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Abstract 

Epilepsy and psychogenic non-epileptic seizures (PNES) often show over-lap in symptoms, especially at an early 
disease stage. During a PNES, the electrical activity of the brain remains normal but in case of an epileptic seizure the 
brain will show epileptiform discharges on the electroencephalogram (EEG). In many cases an accurate diagnosis can 
only be achieved after a long-term video monitoring combined with EEG recording which is quite expensive and 
time-consuming. In this paper using short-term EEG data, the classification of epilepsy and PNES subjects is analyzed 
based on signal, functional network and EEG microstate features. Our results showed that the beta-band is the most 
useful EEG frequency sub-band as it performs best for classifying subjects. Also the results depicted that when the 
coverage feature of the EEG microstate analysis is calculated in beta-band, the classification shows fairly high accuracy 
and precision. Hence, the beta-band and the coverage are the most important features for classification of epilepsy 
and PNES patients.
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1  Introduction
Abnormal electrical activity in the brain can cause epi-
leptic seizures. When a person has repeated seizures, 
this condition is called epilepsy. Hence epilepsy is a tran-
sient occurrence of signs and/or symptoms due to abnor-
mal excessive and/or synchronous neuronal activity in 
the brain [1]. The visible effect (i.e., the seizure) varies 
from temporary confusion, loss of awareness. Patients 
seldomly are prior aware of the occurrence of seizures 
increasing the risk of physical injury. Psychogenic non-
epileptic seizures (PNES) are events resembling an epi-
leptic seizure, but without the characteristic electrical 
discharges associated with epileptic seizures [2] that have 
a psychogenic origin [3]. The symptoms of PNES usually 
reflect a psychological conflict that is often associated 

with distress, disability, and have a poor prognosis 
when not timely and accurately diagnosed and treated 
[4]. PNES episodes are not purposely produced by the 
patient, and the patient is not aware that the seizures 
are non-epileptic, so the patient may become anxious 
when having these symptoms. The presentation of the 
differential diagnosis should be done early in the course 
of treatment for better patient acceptance, and treat-
ment options should be presented early in the evaluation 
period [5].

Early diagnosis of epilepsy or PNES is critical. Because 
of delay in early diagnosis, many patients experience sig-
nificant morbidity from inappropriate treatment, includ-
ing adverse effects of antiepileptic drugs and aggressive 
interventions, such as intubation for pseudostatus epi-
lepticus [6]. However, PNES may be misdiagnosed as 
epilepsy, and patients are often treated with an incor-
rect diagnosis [7] with potentially important side-effects. 
The failure to recognize the psychological cause of the 
disorder detracts physicians from addressing associated 

Open Access

Brain Informatics

*Correspondence:  n.ahmadi@tue.nl
1 Department of Mathematics and Computer Science, Eindhoven 
University of Technology, TU/e, P.O.Box: 513, 5600MB Eindhoven, NL, The 
Netherlands
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40708-020-00107-z&domain=pdf


Page 2 of 22Ahmadi et al. Brain Inf.             (2020) 7:6 

psychopathology, and enhances secondary somatization 
processes [5].

During a PNES, the brain’s electrical activity remains 
normal but in case of an epileptic seizure, interictal epi-
leptiform discharge (IED) occurs. Hence optimal dif-
ferential diagnosis between epilepsy and PNES can be 
made based on video-EEG monitoring, during which an 
attempt is done to record a seizure while recording video 
and EEG. Besides interpretation of the semiology on the 
video, the EEG can help in the differentiation between 
both. If muscle activity is not to prominent, the occur-
rence of ictal electrical discharges during a seizure can 
confirm the diagnosis of epilepsy over PNES. When no 
ictal discharges are observed not certain diagnosis can 
be made; however, semiology often helps in the diagno-
sis. In Ref. [8] a clear guidance on standards for the diag-
nosis of PNES has been delineated. However, long-time 
EEG monitoring and recording are quite expensive. If we 
can exclude PNES patients based on a short-term EEG 
recording, this would reduce the recording cost and bur-
den waiting lists for EEG monitoring units.

It has been shown that the evolutionary pattern of the 
frequencies of rhythmic movement artifacts on EEG 
during PNES differs from that of epileptic seizure [9]. 
Convulsive PNES were demonstrated to display a char-
acteristic pattern of rhythmic movement artifact that 
remains stable over time during the event, whereas the 
EEG activity during convulsive epileptic seizure tends 
to evolve over time [9]. This finding indicated that time–
frequency analysis of data from a wristband movement 
monitor has the potential to be utilized as a diagnostic 
tool to differentiate between PNES and epileptic seizure 
with a high sensitivity and specificity [10, 11]. Using a 
seizure detection and classification algorithm, Naganur 
et al. [11] examined the diagnostic utility of an automated 
analysis with an ambulatory accelerometer using EEG 
moments that show seizure-like activity. Also, in our pre-
vious work [12] we classified the PNES and epileptic sei-
zure with a very high accuracy using EEG data including 
seizure-like activities.

However, as we mentioned earlier, the issue in EEG/
video monitoring of the patients with epileptic seizure is 
that the IED occurs unpredictably. Hence, it is necessary 
to record EEG for a very long time to see if any epilepti-
form discharges occur and then use those data for further 
analysis. Therefore, the aim of this research is finding dis-
criminative features in short-term EEG signals and brain 
networks in epilepsy patients compared to PNES subjects 
in the absence of an IED (or seizure) to effectively classify 
these two groups. Classification of the disorders using 
IED-free EEG data makes the classification quite chal-
lenging. To the best knowledge of the authors, no similar 
work has been reported in the literature.

