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Abstract

Background: The canonical function of EEF1A2, normally expressed only in muscle, brain, and heart, is in translational
elongation, but recent studies suggest a non-canonical function as a proto-oncogene that is overexpressed in a variety of
solid tumors including breast and ovary. Transcriptional profiling of a spectrum of primary mouse B cell lineage neoplasms
showed that transcripts encoding EEF1A2 were uniquely overexpressed in plasmacytomas (PCT), tumors of mature plasma
cells. Cases of human multiple myeloma expressed significantly higher levels of EEF1A2 transcripts than normal bone
marrow plasma cells. High-level expression was also a feature of a subset of cell lines developed from mouse PCT and from
the human MM.

Methodology/Principal Findings: Heightened expression of EEF1A2 was not associated with increased copy number or
coding sequence mutations. shRNA-mediated knockdown of Eef1a2 transcripts and protein was associated with growth
inhibition due to delayed G1-S progression, and effects on apoptosis that were seen only under serum-starved conditions.
Transcriptional profiles and western blot analyses of knockdown cells revealed impaired JAK/STAT and PI3K/AKT signaling
suggesting their contributions to EEF1A2-mediated effects on PCT induction or progression.

Conclusions/Significance: EEF1A2 may play contribute to the induction or progression of some PCT and a small percentage
of MM. Eef1a2 could also prove to be a useful new marker for a subset of MM and, ultimately, a possible target for therapy.
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Introduction

Cancer is a genetic disease in which tumor cells acquire the

ability to proliferate uncontrollably, resist apoptosis, evade

immune surveillance, and, for solid tumors, promote angiogenesis.

Much of our understanding of tumor initiation and progression

has resulted from the identification of genes controlling cell

proliferation and apoptosis that, when aberrantly expressed, result

in abnormal cell growth and malignant transformation. Consid-

erable attention has been focused on a number of oncogenic

signaling pathways that converge on a set of nuclear transcription

factors. These factors, in turn, govern the activation of gene

expression programs that ultimately result in malignancy.

Recently, however, a number of studies have indicated that

dysfunctional protein translation may also contribute to tumor

development. This is perhaps best exemplified by the roles

identified for the protein elongation factor, EEF1A2, in a number

of human cancers [1,2,3,4,5,6,7].

EEF1A1 and EEF1A2 are variants of the protein elongation

factor EEF1A with EEF1A1 being expressed ubiquitously while

EEF1A2 is normally expressed only in heart, muscle and brain

[8,9,10]. The canonical role for these proteins involves regulation

of ribosomal polypeptide elongation by binding of amino-acylated

tRNA for transport to the ribosomes [11]. EEF1A2 has also been

found to have a number of non-canonical functions including

phosphatidylinositol signaling [12], apoptosis [13,14], cytoskeletal

modifications [15,16,17], targeting proteins for degradation, and

participation in the heat shock response [18,19]. It has also been

shown that EEF1A2 can transform cells and give rise to tumors in

nude mice [20]. Notably, EEF1A2 has anti-apoptotic functions in

certain systems, whereas EEF1A1 is a pro-apoptotic protein

[14,21].

Our interest in EEF1A2 was kindled by results from gene

expression profiling of primary mouse B cell lineage tumors that

revealed uniquely high expression in plasmacytomas (PCT),

neoplasms of mature plasma cells [22,23,24,25]. Our curiosity
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was heighted by the findings that EEF1A2 was also expressed at

high levels in some cases of multiple myeloma (MM), a plasma cell

neoplasm of humans, but not by normal plasma cells or B cells in

either species. Using in vitro model systems, we found that

EEF1A2 is involved in regulating cell cycle progression and

survival of PCT. These data indicate that EEF1A2 may play

contribute to the induction or progression of plasma cell

neoplasms in both mice and humans.

Materials and methods

Mice, lymphomas, tissue microarray,
immunohistochemistry, and oligo microarray analyses of
gene expression

The origins and characteristics of primary B cell lineage

lymphomas from NFS.V+ congenic, B6.l-MYC, SJL-b2m2/2,

IL6-TG, and BALB/c-gld/gld mice, and the techniques used for

Eef1a2 transcriptional profiling of the lymphomas using oligonu-

cleotide arrays, were detailed previously [23,26]. The expression of

human EEF1A2 was studied from the dataset (GSM6477 in GEO)

for samples of patients with MM, monoclonal gammopathy of

undetermined significance (MGUS) and normal plasma cells using

Affymetrix U133A microarrays. The differences in transcript levels

of EEF1A2 between MGUS or MM and normal controls were

examined by unpaired t-test with Welch’s correction. A tissue

microarray of costal biopsies of normal individuals or patients

diagnosed with MM was purchased from Folio BioSciences

(Columbus, OH). Immunohistochemical studies were detailed

previously [27]. Mouse protocols were approved by Animal Care

and Use Committees of the National Institute of Allergy and

Infectious Diseases and the National Cancer Institute.

