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Abstract. Traditional tumor diagnosis methods rely on tissue 
biopsy, which can be invasive and unsuitable for long‑term 
monitoring of tumor dynamics. The advent of liquid biopsy 
has notably improved the overall management of patients 
with cancer. Liquid biopsy techniques primarily involve 
detection of circulating tumor cells (CTCs) and circulating 
tumor DNA (ctDNA). The present review focuses on ctDNA 
because of its significance in tumor diagnosis, monitoring 
and treatment. The use of ctDNA‑based liquid biopsy offers 
several advantages, including non‑invasive or minimally 
invasive collection methods, the ability to conduct repeated 
assessment and comprehensive insights into tumor biology. 
It serves crucial roles in disease management by facilitating 
screening of high‑risk patients, dynamically monitoring 
therapeutic responses and diagnosis. Furthermore, ctDNA 
can be used to demonstrate pseudo‑progression, monitor 
postoperative tumor status and guide adaptive treatment 
plans. The present study provides a comprehensive review 
of ctDNA, exploring its origins, metabolism, detection 
methods, clinical role and the current challenges associated 
with its application.
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1. Introduction

Currently, pathological tissue biopsy is the gold standard for 
diagnosing and monitoring a number of malignant tumors, 
such as lung cancer, stomach cancer, colorectal cancer. This 
method allows rapid assessment of the extent and nature of 
lesions, provides relatively accurate pathological classifica‑
tion and facilitates early detection and diagnosis. In addition, 
tissue biopsies conducted during treatment can reflect disease 
progression and treatment efficacy and provide clinicians with 
valuable information to tailor treatment plans (1). However, 
use of insufficient or inadequate tissue samples may lead to 
diagnostic bias, which may be exacerbated by tumor heteroge‑
neity (2). Furthermore, repeated invasive procedures can cause 
discomfort for patients, particularly as the disease advances. 

The emergence of liquid biopsy has effectively addressed 
several of these challenges. Liquid biopsy involves the 
molecular analysis of liquid (non‑tissue) samples to evaluate 
physiological states (3). While blood samples are the most 
commonly used, other bodily fluids such as cerebrospinal fluid 
(CSF), saliva, pleural effusion, bile, abdominal fluid and urine 
can also be utilized (4). Liquid biopsy primarily focuses on 
analyzing circulating tumor cells (CTCs), circulating tumor 
DNA (ctDNA), as well as circulating cell‑free (cf)RNA, extra‑
cellular vesicles and tumor‑inducing platelets (5). ctDNA has 
emerged as a pivotal element in clinical practice as it serves 
a key role in cancer diagnosis, monitoring and treatment. In 
clinical treatment, physicians are able manage treatment strat‑
egies by reference to ctDNA results. The detection of ctDNA 
pre‑treatment and pre‑ and post‑operation guide patient 
treatment plans (6). However, there are limitations to ctDNA 
analysis in liquid biopsy, including challenges in evaluating 
tumor pathology, detection sensitivity and the absence of 
standardized protocols.

2. Overview of ctDNA‑based liquid biopsy

cfDNA. Circulating cfDNA refers to highly fragmented DNA 
released from cells into the bloodstream that circulates freely 
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in human blood (7). First discovered in 1948 (7), cfDNA has 
become a major focus of medical research (8‑10). It is composed 
of both double‑ and single‑stranded fragments (11‑13), typi‑
cally 120‑220 bp in length, with an average length of ~167 bp, 
which is associated with the nucleosome (14). 

In the bloodstream, cfDNA exists in three primary forms: 
Free, bound to protein (such as nucleosomes and lipoproteins) 
or associated with extracellular vesicles, such as exosomes, 
apoptotic bodies and microvesicles (15,16). The majority 
of plasma cfDNA is found in exosomes (17). The sources 
of cfDNA have been a topic of debate and can be generally 
divided into two main categories: Cellular destruction and 
active cellular release (18,19). Potential sources of cfDNA 
include cellular byproducts released during normal physi‑
ological processes, exogenous DNA originating from dietary 
intake, blood transfusions or infections, release from the 
nervous system, secretion into the blood circulation due to 
factors such as stress, hereditary conditions, degeneration or 
disease, fetal cellular material transferred to the mother during 
pregnancy and systemic release due to obesity and aging (19). 
Plasma cfDNA from healthy individuals predominantly origi‑
nates from white blood cells (55%), red blood cell progenitors 
(30%) and vascular endothelial (10%) and liver cells (1%) (19). 
In patients with cancer, however, cfDNA is mainly derived 
from tumor tissue and surrounding cells (18). 