At first, we use EEG signal features for automatic 
classification of the groups. The first EEG signal anal-
ysis step is known as feature extraction that aims at 
describing the EEG signals by (ideally) a few relevant 
values called features [13]. Such features should cap-
ture the information embedded in EEG signals that is 
relevant to describe the mental states to identify, while 
rejecting the noise and other non-relevant information. 
Hence, the purpose of feature extraction is not only 
to reduce the dimensionality but also to extract more 
useful/dominant information hidden in the signals by 
avoiding unnecessary or redundant information.

We also apply the functional brain network analysis 
to extract network features for classification purpose. 
A functional network is a mathematical representa-
tion of the brain and is defined by a collection of nodes 
and links between pairs of nodes. Nodes in a func-
tional brain network represent brain regions, while 
links represent functional connections corresponding 
to the magnitude of the temporal correlation between 
node pairs [14]. Functional connectivity is highly time-
dependent, often changing in a matter of tens or hun-
dreds of milliseconds as functional connections are 
continually modulated by sensory stimuli and task 
context. A network formulation simplifies the analysis 
of brain by providing mathematical tools able to cap-
ture different aspects of its organization in a compact 
and straightforward manner [15, 16]. Graph theoretical 
methods have been extensively applied to many neuro-
imaging datasets to describe the topological properties 
of both functional and structural networks.

In the absence of an IED, the EEG signals of epilepsy 
and PNES are quite similar and common EEG signal and/
or network features may not act as accurate discrimina-
tive parameters for classification purpose. Hence, we 
need to apply a capable analysis with high resolution in 
time to extract discriminative features. Hence, we also 
apply EEG microstate analysis to explore if abnormali-
ties in microstates can identify patients with epilepsy 
and PNES with high accuracy. Microstate analysis is an 
alternative EEG representation that defines states of the 
multichannel EEG recording by spatial topographies of 
electric potentials over the electrode array. This method 
was first proposed by Lehmann et  al. [17], who showed 
that the alpha frequency band (8–12 Hz) of a multichan-
nel resting-state EEG recording can be parsed into a few 
number of discrete quasi-stable states that remain domi-
nant for around 80–120 µs before abruptly transitioning 
to another state. These quasi-stable states are defined 
by topographic maps of electric potentials recorded in a 
multichannel array over the scalp. These periods of states 
are called functional microstates and the discrete spatial 
configurations are known as microstate classes/maps.
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Compared to other EEG analysis techniques, spatial 
analysis of EEG using microstates has several advan-
tages. Most importantly, the spatial topography of the 
EEG recording can be defined at any data point inde-
pendently of the preceding topography and therefore 
has millisecond resolution. Hence, microstates are bet-
ter suited to detect rapid, dynamic activity in large-scale 
neurocognitive networks than many traditional methods 
like frequency power EEG analysis [18]. The spatial EEG 
signal analysis with microstates simultaneously consid-
ers the signal from all electrodes to create a global rep-
resentation of a functional state. The rich syntax of the 
microstate time series offers a variety of new quantifica-
tions of the EEG signal with potential neurophysiological 
relevance [19]. In addition, parsing the EEG into micro-
states can be used to select epochs of interest that corre-
spond to a certain microstate class, which can be further 
examined using other analysis methods such as time–
frequency analysis. Therefore, EEG microstate analysis 
offers a capable, cost-worthy and clinically translatable 
neurophysiological approach to study large-scale neural 
networks and investigate temporally coherent network 
activity, as it has been suggested to reflect global func-
tional states of the brain in health and brain disorders 
[19–22].

The rest of this paper is structured as follows. In 
Sect. 2, the mathematical methods that we apply for clas-
sification purpose are presented. Classification results are 
presented in Sect. 3, following by concluding remarks in 
Sect. 4.

2 � Materials and methods
2.1 � Clinical EEG data
The dataset used in this section was obtained from Ghent 
University Hospital in Belgium with whom a larger mul-
tidisciplinary brain research program, called Neu3CA 
[23], is ongoing. The EEG recordings were obtained from 
5 epilepsy and 5 PNES patients. The recordings from 
each patient include 27 EEG recording electrodes (based 
on the standard 10–20 acquisition system) and reference 
(G2) on the right mastoid bone plus the ground (G1) on 
the left mastoid bone. The sampling rate of all data chan-
nels is 256 Hz and the duration of each acquired raw EEG 
data is 3 h. The 27 channels are Fp1, Fpz, Fp2, F7, F3, Fz, 
F4, F8, C3, Cz, C4, T7, T8, P7, P8, P3, Pz, P4, O1, Oz, O2, 
T9, T10, FT9, FT10, TP9 and TP10.

For each patients groups, 50 IED-free epochs, which 
are termed as subjects, with the duration of 16 s and 
with the same classification labels were extracted as they 
contain the least amount of noise or artifact. Thus, we 
have 100 subjects including 50 Epilepsy and 50 PNES 
epoches. Then, all epochs were band-passed filtered for 
the frequency range of 1–40 Hz to further minimize 

contamination by high-frequency artifact. Finally, each 
segment is decomposed to its sub-band frequencies. The 
main frequency sub-bands are delta (below 4 Hz), theta 
(4–8 Hz), alpha (9–13 Hz), beta (14–30 Hz) and gamma 
(above 30 Hz).