Cell lines, constructs, transfection, and antibodies
The MPC11 PCT cell line was obtained from American Type

Culture Collection (ATCC). MOPC315, TEPC2372, TEPC4142,

PCT-AP, RPC5, ABPC4 and ABPC20 PCT cell lines were

provided by Dr. M. Potter (National Cancer Institute, National

Institutes of Health [NIH], Bethesda, MD). Cells were maintained

at 37uC 5% CO2 in RPMI 1640 (Invitrogen Life Technologies)

with 10% fetal bovine serum (FBS) (Hyclone), 10 mM sodium

pyruvate, 1x glutamine, 1x non-essential amino acids, 0.5 mM b-

mercaptoethanol and 0.1 M HEPES buffer. The human cell line,

Raji, was purchased from ATCC. Cell lines ARK, MM-S1, XG-1

and XG-7 were from our laboratory and were gifts from Dr.

Michael Kuehl (NCI, NIH).

Eef1a2 cDNA was cloned from the ABPC4 cell line and was

inserted into the mammalian expression vector pcDNA3.2/V5

(Invitrogen) after sequencing. The sequencing results showed no

mutations. pcDNA3.2/V5-CAT (chloramphenicol acetyltransfer-

ase) and pcDNA3.2/V5 (blank vector) were used for control and

mock transfection, respectively. DNA (2 mg) of each construct was

used to transfect 26106 cells using transfection reagent solution V

and program X-001 (Amaxa).

Specific anti-EEF1A2 polyclonal antibody was described

previously [1]. Anti-EEF1A was from Upstate (Upstate Biotech,

Charlottesville, VA), anti-b-actin was from Abcam, anti-V5

epitope was from Invitrogen, anti-STAT3, phosphorylated

STAT3, PIK3CG, AKT and phosphorylated AKT were pur-

chased from Cell Signaling Technology (location).

Stable knockdown of Eef1a2 expression
A 29mer-pRS-shRNA vector (Origene) was used to express

shRNA. Sequences specific for mouse Eef1a2 knockdown:

CCTCATCTACAAGTGTGGTGGCATCGACA (shRNA-1);

GTCAGCGCCTACATCA AGAAGATCGGCTA (shRNA-2);

ATCTCGGGCTGGCATGGTGACAACATGCT (shRNA-3);

GTGACAATGTCGGGTTCAATGTGAAGAAT (shRNA-4);

control sequences: TGACCACCCTGACCTACGGCGTG-

CAGTGC (shRNA-C). After transfection according to the

methods mentioned above, 20 mg/ml puromycin was added into

medium for selection. Single cell clones were maintained in

medium with 10 mg/ml puromycin.

Western blot
Total cell lysates were prepared in RIPA lysis buffer (Pierce

Chemical Co.) supplemented with protease inhibitor cocktail

solution (Pierce Chemical Co.). Lysates were cleared by centrifu-

gation at 13,000 g for 15 min at 4uC, and the protein content was

determined using the BCA protein assay kit (Pierce Chemical Co.).

15 mg of protein per lane was separated on a NuPage 12% Bis-Tris

gel (Invitrogen) and transferred to a polyvinylidene difluoride

membrane (Invitrogen). After blocking with a 5% skim milk

solution, the blot was incubated with indicated antibodies. The

primary antibodies were detected with horseradish peroxidase–

conjugated secondary antibody (R&D system) and developed by

Super Signal West pico detection kit (Pierce Chemical Co.)

according to the manufacturer’s instructions.

Cell cycle and proliferation assay
16106 cells expressing the Eef1a2 RNAi or control cells were

harvested, washed with PBS, fixed with 70% ethanol overnight at

minus 20uC, and treated with 10 mg/mL RNase (Roche). Cells

were then stained with propidium iodide (PI) (5 mg/mL) and the

cell cycle profile was determined using a FACSCalibur flow

cytometer (Becton Dickinson, Mountain View, CA). Data are

representative of three independent experiments and were

analyzed with the FlowJo software (Tree Star, Inc., Ashland, OR).

For cell proliferation assays, the Click-iT EdU Flow Cytometry

Assay Kit (Invitrogen), which is a BrdU alternative assay kit, was

used according to the manufacturer’s instructions. Briefly,

16106 cells/well were cultured overnight in 24-well plates.

10 mM EdU were then added to each well. 4 hours later, the

cells were harvested and permeabilized immediately. After

incubation with anti-EdU for 30 min, the cells were analyzed by

flow cytometry.

Apoptosis assay
Apoptotic cells were differentiated from viable or necrotic cells

by combined application of Annexin V-FITC and PI using the

Vybrant Apoptosis Assay Kit #3 (Invitrogen). Briefly, cells were

centrifuged and the cell pellet was suspended in 1x Annexin V

binding buffer at a concentration of 16106 cells/ml. Samples were

incubated with 0.5 mg/ml Annexin V-FITC and 2 mg/ml PI

for 10 min at room temperature and then were examined by

flow cytometry. Data are representative of three independent

experiments.