cfDNA is a key biomarker for various physiological and 
pathological conditions and is associated with factors such as 
aging (20) and physical or psychological stress (21). In addition, 
cfDNA serves as a key biomarker in several types of cancer, 
including non‑small cell lung cancer (NSCLC) (22), liver (23), 
breast (24,25), pancreatic (26), oral (27) and colorectal 
cancer (28,29). Previous studies suggest that cfDNA may also 
be associated with xenotransplantation (30,31).

cfDNA encompasses short and long DNA fragments and 
analysis of these fragments can provide valuable insight into 
a health status. Increasing evidence shows that cfDNA is vital 
for immune regulation, tumor‑associated inflammation and the 
maintenance of cell homeostasis (32,33). cfDNA can impact 
cellular function and transformation, contribute to tumor 
growth and metastasis and holds promise for early disease 
detection (32,33). In healthy individuals, there is a dynamic 
balance between production and clearance of cfDNA. cfDNA 
is primarily cleared by the liver, spleen and kidney (34,35). 
However, in patients with chronic inflammation or tumors, 
cfDNA levels significantly increase due to impaired clearance 
and subsequent accumulation (32).

ctDNA. ctDNA is a subset of cfDNA that consists of DNA 
fragments that originate from tumor tissue and potentially 
other sources, such as shedding cells from normal tissue, 
characterized by genetic alterations that mirror those of 
the tumor (18,36). The increase in cfDNA levels in patients 
with cancer is primarily attributable to the elevated levels 
of ctDNA (37). Typically, ctDNA fragments are  ~140 bp in 
length and have a half‑life >2 h, which makes their dynamics 
variable (38,39). The detection rate of ctDNA in plasma 
ranging from 0.01% to a majority in the cfDNA, which reflects 
notable heterogeneity among different types of tumor (40,41). 
Despite this variability, the quantity of ctDNA detected is 
usually high compared with that of CTCs (42). The ability to 

detect ctDNA is influenced by characteristics of the tumor. 
For example, smaller solid tumors or those with low metabolic 
activity may be more challenging to detect, which may lead 
to false‑negative results (6). Notably, ctDNA levels decrease 
rapidly following radical tumor resection if there is no or 
minimal residual tumor (43).

3. ctDNA detection in biological samples: Blood vs. 
non‑blood sources

Blood. Blood is the most widely used sample type for detec‑
tion of ctDNA (44), primarily due to the minimally invasive 
collection process and reproducibility. However, the precise 
mechanisms by which ctDNA enters the bloodstream remain 
unclear. It is has been hypothesized that ctDNA in blood origi‑
nates from three primary sources: Apoptotic or necrotic and 
viable tumor cells and CTCs (45). Plasma is considered the 
optimal sample for ctDNA analysis, as serum (excluding clot‑
ting factors) contains an increased proportion of DNA from 
leukocyte lysis (46). For example, Heger et al (47) developed a 
molecular prognostic index for central nervous system (CNS) 
lymphoma using plasma ctDNA and demonstrated that is was 
effective in predicting patient outcomes. This ultra‑sensitive 
method can detect CNSL‑derived mutations in plasma ctDNA 
that are highly consistent with CSF and tumor tissue. Plasma 
ctDNA undetectable at baseline was associated with favorable 
outcomes. However, detecting ctDNA in white blood cells 
poses challenges due to high levels of cfDNA in these cells, 
which leads to notable dilution of the ctDNA (48). Compared 
with blood samples, ctDNA is easier to detect in non‑blood 
samples.

CSF. Acquiring brain tissue for diagnostic purposes is both 
challenging and high‑risk due to the unique structure and 
function of the brain. Therefore, CSF serves an irreplaceable 
role. While magnetic resonance imaging (MRI) is commonly 
used to monitor CNS diseases (49), its predictive capability is 
limited. Liquid biopsy that involves the detection of ctDNA in 
CSF may serve as a novel detection method for CNS diseases. 
The unique composition of CSF, along with the protective 
blood‑brain barrier, decreases interference from cfDNA, which 
results in increased concentration of ctDNA and mutated allele 
frequencies (MAF) in CSF. This improves the sensitivity and 
accuracy of ctDNA mutation detection. Consequently, CSF 
biopsy may be a promising diagnostic tool for the detection 
and monitoring of brain tumors and CNS metastases (50‑52). 