To avoid overfitting, we conduct classification experi-
ments using cross-validation. For this purpose, we ran-
domly select 1 Epilepsy subject and 1 PNES subject 
where each subject includes 10 epoches with the same 
label. Therefore, there are totally 5× 5 = 25 pairs of 
cross-validation experiments. The results reported in this 
paper will be the average of these 25 pairs.

2.2 � EEG signal analysis
In this paper, a wavelet-based time–frequency scheme 
[23] is applied to decompose the EEG signals into its 
sub-bands. The wavelet decomposition is a smooth and 
quickly vanishing oscillating function with good localiza-
tion in both frequency and time. Then we use different 
features based on the EEG signals to transform raw sig-
nals in each sub-bands into more informative signatures 
or fingerprints of the brain network. Note that the signal 
features are extracted from each single EEG channel and 
then all of the extracted features are used as the input 
data for the classifiers. Here, the selected signal features 
are presented below briefly.

2.2.1 � Energy
Discrete time signals are the signals that can be defined 
and represented at certain time instants of the sequence. 
As we mentioned before, the sampling rate of all data 
channels is 256 Hz. It means that the voltage of brain 
at different locations has been recorded every 1/256 s. 
Hence, the EEG signals can be considered as discrete sig-
nals. In the discrete domain, the energy of the signal is 
given by [24]

where i represents the recording time instant, xi the volt-
age of signal at i and n the total number of time instants.

2.2.2 � Entropy‑based features
Entropy measure shows the amount of randomness and 
uncertainty in the signal; therefore, the more fluctuat-
ing signal has a higher value of entropy. In other words, 
entropy reflects how well one can predict the behavior 
of each respective part of the trajectory from the other. 
Basically, higher entropy indicates more complex or cha-
otic systems, thus, less predictability.

(1)E =
n

∑

i=1

x2i
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Shannon entropy (ShE): Shannon entropy [25] is a non-
linear measure quantifying the degree of complexity in a 
signal. Let X be a set of a discrete EEG signal variables 
X = {x1, x2, . . . , xn}; xi ∈ Rd . Now, the Shannon entropy 
is defined as

where p(xi) is probability of xi ∈ X satisfying 
∑n

i=1 p(xi) = 1.
Spectral entropy (SE): Spectral entropy (SE) computa-

tion uses Shannon’s entropy formula to represent the 
power spectral densities of the EEG signal as probabili-
ties [26]. For this purpose, fast Fourier’s transformation 
(FFT) is used to obtain the spectrum. The normalized SE 
corresponding to the frequency range [f1, f2] is calculated 
from 1-s epochs of 27-channel EEG signals of epileptic 
and PNES group as follows [27]:

where N [f1, f2] equals the total number of frequency 
components in the frequency range and P(fi) represents 
the probability of the ith frequency component. Each 
1-s, 27-channel EEG data epoch (27 channels × 256 
instants/s) is represented by a 27-component SE vector 
(27 × 1), called SE feature vectors.

Renyi entropy (RE): Renyi entropy, as an index of diver-
sity, is generalizations of Shannon entropy that depend 
on a parameter [28]. If p(xi) is a probability distribution 
on a finite set, its Renyi entropy of order α is defined 
as RE = 1

1−α
ln
∑n

i=1 p(xi)
α , where 0 < α < ∞ . Renyi 

entropy approaches Shannon entropy as α → 1 [29]. In 
our study, the value of α is taken as 2. Steps involved in 
RE are quite similar to computing ShE.

2.2.3 � Fractal dimension‑based features
Fractals are mathematical sets with a high degree of geo-
metrical complexity that can model many natural phe-
nomena. A very important characteristic of fractals, 
useful for their description and classification, is their 
fractal dimension. The fractal dimension of a set in met-
ric space, such as an EEG signal, can be computed from 
several different measures [30].

Fractal box dimension (FBD): For calculating this meas-
ure, a box with different side lengths is used to describe 
the change of the signal waveform. Smaller side lengths 
of the box lead to a longer calculation time, but the rec-
ognition rate of the signal will increase. Smaller side 
lengths of the box lead to a longer calculation time, but 
the recognition rate of the signal will increase. The idea 

(2)ShE = −
n

∑

i=1

p(xi) ln p(xi)

(3)SE[f1, f2] =
∑f2

fi=f1
Pn(fi) log(Pn(fi))

log(N [f1, f2])

is to apply continuous hypercube mesh coverage to the 
curve. If we consider X as a non-empty compact subset of 
the real plane, then the capacity dimension is defined as

where Nmin (ǫ) is the smallest number of boxes with 
a side length ǫ required to cover X. The box dimension 
merely represents the geometric dimension of the signal, 
but does not reflect the density distribution in the planar 
space.