Quantitative Real-Time PCR (qPCR) and qPCR arrays
Total RNA was isolated using the RNeasy mini kit coupled

with DNase set (both from Qiagen). Reverse transcription was

performed using 1 mg of RNA, 300 ng random hexamer primer

(Invitrogen), and 200 units Superscript II (Invitrogen). The

primers for qPCR were designed using Primer Express software

(Applied Biosystems, Foster City, CA) and synthesized at

Integrated DNA Technologies, Inc (Coralville, IA; Table S1).

Each qPCR reaction was performed in a mix of 10 ml reaction

mixture containing 2 ng of cDNA, 2xSYBR Green PCR Master

Eef1a2 in Mouse Plasmacytomas
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Mix (Applied Biosystems), and 0.3 mM of each forward and

reverse primer on the ABI PRISM 7900HT sequence detector

system (Applied Biosystems). All samples were tested in triplicate,

and analyses were performed using SDS v2.2 software (Applied

Biosystems) according to the manufacturer’s instruction. The

comparative CT method (DDCT) was used for quantification of

gene expression. A single product for each primer pair was

confirmed by gel electrophoresis and melt-curve analyses. The

primers used for qPCR are listed in Table S1.

For qPCR array assays, cDNAs were applied to 384-well

plates containing predetermined primer pairs representing

various genes known to be cancer related and/or important

for lymphoid cell development and function (Bar Harbor

BioTechnology, Trenton, ME). PCR amplification was per-

formed using regular SYBR-Green reagents (Applied Biosys-

tems) and analyzed by a global pattern recognition algorithm as

recently modified (http://array.lonza.com/apps/gpr/) [28].

The differentially expressed genes were classified by GO (Gene

Ontology), and enrichment of significant genes was determined

by Fisher’s exact test.

Results

Expression of Eef1a2 in primary mouse PCT
Eleven classes of mouse primary B cell lineage lymphomas were

analyzed using oligonucleotide microarrays that queried over

11,000 genes. A t test was used to identify genes that distinguished

each subset from all the others. These studies identified Eef1a2 as

one of the genes highly expressed in PCT (Figure 1A), with mean

transcript levels in PCT being around five-fold higher than in the

other tumor classes. RT-PCR analyses of Eef1a2 expression in

primary PCT, four other lymphoma subsets and normal spleen

tissue showed that Eefla2 transcripts were detected only in samples

from PCT (data not shown). Immunohistochemical studies using

an EEF1A2-specific polyclonal antibody showed that EEF1A2 was

expressed at high levels in the cytoplasm of PCT but not in MZL

or other types of lymphomas (Figure 1B and data not shown).

qPCR analyses of sorted mouse plasma cells and B220+ splenic B

cells revealed that transcript levels for Eef1a2 were below the levels

of detection in both populations (data not shown), an observation

consistent with earlier studies showing that EEF1A2 is normally

expressed only in heart, muscle and brain. These studies

established that among primary B cell lineage neoplasms of mice,

EEF1A2 is uniquely expressed at high levels in PCT, and that

expression might be linked to pathogenesis because it is not

expressed by normal plasma cells.

Expression of Eef1a2 in PCT cell lines
Recently, gene expression profiles were generated for six

subtypes of pristane-induced mouse PCT. The groups included

tumors induced by pristane alone as well as those from pristane-

treated mice injected with acutely transforming retroviruses

Figure 1. Expression of Eef1a2 in primary mouse lymphomas and PCT cell lines. (A) Microarray analyses of Eef1a2 expression were
performed among 11 classes of mouse primary B cell lymphomas and histiocytic sarcomas: APCT, anaplastic plasmacytoma [22]; l-MycTG,
lymphomas from l-Myc transgenic mice [46]; CBL, centroblastic lymphoma [47]; FBL, follicular B cell lymphoma [48]; HS, histiocytic sarcoma [47]; IBL,
immunoblastic lymphoma [47]; DLBCL, diffuse large B cell lymphoma [47]; MZL, marginal zone lymphoma (low grade); MZL+ and MZL++, marginal
zone lymphoma (high grade) [48]; PCT, plasmacytoma [49]; SJL, SJL mouse lymphoma [23]; SBL, small B cell lymphoma [47]. Each point represents a
single tumor. The red line indicates the mean value for all tumors. The error bar = 6 S.D. (B) Immunohistochemical studies of EEF1A2 expression
using a polyclonal antibody specifically recognizing eEF1A2. a, H&E staining of PCT; b, IHC staining of PCT, c, IHC staining of MZL. (C, D) RT-PCR and
Western blot analyses of Eef1a2 expression at the transcript (C) and protein (D) levels in PCT cell lines.
doi:10.1371/journal.pone.0010755.g001
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[29]. High-level expression of Eef1a2 was found in all of the

subtypes (data not shown) indicating that expression of Eef1a2 in

PCT was independent of the mode of PCT induction. We next

analyzed EEF1A2 expression at the transcript and protein levels

in eight PCT cell lines (Figure 1C, D). RT-PCR analyses

showed that three lines (ABPC4, ABPC20 and PCT-AP) had

substantial levels of Eef1a2 transcripts, while all eight expressed

equivalent levels of transcripts for the closely related gene,

Eef1a1, using b-actin transcript levels as a control (Figure 1C).