A study has shown that carcinoembryonic antigen and 
CSF ctDNA are effective biomarkers for distinguishing 
patients with and without brain parenchymal tumor or CNS 
metastases (53). CSF ctDNA analysis has demonstrated 
distinct mutational profiles in patients with bone marrow 
metastasis (53). In a 2022 case report (54), a patient with 
lung adenocarcinoma experienced neurological symptoms, 
including headache, nausea, aphasia, limb restlessness and 
sudden blindness during treatment. While initial MRI and CSF 
cytology did not indicate the presence of brain metastasis, CSF 
ctDNA analysis identified the same EGFR mutation as that 
detected in the lung tumor of the patient. Follow‑up MRI scans 
9 months later confirmed brain metastasis, which suggested 
earlier MRI and CSF cytology results were false negatives. 



ONCOLOGY LETTERS  28:  548,  2024 3

This case underscores the potential of CSF ctDNA as an early 
diagnostic biomarker as it may detect brain metastasis before 
cytological or MRI evidence emerges. 

To the best of our knowledge, studies of ctDNA in CSF 
have predominantly focused on adults (55‑58), with rela‑
tively few investigating its application in children (59‑61). 
Pages et al (62) assessed tumor reliability by analyzing ctDNA 
in peripheral blood, CSF and urine samples from children 
with brain tumors; ctDNA detection in this demographic 
was limited by low tumor fraction (TF). In numerous cases, 
the actual TF was >1%, with TF >0.1% being undetectable. 
Furthermore, only a small percentage of high‑grade tumors 
were available. Therefore, uncertainty persists regarding the 
application of liquid biopsy for pediatric tumors, indicating 
the need for further research.

Saliva and sputum. The clinical relevance of saliva as a diag‑
nostic tool is uncertain. A study from 2019 (63) suggested that 
saliva may not serve as an adequate alternative sample for quan‑
titative cfDNA testing due to insufficient cfDNA concentration 
for diagnosis of NSCLC. However, it was proposed that saliva 
may be beneficial as a complementary method to cytology. 
Wang et al (64) made notable advancements by optimizing the 
extraction technique for sputum samples to overcome limita‑
tions posed by large amounts of mucus components and the low 
yield of cancer cells. Super‑amplification refractory mutation 
system was used to analyze EGFR mutation status in cfDNA 
derived from sputum samples; sputum could be a promising 
sample type for detecting EGFR mutations, although its use 
for diagnosing lung adenocarcinoma may be limited. Further 
research by Wang et al (65) highlighted saliva from patients 
with lung adenocarcinoma as a valuable alternative source 
for detecting the EGFR exon 20 p.T790M mutation, which is 
linked to resistance to EGFR targeted therapy (65). In addition, 
a previous study investigating head and neck cancer reported 
a high concordance (93%) in ctDNA detection between saliva 
and blood samples, as well as efficacy of ctDNA in saliva in 
predicting patient outcomes (66). A meta‑analysis of 64 cases 
of malignant salivary gland carcinoma found increased levels 
of ctDNA and CTCs in malignant cases (67). According to the 
2024 Expert Consensus, ctDNA extracted from saliva, along 
with serum or plasma, provides meaningful insight into tumor 
genetics and dynamics (68).

Pleural, peritoneal and pericardial effusion. Tumor superna‑
tant, such as pleural, peritoneal and pericardial effusion, are 
in proximity to tumors and may provide distinct advantages 
over blood for ctDNA detection; for example, it is easier to 
detect ctDNA of abdominal tumor with abdominal fluid A 
previous study that compared mutant allele scores from 30 
supernatant samples with those from paired formalin‑fixed 
paraffin‑embedded cell blocks reported a variant concordance 
up to 90% (69), and similar results were detected in both 
supernatant and FFPE samples in 74% of cases. This suggests 
that supernatant may serve as a viable alternative to traditional 
tissue biopsy (69).

Yang et al (70) used high‑throughput next generation 
sequencing (NGS) to analyze cfDNA in 15 pleural, five 
abdominal and one pericardial effusion; they identified key 
pathogenic mutations in malignant fluid from 13 patients 

with metastatic tumors, potentially malignant fluid from two 
cases and benign fluid from one case. In another study that 
focused on peritoneal cancer, malignant ascites or peritoneal 
lavage fluid was collected for microdroplet digital PCR 
(ddPCR) analysis; peritoneal effusion cfDNA could predict 
the tumor load of peritoneal cancer and assess patient eligi‑
bility for cytoreductive surgery by calculating the MAF (71). 
Compared with blood, fluids such as pleural and pericardial 
effusion and ascites exhibit increased sensitivity for ctDNA 
testing and may serve as predictive biomarkers for responses 
to EGFR inhibitors (48).