Higuchi fractal dimension (HFD): The HFD is a fast 
non-linear computational method for obtaining the frac-
tal dimension of signals even when very few data points 
are available [31]. HFD is used to quantify the complexity 
and self-similarity of a signal. To compute the HFD, the 
dataset is divided into a k-length sub-dataset as 
xmk : xm, xm+k , xm+2k , ..., xm+( n−m

k
)k , where n is the total 

length of the data sequence, k is a constant and 
m = 1, 2, ..., k . The length Lm(k) for each sub-dataset is 
then computed as

where the mean of Lm(k) for each k is computed to find 
the HFD as

It should be mentioned that to determine the maximum 
value for k, we followed the recommendation of Doyle 
et  al. at [32]. For this purpose, a maximum number of 
reconstructed datasets, e.g., Kmax=5, is determined by 
the user. For each reconstructed dataset the curve length 
is calculated and plotted against its corresponding k value 
on a log-log scale. The resulting slope, fitted by a least-
squares method, represents the fractal dimension of the 
original data. Determining Kmax is by a process of exam-
ining the data and plotting the fractal dimension over a 
range of Kmax ; the point at which the fractal dimension 
plateaus is considered a saturation point beyond which 
no benefit could be gained from further calculations. 
Best results for the current data were obtained using a 
Kmax=20.

Katz fractal dimension (KFD): The KFD is derived 
directly from the waveform, eliminating the pre-processing 
step of creating a binary sequence, can be defined as [33]

(4)FBD = lim
ǫ→0

logNmin (ǫ)

log(1/ǫ)

(5)Lm(k) =
∑N−m

k
i=1 | xm+ik − xm+(i−1)k | (n− 1)

(n−m
k

)k

(6)HFD = 1

k

k
∑

m=1

Lm(k).

(7)KFD = log10(n)

log10(
d
L )+ log10(n)
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where n is the number of steps in the curve, L is the total 
length of the signal that is to say, the sum of the distance 
between successive points. Also d is the Euclidean dis-
tance between the first point in the series and the point 
that provides the furthest distance with respect to the 
first point.

2.3 � Functional network analysis
Various complex network measures can be used to ana-
lyze the functional brain network and characterize one 
or more aspects of local or global brain connectivity. 
To create a functional network, a matrix containing the 
EEG channels pairwise correlations is required. Thus, 
one needs to calculate the synchronizations among all 
pairs of signals and deduce the respective correlation (or 
adjacency) matrix. Applying a synchronization meas-
ure results in the calculation of a correlation matrix 
with each row representing a node and each column on 
that row representing the relationship between the cur-
rent node and every other node in the network. Links 
between nodes are weighted which represent strength of 
correlation or causal interactions in functional networks.

In this paper, a synchronization measure based on the 
horizontal visibility graph (HVG) is applied to calculate 
correlation matrix and construct the functional network. 
Visibility algorithms are a family of methods that map 
signals as graphs nonlinearly   [34–36]. The HVG algo-
rithm provides an effective method to map EEG signals 
to a graph permitting a mutual relationship between 
dynamical properties of signals and topological prop-
erties of the graph. Therefore, the information on EEG 
signals is obtained just by analyzing the characteristics 
of the graph. In our previous works, we showed that the 
synchronization measure based on the HVG algorithm is 
a robust measure for finding correlation among chaotic, 
noisy and stochastic signals [37], and also this measure is 
less sensitive to the brain volume conduction effect and 
is able to predict the coupling degree correctly even with 
strongly overlapping signals [38]. This synchronization 
measure is presented here shortly.

2.3.1 � HVG‑based synchronization measure
Let x(t) be a univariate time series of N discrete data 
( t = 1, 2, ...,N  ). The visibility graph algorithm converts 
the time series x(t) to a graph, as a data point x(t) is 
mapped into a node in the graph. The time point (i.e., a 
point on the time series) represents a moment in which 
the data are recorded (see Fig. 1a). By applying the HVG 
algorithm, an EEG time series of size N maps to a visibil-
ity graph with N nodes. In this algorithm, two arbitrary 
data nodes t∗ and t⋆ in the graph are connected if [35]

(8)
x(t∗) > x(t) and x(t⋆) > x(t) for all t such that: (t∗ < t < t

⋆).

According to the HVG geometric criterion, two data 
points are connected if one can draw a horizontal line 
in the time series joining them that does not intersect 
any intermediate data height. Therefore, by applying the 
HVG, a signal of size N maps to a graph with N nodes, as 
the first node in Fig. 1b is associated with the first time 
point in Fig. 1a. The second node corresponds to the sec-
ond time point of the EEG time series, and so on.

After constructing the visibility graph, the degree 
of each node is determined. The degree of node t is 
the number of links connected to node t. Therefore, 
by counting the number of links that have node t as an 
endpoint, we can determine the degree of each node. 
Then, by considering the degrees of all nodes, a degree 
sequence (DS) time series is obtained. The corresponding 
DSs of the HVG algorithms are shown in Fig. 1c as time 
series. Next, the similarity of two time series x(t) and y(t) 
is approximated by calculating the Cross-Correlation 
(CC) function between the DSs of the corresponding vis-
ibility graphs. The cross-correlation function measures 
the linear correlation between two time series as a func-
tion of their delay time, which is of interest because such 
a time delay may reflect a causal relationship between the 
time series. The CC between two time series x(t) and y(t) 
with the same N samples’ length, where t denotes discrete 
time (t = 1, ...,N ) , is expressed as

where t = 1, ...,N  denotes discrete time and 
h ∈ {−(N − 1), ..., 0, ...,N − 1} denotes time lag. Here, 
CC = ±1 presents the complete linear direct and inverse 
correlations, respectively, and CC = 0 indicates lack of 
linear correlation for a given time lag.

After constructing the functional network at each fre-
quency sub-band, some selected complex network meas-
ures are determined as following to detect aspects of the 
brain network.