Western blot analyses of EEF1A2 and EEF1A expression in the

eight lines (Figure 1D) showed that EEF1A2 protein was present

in protein extracts from the same tumors that were positive by

RT-PCR. Comparative genomic hybridization (CGH) analyses

of ABPC4 and ABPC20 cell lines showed no increase in copy

number for the region of chromosome 2 where Eef1a2 resides

(data not shown). These data indicated that high level

expression of EEF1A2 by PCT was independent of their mode

of induction and was not based on increased copy number, at

least in the cases examined.

Expression of EEF1A2 in purified plasma cells from normal
bone marrow, from individuals with MGUS or primary
MM cells and from MM cell lines

We next used published gene expression profiling (GSM6477 in

GEO)[30] to study EEF1A2 transcript levels in sort-purified

CD138+ bone marrow plasma cells from 15 normal controls, 22

patients with MGUS and 125 primary cases of MM (Figure 2A).

While EEF1A2 transcript levels were very low in normal controls,

the levels in plasma cells from individuals with MGUS, non-

transformed precursors to probably all cases of MM, were

significantly higher (p = 0.0001). Furthermore, the levels in MM

were also significantly higher than normal controls (p,0.0001) but

were not significantly higher than for MGUS. High levels of

EEF1A2 transcripts and protein were confirmed for three human

Figure 2. Expression of EEF1A2 in human MM and MM cell lines. (A) Expression level of EEF1A2 in human MM determined by microarray. RNA
from CD138+ plasma cells from the bone marrow of patients with MGUS, MM and donor, was hybridized to Affymetrix U133A microarrays. Data was
from GEO (GSM6477). Unpaired t test with Welch’s correction was carried out between MGUS or MM and donors. (B, C) RT-PCR and Western blot
analyses of EEF1A2 expression at the transcript (B) and protein (C) levels in the indicated human MM cell lines. The error bar = 6 S.D. (D)
Immunohistochemistry analyses of EEF1A2 expression in normal costal tissue with negative staining (a) of EEF1A2 and MM tissues with negative
staining (b), weak staining (c) and strong staining (d) of EEF1A2. (E) Summary of immunoassay of EEF1A2 expression in tissue microarray.
doi:10.1371/journal.pone.0010755.g002
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MM cell lines by qPCR and western blot analyses, respectively

(Figure 2B, 2C).

We extended these analyses of MM by immunohistochemical

studies using a tissue microarray containing bone marrow

biopsies from 20 normal controls and 20 patients with MM.

The results showed that EEF1A2 protein was detected at

background to low levels in biopsies from normal controls and

five cases of MM but at high levels in 15% of primary MM

(Figure 2D, 2E), This suggests that levels of EEF1A2 expression

in primary MM tumor cells may be determined post-transcrip-

tionally as well as translationally and clearly deserves further

study. We conclude that expression of EEF1A2 is progressively

upregulated during the progression of normal plasma cells to

MGUS and MGUS to MM.

Transient and stable silencing of Eef1a2 in PCT cell lines
To understand the consequences of high-level expression of

EEF1A2 in PCT, we transiently transfected the PCT-AP PCT cell

line with 4 different shRNAs directed at Eef1a2 as well as a control

shRNA and quantified Eef1a2 transcript levels by qPCR. As shown

in Figure S1A, the expression of Eef1a2 in was markedly

downregulated in cells transfected with shRNA-3 and shRNA-4

while the other two shRNAs were much less effective and the

control, shRNA-C, had no effect. We also generated stable

transfectants of shRNA-3 and the control shRNA-C in the ABPC4

PCT cell line following selection with puromycin. The Eef1a2

knockdown cell line had barely detectable levels of Eef1a2

transcripts (Figure S1B, left panel) and EEF1A2 protein (Figure

S1B, right panel), but normal levels of Eef1a1 transcripts and

relatively normal levels of EEF1A protein (data not shown). This

indicated that Eef1a2 transcripts were specifically silenced by the

targeting shRNA-3 in APBC4.