Pancreatic fluid and bile. In pancreaticobiliary tract tumors, 
obtaining tissue biopsies can be challenging due to the occult 
nature of the disease. Given their direct contact with tumor 
tissue, bile and pancreatic fluid are ideal samples for liquid 
biopsies. Kinugasa et al (72) compared levels of ctDNA in 
tumor tissue with those in bile from 49 patients with gall‑
bladder cancer; ctDNA isolation from bile was a valuable 
approach for diagnosing gallbladder cancer. The sensitivity 
of ctDNA testing (58.3%) was higher compared with that of 
cytology (45.8%), and there was a high mutation concordance 
between the two methods. Further study has demonstrated 
consistent KRAS mutations in ctDNA from bile, plasma and 
formalin‑fixed paraffin‑embedded samples from patients 
with bile duct tumors (39). Notably, only 18.8% of plasma 
ctDNA samples test positive for KRAS mutations, compared 
with a detection rate of 48.0% in bile ctDNA (39). Moreover, 
patients with KRAS mutations detected in bile ctDNA exhibit 
significantly lower survival rates compared with those with 
wild‑type KRAS (39). 

In early‑stage pancreatic ductal adenocarcinoma, identifi‑
cation of mutations in plasma ctDNA is often challenging (73). 
A study in 2023 compared the detection rates of ctDNA 
sourced from pancreatic fluid with that in plasma; DNA 
concentrations and the ratios of Alu247/Alu115 were higher in 
pancreatic fluid compared with plasma, however, there was no 
difference in the mutation detection rate between pancreas and 
plasma (74). This limitation may be attributable to the small 
sample size and influence of enzymes present in pancreatic 
fluid, which underscores the need for further investigation.

Urine. In 1995, ctDNA was detected in urine (75), marking the 
beginning of research interest in this non‑invasive biomarker. 
Thus far, two primary sources of ctDNA in urine have been 
identified, including debris shed directly from tumor cells 
within the urinary system and CTCs that are filtered through 
the kidney (76,77). The latter source of ctDNA tends to 
have a smaller molecular weight, restricted by pore size of 
the glomerular barrier (76). In 2008, a comparative study 
examined KRAS mutations in both blood and urine samples 
from patients with colon cancer; Although the study had a 
small sample size, mutation rates were similar in both fluids. 
However, as the sample size increased, mutation rates in urine 
became significantly higher compared with those in blood (78), 
highlighting potential of urine as a tumor marker. 

A recent prospective multi‑center study reported that 
measurement of DNA methylation in urine effectively differ‑
entiates pathological types of bladder cancer and predicts 
180‑day recurrence‑free survival with 100% accuracy (79). 

https://www.spandidos-publications.com/10.3892/ol.2024.14681
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This represents a breakthrough in use of urine DNA meth‑
ylation for differentiation of pathological cancer types. In 
addition, a study on ctDNA in urine during neoadjuvant 
chemotherapy for bladder cancer demonstrated that moni‑
toring tumor DNA dynamics in urine, supernatant and plasma 
predicts treatment response and outcome (80). Urinary ctDNA 
has also been shown to detect the recurrence of upper urinary 
tract urothelial carcinoma up to 60 days earlier than cystos‑
copy (81). Kim et al (82) reported that binding urinary ctDNA 
improves detection rate of hepatocellular carcinoma from 
62 to 92% (82). Increased DNA methylation levels in urine 
have also been reported in patients with NSCLC. 

Urine sampling is a non‑invasive procedure that can be 
performed by non‑professionals. Patients can conveniently 
collect samples at home, which can be sent to testing laborato‑
ries. Unlike blood, which is subject to buffering and regulatory 
mechanisms that may alter its properties (83), urine is excreted 
and may better reflect bodily abnormality. In addition, urine 
has a lower presence of contaminating proteins compared 
with blood, which simplifies DNA extraction processes (76). 
The ability to test large volumes of urine repeatedly enhances 
sensitivity of ctDNA detection (84), which makes it a promising 
tool in cancer diagnostics.

Semen. To the best of our knowledge, prostate‑specific antigen 
is the only well‑established tumor marker for prostate cancer. 
However, its specificity is limited, necessitating exploration 
of additional diagnostic tools. ctDNA testing has emerged 
as a valuable adjunct in diagnosis of prostate cancer (85‑87). 
While ctDNA is commonly detected in advanced cancer such 
as pancreatic, ovarian, colorectal, bladder, gastroesophageal, 
breast, hepatocellular and head and neck cancer and mela‑
noma, it is present in <50% of cases of primary brain, kidney, 
prostate and thyroid cancer (40). 