2.3.2 � Clustering coefficient
The clustering coefficient assesses the degree to which 
nodes tend to cluster together. In brain network studies, 
the clustering coefficient is considered to be a measure 
of the local connectivity of the functional brain net-
work. Brain networks are “small worlds” in which dif-
ferent functional units can work independently but are 
connected to each other through hubs. A high cluster-
ing coefficient indicates the presence of local cliques 
forming specialized functional units. Given a weighted 
network G, the local clustering coefficient ci for node i 
is defined as [39]

(9)CC = Cxy(h) =
1

N − h

N−h
∑

t=1

x(t + h)y(t),
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where w̃ij = wij/max(wij) is the scaled weight. Here, 
di(di − 1)/2 is the maximum possible number of links 
when the subgraph of neighbors of node i is completely 
connected. The global clustering coefficient for the whole 
graph is the average of the local values and is defined 
as  [40]

(10)ci =
2

di(di − 1)

∑

i,k

(w̃ij · w̃jk · w̃ki)
1/3,

where N is the number of nodes in the graph. It is clear 
that 0 ≤ ci ≤ 1 and 0 ≤ C ≤ 1 . Note that ci = 1 if node i 
is the center of a fully interconnected cluster and ci = 0 if 
the neighbors of node i are not connected to each other.

2.3.3 � Strength
Strength is one of the most basic structural properties of 
a weighted graph. The vertex strength is defined as the 

(11)C = 1

N

N
∑

i

ci,

Fig. 1  a An EEG time series (filled circles represent time points), b top: applying HVG criteria on time points, bottom: corresponding graph, and c 
corresponding degree sequences of the HVG for such time points
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sum of weights of links connected to the vertex and is 
formalized as

where j ∈ neighbor(i) and w represents the weighted 
adjacency matrix, in which wij is the weight on the edge 
between node i and j [41].

2.3.4 � Betweenness centrality
Centrality refers to the relative importance of a vertex 
within the network. Mostly, the vertices in a network 
with higher centrality index values are perceived as 
being the more important vertices. Betweenness central-
ity quantifies the number of times that a node acts as a 
bridge along the shortest path between two other nodes. 
In an undirected network, a path between two nodes that 
has the minimum number of links is referred to as the 
shortest path between these two nodes. In the context 
of brain network analysis, a brain region (or EEG record-
ing site) has a high betweenness centrality index if it is 
strategically located as a midpoint between several pairs 
of brain regions, and therefore, controls the flow of infor-
mation across the brain network.

Consider an undirected graph G = (V ,E) , where V and 
E denote its node and link set, respectively. For three dis-
tinct nodes v1, v2, v3 ∈ V  , let σv1,v3  = 0 be the number of 
shortest paths between v1 and v3 in G, and let σv1,v3(v2) be 
the number of shortest paths between v1 and v3 that pass 
through v2 . The betweenness centrality index of node v2 
is defined as [42]

The average node betweenness centrality of the graph is 
defined as follows:

The betweenness centrality lies between zero and 
(

N − 1
2

)

 , where the value 0 is obtained if and only if all 

neighbors of vi induce a maximal clique in G.

2.3.5 � Eigenvector centrality and largest eigenvalue
Eigenvector centrality is a global measure of centrality, 
as it does not focus on the immediate vicinity of nodes 
but instead considers all possible indirect connections. 
It operates under the premise that connections to nodes 
that are themselves well-connected should be given more 
weight than connections to less well-connected nodes. 
Eigenvector centrality for all nodes in the network, then, 

(12)Si = �wij .

(13)B(v2) =
∑

v1 �=v2 �=v3∈V

σv1,v3(v2)

σv1,v3
.

(14)B̄(G) = 1

N

∑

v2∈V
B(v2).

is simply given by the eigenvector corresponding to the 
largest eigenvalue (also called the Perron eigenvalue). 
In brain network studies, the eigenvector centrality is a 
measure that approximates the centrality or the impor-
tance of a brain region to the corresponding functional 
network. Eigenvector centrality attributes a value to each 
voxel in the brain, such that a voxel receives a large value 
if it is strongly correlated with many other nodes that are 
themselves central within the network. A brain region 
has higher eigenvector centrality if its neighbors are also 
highly central. It has been demonstrated that eigenvector 
centrality is a computationally efficient tool for capturing 
intrinsic neural architecture on a voxel-wise level [43].

For a matrix A ∈ RN×N , a number � is an eigenvalue if, 
for some vector �c �= 0 [41],

Here, the centrality vector �c is the eigenvector of the 
adjacency matrix A associated with the eigenvalue � . In 
general, eigenvectors give the direction of spread of data, 
while the eigenvalue is the intensity of spread in a par-
ticular direction or of that respective eigenvector. Given 
the weighted correlation matrix A of network G, it is wise 
to choose the largest eigenvalue, �max , in the absolute 
value of matrix. By virtue of the Perron–Frobenius theo-
rem [41], this choice implies that if the graph is strongly 
connected, then the eigenvector solution �c is both unique 
and positive.