Knockdown of Eef1a2 inhibits cell growth and cell
proliferation

It was reported that human EEF1A2 promoted cell growth and

proliferation in human ovarian cancer. To examine the relation-

ship between EEF1A2 expression and PCT growth rates, we

compared cell numbers of ABPC4 expressing control shRNA-C or

Eef1a2 shRNA-3 during four days in culture (Figure 3A). The

Figure 3. Knockdown of Eef1a2 inhibits cell growth and cell proliferation. (A) ABPC4 cell numbers stably expressing Eef1a2 shRNA-3 and
control shRNA-C cells were determined during four days in culture. (B, C) Overexpression of EEF1A2 protein in the MPC11 cell line (B). Cell numbers
were determined during culture after transfection (C). (D) The frequency of EdU-postive MPC11 cells in transiently transfected Eef1a2 and control
plasmid was analyzed by flow cytometry (left). The statistic bars show on the right. (E) The frequency of EdU-postive PCT-AP cells in transiently
transfected Eef1a2 shRNAs, and control shRNA expressing PCT-AP cells was analyzed by flow cytometry.
doi:10.1371/journal.pone.0010755.g003
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growth of cells expressing shRNA-3 was significantly reduced after

72 h and 96 h, with cell numbers in these cultures being only half

that of untransfected cells or cells transfected with shRNA-C.

The observed changes in cell number could be due to reduced

cell cycle progression, increased apoptosis or both. To examine

these possibilities, we first evaluated cells for EdU uptake after 4 h

in culture using stably transfected cell lines. These studies showed

that the frequency of EdU-positive cells in the Eef1a2 shRNA-3

expressing cells was about half that of normal cells or cells

expressing the inactive shRNA (Figure S2A). To extend this

observation, we analyzed cell proliferation in transiently transfect-

ed cells from a second PCT cell line, PCT-AP. The results shown

in Figure 3D indicated that knockdown of Eef1a2 was associated

with inhibition of PCT-AP proliferation, and that the inhibitory

effect was related to the knockdown efficacy of the individual

shRNAs (Figure 3E). Taken together, these results indicated that

EEF1A2 promotes cell growth in the two PCT cell lines examined.

These observations prompted us to see if the growth of a PCT cell

line, MPC11, that does not express EEF1A2 (Figure 1C, D), would be

enhanced by introducing an EEF1A2 expression vector. To this end,

we transiently expressed mouse Eef1a2 or CAT, as a control, in

MPC11 under the control of the CMV promoter. The Eef1a2 and

CAT constructs were tagged at the carboxy termini with the V5

epitope to facilitate detection by western blotting. Equivalent levels of

EEF1A2 and CAT protein were expressed in the transfected cells

(Figure 3B). The growth of EEF1A2 expressing cells was only

modestly increased over those expressing CAT, best seen at 72 hr

[P,0.05] (Figure 3C). Edu binding assay also showed increased

proliferation (Figure 3D). Together, our results demonstrated that

expression of EEF1A2 enhanced proliferation of PCT cell lines.

Eef1a2 knockdown delays cell cycle entry
Next, we asked if the effect of EEF1A2 on cell growth might also

be related to altered cell cycle regulation. Untransfected ABPC4

cells and cells with the active and inactive shRNAs were stained

with PI and examined by flow cytometry (Figure 4A). Eef1a2

knockdown cells had significantly increased percentages of cells in

G1 and significantly decreased proportions of cells in both the S

and G2/M stages of the cell cycle (Figure 4A), indicating that

down regulation of Eef1a2 delayed G1 to S progression to a limited

but significant extent. Moreover, the absence of a sub-G1

accumulation showed that apoptosis was not significantly

increased after knockdown of Eef1a2 expression with cells grown

in serum-containing medium.

Serum-free conditions enhance apoptosis in Eef1a2
knockdown cells

Pro- or anti-apoptotic effects of some genes become evident only

under conditions of cellular stress. This promoted us to determine

if depletion of EEF1A2 in ABPC4 might affect the viability of cells

Figure 4. Eef1a2 knockdown delays cell cycle entry and increases apoptosis induced by serum-free medium. (A) Cell cycle analyses of
PI-stained Eef1a2 shRNA and control cells using flow cytometry. (B) Early stage apoptotic cells were analyzed by flow cytometry in stably expressing
Eef1a2 and control shRNAs and control cells after culturing in serum-free medium for 12 hours. Error bar = 6 S.E. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0010755.g004
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cultured in serum-free medium. We therefore examined cells

stained with Annexin V and propidium iodide by flow cytometry

to determine early apoptotic signaling. After 12 h in serum-free

medium, 15% of Eef1a2 knockdown cells were found to be

undergoing apoptosis as compared to ,9% of cells in both the

control cell line and the control RNAi cell line (Figure 4B). Studies

of the sub-G1 peak in these cultures using flow cytometry to

examine cells stained with PI yielded similar results (data not

shown). Similar results were found using a second transiently

transfected cell line, PCT-AP (Figure S1B). These results indicated

that knockdown of Eef1a2 expression enhanced apoptosis induced

by serum starvation in PCT cell lines, but only modestly.