Semen may serve as a potential sample for prostate 
cancer diagnostics. Significant differences in cfDNA levels 
have been observed (83) in semen samples from patients with 
prostate cancer, individuals with benign prostatic hyper‑
plasia and healthy individuals (88). Patients with prostate 
cancer exhibit higher concentrations of cfDNA than healthy 
individuals in semen alongside a distinctive size distribution 
of cfDNA fragments. Notably, longer cfDNA fragments are 
significantly more prevalent in semen from patients with 
prostate cancer compared with those with benign hyper‑
plasia or healthy individuals (69). Size and concentration of 
cfDNA fragments in semen is associated with tumor burden 
and treatment response (88). As a direct source of prostate 
disease‑specific molecules, semen represents a promising 
body fluid for identification of prostate cancer biomarkers 
and may provide important insight for early diagnosis 
(Fig. 1) (89).

4. Detection methods

ctDNA provides insight for cancer diagnosis and treatment. To 
harness the potential of ctDNA, accurate detection methods 
are key. The main techniques for ctDNA detection include 
DNA sequencing, PCR‑based methods and DNA‑based 
hybridization strategies (90‑92). At present there is no univer‑
sally accepted standard of detection (93).

DNA sequencing
Directed error correction sequencing. Phallen et al (94) 
developed targeted error correction sequencing (TEC‑Seq), 
which enables ultra‑sensitive evaluation of sequence changes 
in ctDNA through large‑scale parallel sequencing. TEC‑Seq 
uses targeted capture of multiple genomic regions combined 
with deep sequencing of DNA fragments, facilitating the detec‑
tion of 58 cancer‑associated genes spanning 81 kb. A plasma 
analysis conducted on 44 healthy individuals reported that 16% 
of asymptomatic individuals exhibit genomic changes associ‑
ated with clonal hematopoiesis, although none show alterations 
in driver genes linked to solid tumors (94). CancerSEEK 
assay (multicancer early detection blood test) demonstrates 
an accurate tissue‑of‑origin prediction in 83% of cases, while 
TEC‑Seq yields cancer detection rates of 59‑71%, depending on 
the type of cancer assessed (95). Achieving effective sensitivity 
in ctDNA analysis using TEC‑Seq presents a notable technical 
challenge (94), which reflects the need for continued refinement 
of this approach to enhance its applicability in clinical settings.

NGS. Since US Food and Drug Administration (FDA) 
approval of the Guardant360® CDx (Guardant Health, Inc.) for 
use of third‑generation tyrosine kinase inhibitor osimertinib in 
patients with NSCLC and EGFR mutations, the NGS approach 
has rapidly evolved (96). NGS is the preferred liquid biopsy 
technique for metastatic NSCLC according to the current 
European Society for Medical Oncology guidelines (97). This 
high‑throughput sequencing method enables comprehensive 
analysis of DNA and RNA, which allows examination of the 
entire sequence of target genes and facilitates detection of a 
broader spectrum of mutations, including previously unknown 
variants (97,98). NGS can simultaneously sequence multiple 
genomes on a single platform, even when working with low 
concentrations of tumor DNA derived from plasma or other 
liquid biopsy samples (99). NGS can be tailored to analyze a 
variable number of regions, from a few loci to the entire exome 
or genome (100). Broadly, NGS targeting ctDNA uses two 
main approaches. The first approach involves deep sequencing 
of specific regions containing relevant mutations, which offers 
high sensitivity and specificity suitable for targeted clinical 
application. The second approach entails whole‑exome or 
whole‑genome sequencing, which can uncover novel genomic 
changes and is more suitable to basic research (98). NGS is 
characterized by high throughput, sensitivity and specificity, 
rendering NGS‑based ctDNA mutation spectrum analysis 
superior to other technologies (98) such as TEC‑Seq. However, 
there are challenges associated with NGS, including the 
potential for mislocalisation of mutations (97). In addition, 
this technology requires extensive data analysis, incurs notable 
costs and has a turnaround time of 7‑14 days (101,102).

Targeted amplicon sequencing (TAm‑Seq). TAm‑Seq is a 
labeled amplicon deep sequencing method that integrates 
efficient library preparation with advanced statistical analysis. 
This technique enables the sequencing of ~6,000 nucleotides 
and in‑depth analysis (103). A notable implementation of 
TAm‑Seq is InVisionFirst® (Neogenomics Laboratories).