2.4 � EEG microstate analysis
For microstate analysis, we follow the standard steps in 
microstate segmentation presented in [44]. For this pur-
pose, the EEG data at different bands were imported to 
MATLAB (vR2016a) using the EEGLAB toolbox (v14.1.2) 
[45, 46]. First, we need to calculate the global field power 
(GFP) at each data point which represents the magnitude 
of the field strength at each moment in time. The GFP at 
each data point is equal to the root of the mean of the 
squared potential differences at all N electrodes, i.e., 
Vi(t) , from the mean of instantaneous potentials across 
electrodes, i.e., Vi(t) , equivalently, the standard devia-
tion across all electrodes of the EEG for the ith data point 
[47]. Formally,

Topographies that occur at local peaks of the GFP(t) 
curve represent instants of greatest field strength and 
highest SNR. Since the field topography remains essen-
tially stable between two peaks of the GFP(t) curve 
and changes during the troughs, the topographies at 
GFP(t) maxima are representative of topographies at 

(15)A�c = ��c.

(16)GFP(t) =

√

∑n
i=1(Vi(t)− Vi(t))2

n
.
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surrounding data points in time [18, 48]. Thus, represen-
tation of the EEG data as a set of topographies at local 
GFP(t) maxima is a valid data reduction method. There-
fore for each subject, the topographies at local GFP(t) 
peaks are extracted. These topographies are called the 
original maps and which are submitted to a clustering 
algorithm, such as K-means, to obtain the desired num-
ber of cluster maps with the goal of maximizing the simi-
larity between the EEG samples and the prototypes of the 
microstates they are assigned to. A schematic overview of 
the microstate analysis is shown in Fig. 2.

In this work we aim to compare the cluster maps of two 
different groups (i.e., epilepsy and PNES patient groups) 
and then identify patients using a machine learning tech-
nique. Each subject may result in different number of 
microstate cluster maps. Therefore, it would be quite com-
plicated to compare the temporal characteristics of micro-
states’ maps between the two groups. Hence, it would be 
ideal to have a set of global cluster maps that represent the 
recordings of all subjects in both group and then fit these 
common maps to the individual data for further investiga-
tions. Therefore, we apply a data aggregation scheme for 
each group, as 5000 original maps at GFP(t) maxima of 
each subject, with the minimum peak distance of 20 µs, 
are extracted and concatenated to create a new series of 
topographic original maps. This aggregated series explain 
variance in both of our datasets, consisting of 100 subjects 
including 50 epilepsy and 50 PNES. As the next step, the 
aggregated series is submitted to the modified K-means 
clustering algorithm to obtain the global microstate cluster 
maps.

2.4.1 � Effective number of cluster maps
Finding the optimum number of cluster maps is crucial for 
capturing the informative features of the data and avoids 
over/under-fitting. Selecting the number of cluster micro-
states is not a straightforward choice to make [21, 49, 50]. 
In this paper, we apply cross-validation criterion [51] as a 
measure of fit for selecting the effective number of micro-
states, because this measure is polarity-invariant as it is 
assumed in the segmentation of spontaneous EEG data.

The cross-validation criterion (CV) [51] optimizes the 
ratio between the global explained variance and the degrees 
of freedom for a given set of cluster maps. This measure is 
related to the residual noise, ǫ , and the goal is therefore to 
obtain a low value of CV.

where C is number of EEG channels, K number of micro-
state clusters and σ̂ 2 an estimator of the variance of the 
residual noise calculated as

(17)CV = σ̂ 2 ·
(

C − 1

C − K − 1

)2

where N is number of time samples, xn is the nth time 
sample of the recorded EEG, aln signifies the topographi-
cal map assigned to nth EEG sample and ln is the micro-
state label of the n-th EEG sample. Practically, the CV 
criterion pointing to the best clustering solution at its 
smallest value.

The decision for the right number of clusters obviously 
reflects a trade-off between the goodness of fit and the 
complexity a high number of microstates brings to the 
segmentation. Hence according to the CV and GEV plots 
(see Fig. 3, the optimum numbers of global cluster maps 
are 3, for alpha and beta-bands, and 4 for delta and theta-
bands. The topographies of the global cluster maps are 
shown in Fig. 4.

2.4.2 � Back‑fitting microstates maps to EEG
Once the global cluster maps have been determined, they 
are fitted-back to each individual subject’s EEG and its 
corresponding GFP(t) data to define the microstates and 
extract different features. Back-fitting procedure assigns 
microstate labels to EEG data point based on which clus-
ter map they are most topographically similar with using 
the global map dissimilarity (GMD) measure. The GMD 
is a distance measure that is invariant to the strength of 
the signal and instead only looks at how similar the topo-
graphical maps look. For two EEG samples, xn and xn′ , 
GMD is calculated as

By normalizing with GFP, two EEG samples that belong 
to the same microstate, but have different strength, will 
achieve a low GMD distance.

Hence, the obtained global cluster maps are fitted 
backward to the original data calculating the spatial 
correlation between each template and the topography 
at each time instant corresponding to the maximum 
value of GFP. Such a procedure allows to represent the 
EEG time series in terms of sequence of microstates 
and to extrapolate variables of interest. Figure 5 shows 
an epoch of EEG data of two different subjects as a 
function of global cluster microstates at different EEG 
bands. It is worth mentioning that the unwanted noise 
in EEG recording can appear as a short microstate seg-
ments after the back-fitting procedure. To eliminate 
this issue, the small maps rejection algorithm is imple-
mented to temporally smooth the microstates after the 
back-fitting. For this purpose, we introduce a thresh-
old (here: 30 µs) which defines the minimum duration 

(18)σ̂ 2 =
∑N

n xTn xn − (aTlnxn)
2

N (C − 1)

(19)GMD =
|| xn
GFPn

− xn′
GFPn′ ||√

C
.
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Fig. 2  Schematic flowchart of the EEG microstate analysis. Each EEG datum is used to calculate the GFP curve at each data point. The electric 
potentials of all electrodes at moments of local maxima of the GFP curve are plotted to generate topographic original maps. The original maps 
are submitted to a clustering algorithm, which groups the submitted maps into a small set of clusters (here: 3) based on topographic similarity, 
and optimal number of cluster microstate maps is generated for each subject. Finally, the cluster maps are back-fitted to the GFP curve and each 
data point is labeled with the cluster map that they best correlated to. Therefore, the multichannel EEG recording is now described as a series of 
alternating microstates
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for the microstate segments to last. Hence, the label of 
each microstate segment with duration lower than the 
threshold changes to the next most likely microstate 
cluster map as measured by the GMD measure.