Knockdown of Eef1a2 expression alters expression of
many genes involved in proliferation and signaling

Apart from its canonical function, it is known that EEF1A2 can

activate the AKT signaling pathway by binding directly to

PI4K2B [12,31,32]. To gain further insight into the consequences

of Eef1a2 knockdown in PCT, we performed gene expression

profiling using a 384 well qPCR array enriched for genes known to

be involved in hematopoietic neoplasms. Genes for which

expression was substantively altered in the stable Eef1a2 knock-

down cell line are listed in Figure 5A in relation to their functional

categorization by gene ontology and analyses of enrichment within

each category. Significant enrichment was observed for genes

involved in proliferation (p = 0.016), in keeping with the data

presented above, and signaling (p = 0.026). Among the genes

involved in signaling, there was significant enrichment specifically

in genes involved in the JAK/STAT signaling pathway (p = 0.010)

(Table S2). These results showed that EEF1A2 might be involved

in the regulation of JAK/STAT signaling as well as the AKT

pathway as reported previously [12,20,32].

To examine these possibilities, we treated the Eef1a2 knockdown

cell line and control RNAi cell line with IL-6, and examined them

for expression of STAT3, pSTAT3, AKT, pAKT and b-actin

(Figure 5B). The results showed that phosphorylated STAT3 was

readily detectable after 15 min in control RNAi cells, but reached

similar levels only after 30 min in Eef1a2 RNAi cells. pAKT was

detectable in both cell lines at very low levels at 15 min after

stimulation, but increased substantially at 30 min only in control

cells. These results indicated that knockdown of Eef1a2 expression

delayed or impaired IL-6-induced activation of both the STAT3

and AKT signaling pathways. Importantly, the protein level of

PIK3CG, which is upstream of AKT, was significantly decreased

in the Eef1a2 RNAi cell line at all time points. Furthermore,

transcript levels of Pik3cg were decreased in Eef1a2 RNAi cells

(Table 1) indicating that control of PIK3CG protein expression

was determined at the transcriptional level.

Among the genes with significantly altered expression in Eef1a2

RNAi cells (Table 1) were those involved in tumor invasion

(Tgfbr2, Mmp13, Itgal), proliferation (Pik3cg, Fosb, Fos, Mapk1, Flt3,

Wnt1, Cdk6, Ccnd2), survival (Ifi202b, Tnfsf13b, Bcl2, Bcl2l1), and

cytokine and interferon signaling (Jak2, Stat1, Stat2, Stat3, Irf2, Irf8,

Socs3). Most interestingly, a number of the genes contain SH2 or

SH3 domains - JAK2, STAT1, STAT2, STAT3, SOCS3, FYN,

LYN, and PIK3CG - supporting the suggestion from previous

studies that EEF1A2 may directly or indirectly interact with

proteins which containing SH2 or SH3 domains [33,34].

Furthermore, increased levels of transcripts for Bcl2 and Bcl2l1

may affect the limited degree of apoptosis associated with

knockdown of Eef1a2 expression.

To further validate our qPCR array data, we analyzed the

expression of Tgfbr2, Bcl2, Cdk6, MMP13, Pik3cg and Stat3, genes

that are significantly regulated in ABPC4 cells with a stable

knockdown of Eef1a2 (Table 1) or using PCT-AP cells transiently

transfected with knockdown and control shRNAs (Figure 5C).

After transfection for 48 hours, all six genes showed changes in

expression that were consistent with the data obtained from stably

transfected cells (Table 1). In addition, some of the regulatory

effects could be related to the knockdown efficacy of the individual

shRNAs (Figure S1A). We conclude that EEF1A2 affects the

expression of a number of signaling pathways.

Discussion

In tissues of normal animals, EEF1A2 is expressed only in heart,

brain and muscle. The data presented here indicate that EEF1A2

is aberrantly expressed at high levels in some plasma cell

neoplasms of mice and humans. This is the first example of

EEF1A2 being expressed in a mouse tumor, although high-level

expression has been documented in a variety of human tumors

belonging to different cell lineages [1,2,3,4,5,6,7]. In contrast to

earlier studies suggesting that increased expression of EEF1A2 is

associated with terminal differentiation [35], normal mouse and

human plasma cells were found to be EEF1A2-negative.

Heightened expression cannot be tied uniquely to transformation

within the B cell lineage as other subsets of mouse B cell tumors

did not express Eef1a2. Furthermore, additional studies, although

limited, suggest that heightened expression in these tumors is not

due to mutation or amplification of the gene. Previous studies of

ovarian tumors that aberrantly express EEF1A2 at high levels also

ruled out contributions of mutation or changes in the methylation

status of the gene, and showed that levels of expression did not

correlate with gene amplification [36]. Interestingly, heightened

levels of EEF1A2 transcripts in MM related most closely to a subset

of cases that lack primary IgH translocations and overexpress D-

type cyclins. Features of this MM subset that might drive EEF1A2

expression remain to be determined.

The observations that Eef1a2 transcripts are expressed at

increased levels in the majority of primary PCT but in a smaller

proportion of primary MM indicate that the mechanisms

governing aberrant expression and possible contributions to

transformation of plasma cells are likely to differ between the

species. Whether these differences are cell intrinsic or species-

dependent remain to be determined.