Liquid biopsy platform, which is designed to detect 
both hotspot mutations and entire coding regions across 
35 cancer‑associated genes. Leveraging enhanced TAm‑Seq 
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techniques, it identifies low‑frequency mutations in ctDNA by 
amplifying highly fragmented DNA (104). Further improve‑
ments of Tm‑Seq involves optimization of the amplification 
process by splitting it into two steps. The initial step involves 
limited cycle pre‑amplification using all primer sets to capture 
the starting molecules present in the template. This is followed 
by a single amplification step to purify and isolate the target 
sequence. This refined approach enables detection of cancer 
mutations in ctDNA at allelic frequencies as low as 2% with 
sensitivity and specificity of >97% (105). TAm‑Seq method 
demonstrates its utility in clinical settings by routinely 
detecting ctDNA not only at the time of diagnosis, but also 
post‑treatment (106).

Deep sequencing personalized cancer analysis (CAPP‑Seq). 
Developed by Newman et al (107), CAPP‑Seq is an econom‑
ical and ultra‑sensitive method for quantifying ctDNA. This 
method integrates a low DNA initiation mass library prepa‑
ration strategy with a multiphase bioinformatics approach to 
generate a ‘selector’ of biotinylated DNA oligonucleotides 
designed to target tumor regions with recurrent mutations. 
To monitor ctDNA, the selector is initially applied to tumor 
DNA to identify unique cancer‑specific genetic aberrations. 
Subsequently, it is used on ctDNA to quantify these aberra‑
tions (107). Among the various NGS‑based ctDNA analysis 
methods, CAPP‑Seq has the lowest background error rate 
and detection limit (107), demonstrating greater sensitivity 
compared with TAm‑Seq (106). Originally intended for 
analysis of NSCLC (107), CAPP‑Seq has since been success‑
fully applied to a variety of other types of cancer, including 

esophageal (108) and ovarian cancer (109), mantle cell 
lymphoma (110), bladder cancer (111), head and neck squamous 
cell carcinoma (112) and melanoma (113). However, despite its 
high sensitivity, CAPP‑Seq has higher cost compared with 
TAm‑Seq and may not offer advantages for routine screening 
and surveillance (106).

PCR
Real‑time quantitative PCR (qPCR) qPCR can be used for 
endometrial cancer (114), non‑small cell lung cancer (115), 
colorectal cancer (116). qPCR‑based tests have received 
approval from US FDA and European Medicines Agency for 
detection, activation or identification of resistance to EGFR 
targeted therapies in NSCLC (117). Despite its widespread use, 
the simple nature of these tests may increase the risk of false 
positives when qPCR is used in isolation (97).

Microdroplet ddRCR. Microdroplet ddPCR, also known 
as third‑generation PCR, uses sample allocation, restricted 
dilution and statistical data processing based on Poisson 
distributions to accurately and reliably quantify nucleic 
acids. This technique divides mixed nucleic acid molecules 
and PCR solution into small droplets. By using microfluidic 
loops and surfactant chemistry, sample DNA is randomly 
assigned to isolated droplets, generating 20,000 droplets. 
The template is amplified and product is detected based on 
specific fluorescent labeling (97,118,119). ddPCR is well‑suited 
for studying specific single‑gene hotspot mutations that may 
be found in CSF samples, achieving a limit of detection as 
low as 0.01%/reaction (119,120). It can measure mutations that 

Figure 1. ctDNA samples. In addition to blood samples, ctDNA can be detected in pleural, peritoneal and pericardial effusion, cerebrospinal fluid, saliva and 
sputum, pancreatic fluid and bile, urine and semen. ct, circulating tumor.

https://www.spandidos-publications.com/10.3892/ol.2024.14681


GE et al:  LIQUID BIOPSY: A BROAD OVERVIEW OF ctDNA6

constitute 0.01% of a sample (39), offering greater sensitivity 
compared with qPCR (97). However, compared with NGS, 
ddPCR has narrower reference range (90.0% of operable muta‑
tions) and does not cover certain variants, such as estrogen 
receptor 1 mutation (121). In addition, ddPCR requires special‑
ized personnel to operate, which adds to overall complexity 
and operational costs (39,118,122).

Beads, emulsion, amplification, magnetics (BEAMing). 
BEAMing is a digital PCR method that enhances the capa‑
bility of ddPCR by incorporating pre‑amplifications of DNA 
using conventional PCR and target‑specific primers (97). 
PCR products amplified by BEAMing molecules are linked 
to single magnetic beads and the mutation sites extended 
via fluorescent probes or primers. By counting fluorescently 
labelled beads, BEAMing allows the quantitative detection of 
mutant alleles (119,123). Taniguchi et al (123) used BEAMing 
to monitor disease progression in patients with lung cancer 
undergoing EGFR targeted therapy, which effectively deter‑
mined the proportion of T790M‑positive alleles in cancer 
cells, regardless of potential contamination from normal cell 
DNA.

