al., 2017). The importance of increased intestinal mast cell ac-
tivity in early weaned pigs was demonstrated in experiments
where early weaned pigs were administered themast cell stabilizer
drug sodium cromolyn, which was shown to prevent weaning-
induced increases in intestinal permeability and changes in short-
circuit current (Isc) (Moeser et al., 2007b). In vivo and ex vivo
studies demonstrated an interplay between the CRF receptor acti-
vation andmast cells as CRF applied to porcine intestinewas shown
to increase intestinal permeability via a mechanism involving
release of mast cell proteases and TNFa (Overman et al., 2012;
Smith et al., 2010). Together, these studies provide strong evi-
dence for a central role for mast cells in driving intestinal epithelial
permeability disturbances in the early weaned pig (Fig. 3). Given
that mast cells are also potent positive and negative modulators of



2.4 to 4 weeks 12 to 14 weeks

Fig. 3. Mechanisms of intestinal barrier dysfunction induced by production stressors in pigs: corticotropin releasing factor (CRF)-mast cell axis. Production stressors such as
weaning, mixing/crowding and gastrointestinal (GI) infections, trigger activation of intestinal CRF and receptors. The CRF receptor activation enhances intestinal mast cell activation
and hyperplasia and the release of mast cell mediators including proteases (e.g., tryptase and chymase) and tumor necrosis factor-a (TNF-a). Mast cell proteases and TNF-a induce
increases in intestinal epithelial permeability.
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immune responses (Abraham and St John, 2010; Chan et al., 2013;
Choi et al., 2013; Galli et al., 2008) and enteric neurons (Barbara
et al., 2004; Kirsch and Riddell, 2006; Kobayashi et al., 1999;
Wouters et al., 2016), mast cells might be major players regu-
lating immune and ENS dysfunction observed in early weaned pigs,
but the precise role of mast cells as immune modulators in pigs
remains to be elucidated.

6. Conclusion

Under natural conditions, the early postnatal period is charac-
terized by a critical period of immunological and neuroendocrine
quiescence, which is required for normal development and func-
tion of the GI system. However, in commercial production, many
stressors are imposed upon the pig during this critical period.
Although piglets overcome the weaning period and can perform
well, new research has demonstrated that early life stressors such
as weaning alter the developmental trajectory of GI barrier func-
tions leading to long-lasting deleterious consequences on gut
health and disease susceptibility of the animal throughout the
production lifespan (Fig. 3). This review presents a summary of
that, which is currently known about the deleterious impacts of
current early weaning practices on the development and long-term
GI epithelial, immune, and ENS barrier functions in the pig. The
concept of early life origins of GI disease susceptibility in the pig is
supported by paradigms in humans where early life adverse events
(e.g., psychological trauma, inflammation, infection) are risk factors
for GI inflammatory and functional diseases later in life (Bradford
et al., 2012; Chaloner and Greenwood-Van Meerveld, 2013; Mac-
cari et al., 2014; Park et al., 2016; Sanchez et al., 2001). Increasing
our understanding of howearly life stressors such as weaning in the
pig shape long-term epithelial, immune, and ENS barrier function is
needed to discover new targets and (or) management interventions
to promote optimal development and long-term gut health in pigs.
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