Our studies of mouse PCT suggest that heightened expression

of EEF1A2 might contribute to transformation by promoting cell

cycle progression and inhibiting apoptosis. Support for this view

comes from prior studies of non-PCT cell lines overexpressing

EEF1A2 that exhibited enhanced cell growth [20] and resistance

to apoptosis [14,21]. Our studies of PCT cell lines suggest that

activation of STAT3 and AKT may contribute to inhibition of

apoptosis.

Although several mouse models have emerged as useful

platforms for mechanistic and therapeutic studies of alterations

in signaling pathways found in human MM (e.g., IL-6, Abl, and

Myc), none of the models faithfully recapitulates all features of

human MM. We screened 11 types of mouse lymphoma by

microarray and found Eef1a2 as a candidate cancer gene that was

expressed at high levels only in PCT. None of the other classes of B

cell lineage tumors expressed Eef1a2 at high levels, including

anaplastic and plasmablastic PCT, which have a number of

histological and molecular similarities to plasmacytic PCT [22,37].

Since Eef1a2 is not expressed in normal plasma cells, our

findings suggest that inappropriate expression of EEF1A2 in B cell

differentiation may contribute to the induction, progression or

survival of a high proportion of primary PCT. Eef1a2 was

expressed at high levels by PCT from mice of four different genetic
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backgrounds that had been subjected to a variety of PCT

induction protocols. We also found EEF1A2 was highly expressed

at the protein level in 15% of primary cases of MM as well as a

number of MM cell lines. Interestingly, levels of EEF1A2

transcripts were increased to a lesser extent in plasma cells of

individuals with MGUS, a consistent precursor to MM [38], than

in primary MM. This suggests that activation occurred during the

transition of normal plasma cells to MGUS with the levels in cases

of primary MM not being significantly higher than in MGUS.

These observations indicate that deregulated expression of

Figure 5. Functional changes after Eef1a2 knockdown. (A) Functional classification of differentially expressed genes by Eef1a2 knockdown cells.
(B) Downregulation of Eef1a2 impaired IL-6-induced AKT and STAT3 phosphorylation. Eef1a2 shRNA and control cells were treated with 100 ng/ml
recombinant IL-6 and protein samples were prepared 15 and 30 min later. Western blot analyses were performed using the indicated antibodies. (C)
qPCR analyses of gene expression levels in transiently transfected shRNAs in PCT-AP cell line with four plasmids expressing specifically targeting
Eef1a2 (shRNA-1,2,3,4) and a control plasmid (shRNA-C). Error bar = 6 S.E.
doi:10.1371/journal.pone.0010755.g005
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EEF1A2 might be a common contributor to the pathogenesis of

mouse PCT and a subset of human MM in ways affecting disease

initiation although contributions to progression are also possible.

There is increasing evidence to indicate that EEF1A2 is a

candidate oncogene, highly expressed in some human breast,

ovarian, and lung cancers. It has been very difficult, however, to

relate genetic features of these cancers with levels of EEF1A2

protein expression. In human solid tumors, for example, increases

in copy number did not correlate with levels of protein expression.

Indeed several tumors with amplification of the EEF1A2 gene did

not express the protein while other tumors without amplification

expressed the protein at high levels. Possible contributions of

epigenetic regulation to expression are suggested by studies

showing that treatment of gastric cancer cell lines with

demethylating agents resulted in increased EEF1A2 expression

[39]. We showed that overexpression of Eef1a2 in PCT was not

due to increased copy number in the few cases examined nor to

mutation of the Eef1a2 coding sequence cloned from one of the

high expressing PCT. Sequencing studies of Eef1a2 transcripts in

other tumors would clearly be required to fully exclude the

possibility that coding region mutations might affect protein

expression. In normal tissues, expression of Eef1a2 is restricted to

muscle, brain, and heart, and neither normal plasma cells nor B

cells express transcripts or protein. Developing an understanding

of the basis for activation in PCT and MM is an important target

for ongoing studies.

Previous studies showed that overexpression of human EEF1A2

in NIH3T3 cells enhanced cell growth [20], while overexpression

in a mouse myoblast cell line protected against caspase-3-

meditated apoptosis, indicative of a pro-survival function [14].

More recently, it has been shown that expression of EEF1A2

together with PRDX1 rendered NIH3T3 cells dramatically

resistant to apoptosis induced by oxidative stress [21]. In PCT,

we demonstrated that overexpression of Eef1a2 enhanced cell

proliferation and that Eef1a2 knockdown cells, while not

undergoing apoptosis under normal serum conditions, became

more sensitive to death following serum withdrawal. Delayed cell

cycle entry from G1/G0 to S in PCT following knockdown of

EEF1A2 expression might be related to decreased rates of protein

synthesis.

IL-6 signaling is known to be critical to the growth and

differentiation of normal plasma cells as well as PCT and MM.