Thermal coupling index expansion. An ultra‑fast monitoring 
method known as thermal coupling exponential amplifica‑
tion test has been recently reported (124). This technique 
combines exponential amplification reaction (EXPAR) with 
Thermus thermophilus argonaute‑coupling), from the ther‑
mophilic bacterium Thermus thermophilus, to quickly and 
accurately detect ctDNA in ~16 min (124). A previous study on 
tumor threshold changes in mouse models (seven Kirsten rat 
sarcoma‑2 virus (KRAS) point mutations) indicated that this 
method holds significant potential for monitoring tumor load 
and evaluating chemotherapy response (121). TtAgo‑CEAR 
assay leverages rapid, specific cleavage function of TtAgo 
and the high amplification efficiency of EXPAR to identify 
common hotspot mutations in KRAS (124).

DNA hybridization. Traditional methods for detecting and 
quantifying ctDNA, such as PCR and NGS, are well‑estab‑
lished but have limitations (125‑127). These methods are 
not suitable for detecting short ctDNA fragments (<100 bp). 
Moreover, they can be costly, require complex instrumenta‑
tion, time‑consuming due to multiple reaction steps and prone 
to false positives (128). By contrast, hybrid chain reaction is an 
isothermal, enzyme‑free amplification technique that allows 
indefinite amplification of signals. This method provides 
advantages for the detection of small molecules and shows 
potential for ctDNA detection (129). In 2021, researchers 
successfully employed a hydrogel‑based hybrid chain reaction 
to amplify small amounts of exosomal microRNA from urine 
samples, achieving a 35‑fold increase in detection sensitivity 
and effectively distinguishing patients with prostate cancer 
from normal controls (130). A novel device known as the 
hybrid chain reactor‑driven laboratory fiber optic device has 
been introduced for ultra‑fast and sensitive detection of ctDNA 
in whole blood. This method is time‑efficient, straightforward 
and cost‑effective, as it enables real‑time monitoring of 
ctDNA changes (128) and represents a promising direction for 
advancing detection capability.

5. Clinical role of ctDNA

Screening and management of patients with cancer. ctDNA 
serves a key role in the screening and early diagnosis of various 
solid types of tumors, particularly among asymptomatic indi‑
viduals. Phallen et al (94) demonstrated a strong correlation 
between plasma somatic mutations and tumor changes in 
patients with stage I or II colorectal, ovarian and breast cancer. 
This suggested that ctDNA analysis may be instrumental in 
both early detection and ongoing disease management. In a 
study of esophageal adenocarcinoma, baseline ctDNA levels 
were used to identify patients with locally advanced disease 
at higher risk of relapse (106). This highlights potential of 
ctDNA not only as a biomarker for early diagnosis but also as a 
prognostic tool for tailoring treatment and monitoring disease 
progression.

Dynamic longitudinal monitoring to evaluate prognosis. 
The role of ctDNA as a prognostic marker has gained recog‑
nition in recent years (131‑133). ctDNA is detected in various 
solid tumors, with its concentration associated with the stage 
of the disease (134). In a prospective phase II clinical trial, 
ctDNA was dynamically monitored every three treatment 
cycles in five patients with solid tumors undergoing immune 
checkpoint inhibitor (ICI) treatment. The ctDNA levels 
were associated with tumor status, demonstrating predictive 
value both at baseline and following treatment (135). The 
presence of ctDNA following surgery is strongly indicative 
of tumor recurrence (6). Gale et al (136) demonstrated that 
ctDNA could identify residual lesions and predict recurrence 
in patients with NSCLC. Pre‑ and post‑treatment ctDNA 
testing is shown to identify patients with NSCLC at high risk 
for recurrence (136). Monitoring ctDNA levels at baseline, 
during neoadjuvant and adjuvant therapy and after radical 
therapy allows clinicians to assess drug response and refine 
treatment regimens. This dynamic longitudinal monitoring 
ultimately improves prognostic evaluation and informs 
clinical decision‑making, contributing to improved patient 
management and outcome.