2.4.3 � EEG microstate features
The basic temporal dynamics of microstates are 
described by occurrence (k), duration (k), and coverage 
(k). Occurrence (k) reflects the average number of times 
per second a microstate is dominant, the Duration (k) is 
defined as the average duration of a given microstate (in 
milliseconds), and the Coverage (k) reflects the fraction 
of time a given microstate is active. These features are 
inputted to various selected classifiers, independently.

2.5 � Training/test set split
As introduced in Sect.  2.1, there are totally 5 epilepsy 
and 5 PNES patients and each patient has 50 IED-free 
epochs. To augment the data, we transfer these 10 
patients into 100 subjects including 50 Epilepsy and 50 
PNES epochs. I.e., we transfer each patient into 10 sub-
jects by diving the epochs with a fixed duration.

To avoid overfitting, we conduct classification experi-
ments using cross-validation. However, the data are 
augmented from limited number of patients so it 
requires a specific data split to prevent the classifier 
learning the patterns of each patient. For this purpose, 
we randomly select 1 Epilepsy patient and 1 PNES 
patient where each patient includes 10 epochs with 
the same label (totally 20 subjects) as the test set. The 

Fig. 3  The CV measure of fit plotted for a alpha-band, b beta-band, c delta-band and d theta-band
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Fig. 4  The topographies of the selected global microstate classes retrieved from the clustering algorithm for a alpha-band, b beta-band, c 
delta-band and d theta-band
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rest 4 Epilepsy patients and 4 PNES patients (totally 80 
subjects) are used as the training set. Therefore, there 
are totally 5× 5 = 25 pairs of cross-validation experi-
ments since we have 5 epilepsy and 5 PNES patients. 
The results reported in this paper will be the average of 
these 25 pairs.

2.6 � Features classification
In machine learning and statistics, classification is a 
supervised learning approach in which the computer 
program learns from the data input with labels given to 
it and then uses this learning to classify new observation. 
In this work, we apply various well-known classification 

techniques, including k-Nearest-Neighbors [52], Deci-
sion Tree [53], Neural Network [54], Random Forest 
[55], Naive Bayes [56], Support Vector Machine with lin-
ear and radial kernels (SVM-Linear, SVM-RBF) [57] and 
Gradient Boosting [58], for classification of subjects. The 
specific kind of function being learned and the assump-
tions built into it are what distinguish among the various 
types of classifiers.

The usual model performance measures for evaluating 
a classification model are precision (or positive predic-
tive value), recall (or sensitivity, true positive rate), accu-
racy and specificity (or true negative rate). Precision is 
calculated as the number of correct positive predictions 

Fig. 5  The global cluster maps are back-fitted to the GFP curve of a a subject with epilepsy and b a subject with PNES at beta-band. Each data 
point is labeled with the cluster map based on the maximal spatial correlation with the global template. The time period that each of the cluster 
maps covered is shown by color bars
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divided by the total number of positive predictions. 
Recall is calculated as the number of correct positive 
predictions divided by the total number of positives. In 
other words, recall is the number of correct positives 
divided by the number of correct positives plus the num-
ber of false-negatives. True-positives are data point clas-
sified as positive by the model that actually are positive 
(meaning they are correct), and false-negatives are data 
points the model identifies as negative that actually are 
positive (incorrect). Recall gives us information about 
performance of the model on false-negatives, while pre-
cision gives us information of the model’s performance of 
false-positives. Based on what is predicted, precision or 
recall might be more critical for a model. Accuracy is the 
number of correct predictions made by the model by the 
total number of records. The best accuracy is 100% indi-
cating that all the predictions are correct. Specificity is 
calculated as the number of correct negative predictions 
divided by the total number of negatives.

The receiver operating characteristic (ROC) curve is 
a plot of specificity in the x axis and recall in the y axis. 
Hence, the ROC curve is a plot of the false-positive 
rate ( x-axis) versus the true-positive rate ( y-axis) for a 
number of different subjects threshold values between 
0.0 and 1.0. Area under the ROC curve is a measure of 
model performance. The area under the curve (AUC) of 
a random classifier is 50% and that of a perfect classifier 
is 100% . For practical situations, an AUC of over 70% is 
desirable [59].

3 � Results
In this section, the classification results of epilepsy and 
PNES, in the absence of an interictal discharge, from real 
multichannel EEG data are presented based on the EEG 
signal, functional network and EEG microstate features.