Pathways downstream from the receptor include the JAK/STAT

pathway and the PI3K-AKT-mTOR pathway. Our studies

indicate that EEF1A2 may modulate both pathways since

phosphorylation of STAT3 and AKT was delayed and protein

levels of the regulatory subunit of PI3K were significantly reduced

in the knockdown cells. The results with AKT are consistent with

previous studies showing that EEF1A2 can directly activate AKT

[12]. The effects on STAT3 activation with its known importance

in MM are again in keeping with a possible contribution of

EEF1A2 to plasma cell transformation [40,41,42,43,44,45].

It is worth noting that many of the EEF1A2-mediated changes

that we have described as possibly contributing to transformation

are affected at the transcriptional level and represent non-

canonical functions of the protein. The canonical activity of

EEF1A2 is clearly as a translation factor, and the effects of

depletion on cell cycle entry can almost certainly be ascribed to

this activity. It is more than likely that understandings of possible

EEF1A2 contributions to plasma cell transformation might be

appreciated more readily by approaches other than transcriptional

profiling.

Taken in the light of these previous reports, our results

strengthen the suggestion that Eef1a2, as a proto-oncogene, is

involved in the growth and proliferation of PCT and possibly MM

through direct or indirect regulation of the JAK/STAT and AKT

signaling pathways. Further mechanistic studies of this molecule

should provide new insights into the pathogenesis of these plasma

cell neoplasms. EEF1A2 could also prove to be a useful new

marker for a subset of MM and ultimately, be considered as a

target for therapy in cases expressing high levels of protein.

Supporting Information

Figure S1 Specific knockdown Eef1a2 expression in PCT cell

lines. (A) qPCR analyses of Eef1a1 and Eef1a2 expression levels in

transiently transfected PCT-AP cell line with four plasmids

specifically targeting Eef1a2 (shRNA-1,2,3,4) and a control plasmid

(shRNA-C). (B) Eef1a1 and Eef1a2 transcripts (left) and eEF1A2

Table 1. Genes expressed at significantly increased or
decreased levels in Eef1a2-knockdown cell line compared to
control cell line.

Gene Name Fold Change (up) Gene Name Fold Change (down)

Tgfbr2 7.47 Mmp13 28.29

Bcl2 4.68 Pik3cg 24.67

Cdk6 4.12 Ifi202b 24.28

Tnfrsf17 4.13 Lmo2 24.51

Ltb 4.98 Cd38 212.78

Sox4 4.2 Cd28 23.89

Bcl9 4.34 Tnfsf13b 24.36

Ptgs1 2.88 Fosb 22.55

Smo 4.03 Itgal 22.43

Hoxa1 13.17 Stat1 22.39

Ikzf3 3.97 Rarg 22.57

Ccr7 3.5 Dkk1 24.8

Id3 2.57 B2m 21.76

Smad7 8.67 Gli2 23.92

Hoxa9 4.24 Flt3 21.71

Il18 2.52 Hes1 22

Xrcc2 2.83 Fos 21.97

Six3 2.94 Dtx1 23.05

Wnt2 5.06 Ly6a 21.75

Ccnd2 1.78 Irf2 22.01

Hes7 2.91 Wnt1 26.99

Ccl3 4.8 Irf8 22.58

Lyn 1.57 Socs3 22.09

Ifnb1 2.63 Id2 21.66

Traf1 1.74 Jak2 21.49

Cd86 8.59 Stat2 21.9

Bcl2l1 1.65 Spn 21.85

IgL-C1 1.69 Stat3 21.53

Fyn 1.58 Map2k1 21.68

Mbd1 1.49 Jag2 24.27

Cd79a 1.48 Hoxa13 22.05

RNA prepared from purified cells of Eef1a2 RNAi and control RNAi was assayed
by qPCR, and genes exhibiting significant changes (p,0.05) were identified
using a modified GPRTM algorithm.
doi:10.1371/journal.pone.0010755.t001
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protein (right) levels were analyzed by qPCR and western blotting,

respectively, in stably transfected ABPC4 cells with a plasmid

expressing shRNA-3 specifically targeting Eef1a2 and a plasmid

expressing control shRNA-C. Error bar = 6 S.E. **p,0.01.

Found at: doi:10.1371/journal.pone.0010755.s001 (0.02 MB

PDF)

Figure S2 (A) The frequency of EdU-postive cells in the Eef1a2

shRNA-3 expressing, control shRNA-C expressing cells and

control cells were analyzed by flow cytometry. Error bar = 6

S.E. **p,0.01. (B) Apoptotic cells were analyzed by flow

cytometry in cells transiently transfected with Eef1a2 shRNAs

and shRNA-C after culturing in serum-free medium for 48 hours.

Found at: doi:10.1371/journal.pone.0010755.s002 (0.05 MB

PDF)

Table S1 Primers used for qPCR.

Found at: doi:10.1371/journal.pone.0010755.s003 (0.08 MB

PDF)

Table S2 Signaling classification for differentially expressed

genes by Eef1a2 knock-down.

Found at: doi:10.1371/journal.pone.0010755.s004 (0.10 MB

PDF)
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