Effectively identifying false advances. Response Evaluation 
Criteria in Solid Tumors (RECIST1.1) guidelines are key for 
assessing tumor progression (137). However, they also have 
limitations, particularly concerning pseudo‑progression, 
which refers to the transient appearance of space‑occupying 
lesions and edema following treatment. This can often mimic 
disease progression on radiographical imaging but typically 
resolves or changes after 4‑8 weeks of follow‑up (138). In 
clinical practice, clinicians rely on RECIST guidelines to 
evaluate disease progression and make treatment decisions. 
However, ctDNA detection can offer earlier and more accu‑
rate indication of disease status compared with imaging, 
potentially reducing follow‑up time and offering better 
guidance for clinical treatment. Similarly, the emerging 
concept of ‘hyperprogression’ describes a rapid accelera‑
tion in tumor growth that can be induced by ICIs (139). To 
the best of our knowledge, no studies have reported the 
association between ctDNA and hyperprogressive disease. 
Future research should explore this association and its 
implications.
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Detecting molecular residual disease (MRD). Detection of 
ctDNA provides extensive information and enables analysis 
of minimal residual lesions. Early detection of residual ctDNA 
following local radical treatment can indicate MRD and iden‑
tify patients at higher risk of recurrence or metastasis (140). 
Due to limited sensitivity of CTC detection, it is rarely used for 
MRD evaluation (141). Over the past two decades, early detec‑
tion of MRD in children with acute lymphoblastic leukemia 
has significantly improved risk stratification, enhanced 
treatment for high‑risk patients and decreased treatment 
intensity for those at low risk (142). The potential for MRD 
detection is established in other malignancies, including acute 
myeloid (143,144) and chronic lymphocytic leukemia (145), 
NSCLC (146,147), multiple myeloma (148‑151), breast 
cancer (152), melanoma (153), head and neck squamous 
cell carcinoma (154), follicular lymphoma (155), urothelial 
carcinoma (156) and colorectal cancer (157).

Guiding treatment escalation and de‑escalation. A promising 
application of ctDNA is its ability to inform decisions regarding 
treatment escalation and de‑escalation (158). Patients with a 
positive MRD result may be candidates for intensified adjuvant 
therapy, while those with a negative MRD result may potentially 
benefit from a reduction in treatment intensity (43). It has been 
suggested that a key treatment endpoint for colorectal cancer 
should be complete clearance of ctDNA (43). Currently, a 
multicenter, prospective, randomized clinical trial is underway 

to evaluate efficacy of ctDNA‑guided adjuvant chemotherapy 
strategies compared to standard care (158). This aims to assess 
whether ctDNA‑guided treatment adjustments yield superior 
outcomes in terms of three‑year disease‑free survival for patients 
with high‑risk stage II and III colorectal cancer (Fig. 2) (158).

6. Limitations

A notable challenge associated with ctDNA‑based liquid 
biopsy is limited detection capability. The mutation abundance 
of ctDNA is often lower compared with that in localized tumor 
tissues, and its detectability is influenced by factors including 
tumor type and load, anatomical location, cellular turnover 
and disease stage (141). In the context of early cancer detec‑
tion, ctDNA levels are particularly low, often causing MAF 
to fall below detection limits of current methods (159). Thus, 
improving sensitivity of existing detection methods is key. 
Employing a combination of DNA analysis from liquid biopsy 
and tissue samples may improve the overall sensitivity and 
diagnostic accuracy (160).

Discrepancies in results can arise from the diverse stan‑
dards and interpretations employed by different ctDNA testing 
methods and laboratories. There is need for the establishment of 
standardized testing protocols and interpretative guidelines. It 
is also important to select the appropriate sampling methods, as 
improper collection of cfDNA from body fluids can lead to missed 
detection of ctDNA even with appropriate testing methods (100).

Figure 2. ctDNA in patients with cancer. ctDNA detection may facilitate diagnosis and treatment strategies. ct, circulating tumor.

https://www.spandidos-publications.com/10.3892/ol.2024.14681
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Another barrier is the high cost associated with ctDNA 
detection technologies and equipment, which hampers 
comprehensive clinical monitoring and may affect treatment 
decisions. Furthermore, there is currently no evidence to 
suggest that ctDNA can fully replace traditional pathological 
testing. Addressing these challenges is key for refining the role 
of ctDNA in clinical practice.

7. Outlook

ctDNA may serve a key role tumor treatment. Despite existing 
challenges, ongoing research may advance the utility of 
ctDNA in clinical practice. As improvements in detection 
sensitivity, standardization of testing protocols and cost reduc‑
tion are realized, ctDNA may enhance patient care by guiding 
treatment decisions, monitoring therapeutic response and 
improving outcomes. 
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