3.1 � EEG features’ classification
In this section, the classification of EEG signal features 
which were extracted from each single channels is pre-
sented. Table  1 shows the performance of the selected 
EEG signal features in the classification task using differ-
ent classifiers. Here, the results for two evaluation met-
rics, i.e., precision and recall, at different EEG frequency 
sub-bands are presented. It can be seen that different 
sub-bands have different performance w.r.t selected sig-
nal features. Conclusions for each individual sub-band 
are as following:

•	 In alpha-band, the spectral entropy performs best 
among the features and the SVM classifier (with lin-
ear and RBF kernels) performs best among the clas-
sification techniques. The Renyi entropy is the sec-
ond best feature in the classification tasks. Besides, 

features such as Higuchi fractal dimension are the 
worst feature to distinguish subjects because it only 
achieves about 50% precision.

•	 In beta-band, all features except Higuchi fractal 
dimension achieve acceptable classification results. 
Similar to alpha-band, the SVM (with linear and RBF 
kernels) performs best among all classifiers, and the 
Higuchi fractal dimension is the worst feature to dis-
tinguish subjects.

•	 In delta-band, Katz Fractal dimension and signal 
energy perform relatively better than other features. 
Entropy-based features, including Shanon, spectral 
and Renyi, did not perform well in classifying sub-
jects. Similarly, the SVM (with linear and RBF ker-
nels) performs best in most features.

•	 In theta-band, Katz fractal dimension performs the 
best among all features. But other features achieve 
poor performance as the precision is around 50% . 
Similarly, the SVM (with linear and RBF kernels) per-
forms best in most features.

•	 In gamma-band, almost all features obtain poor 
performance except signal energy. It indicates that 
gamma-band may not be a very effective band for 
classifying the subjects in experiments.

The receiver operating characteristic (ROC) curves for 
different sub-bands are shown in Figs. 6, 7, 8, 9 and 10. 
Considering the area under the curves (AUC) we can 
conclude that the classifiers that use features extracted 
from the beta-band perform best in classifying subjects 
as the AUC is the beta-band that is higher than other 
sub-bands for all selected features. Also, it is observed 
that the gamma-band performs worst using different fea-
tures. Furthermore, the alpha-band performs relatively 
good but still much worse than beta-band. The delta-
band and the theta-band are similar to random guess.

We also considered a combination of all selected fea-
tures as the input for the classifiers. The results are pre-
sented in Table 2. It can be seen that by combining all the 
selected features, the classification precision and recall 
become larger for all sub-bands.

3.2 � Network features classification
By applying the horizontal visibility graph algorithm, the 
synchronizations among all pairs of EEGs are calculated. 
Then, the correlation matrices and corresponding func-
tional brain networks are constructed to extract selected 
network measures, i.e., clustering coefficient, strength, 
betweenness centrality, eigenvector centrality and larg-
est eigenvalue (see Sect.  2.2). At first, the classification 
techniques were applied on each network measure inde-
pendently. However, the classification results were poor. 
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Hence, a combination of all selected features was consid-
ered as the input for the classifiers.

The precision, recall and accuracy of the classification 
methods with the best performances for the combination 
of all the networks’ features at different EEG bands are 
presented in Table 3. From these results, we can say that 
the functional network features are not strong discrimi-
native features to be used for the classification of the epi-
leptic seizure and PNES. However from the results, we 
can conclude that functional network features are robust 
to the classification task, i.e., different bands perform 
similarly in classification precision/recall. Among differ-
ent bands, gamma-band performs best while theta-band 
performs worst. Also, among different applied classifiers, 
the SVM either with linear or with RBF kernel performs 
best for all EEG bands. The only exception is delta-band 

where Random Forest classifier performs best. Note 
that for the gamma-band the results of the SVM (RBF) 
are about 5 % less than the results of the Random Forest 
technique.

3.3 � Microstate features classification
These microstate features are inputted to various 
selected classifiers, independently. The classification 
precision, recall and accuracy are presented in Tables 4, 
5 and 6. Also, Table  7 presents the classification results 
when all three features are considered as inputs for clas-
sifiers. From these results it can be seen that the micro-
state analysis in beta-band leads to more accurate results 
compared to other EEG bands. Also, the kNN classifier 
is a superior technique for doing classification. The only 
exception is when coverage (k) is the classification input, 

Table 1  Calculated classification precision and recall using various classification techniques at different frequency bands

Higuchi FD Katz FD Energy Shanon entropy Spectral entropy Renyi entropy

Precision, Recall at alpha-band

 SVM (Linear) 0.545, 0.438 0.597, 0.446 0.624, 0.463 0.655, 0.505 0.741, 0.639 0.713, 0.603

 SVM (RBF) 0.422, 0.367 0.641, 0.483 0.578, 0.424 0.529, 0.393 0.742, 0.641 0.669, 0.559

 Gradient Boosting 0.552, 0.444 0.582, 0.480 0.566, 0.474 0.513, 0.428 0.720, 0.621 0.692, 0.601

 Decision Tree 0.514, 0.394 0.697, 0.616 0.595, 0.512 0.575, 0.462 0.616, 0.495 0.667, 0.568

 Random Forest 0.495, 0.406 0.602, 0.493 0.524, 0.425 0.584, 0.438 0.693, 0.598 0.665, 0.560

Precision, Recall at beta-band

 SVM (Linear) 0.601, 0.468 0.789, 0.677 0.755, 0.619 0.761, 0.652 0.743, 0.656 0.736, 0.651

 SVM (RBF) 0.606, 0.476 0.754, 0.644 0.742, 0.597 0.730, 0.605 0.745, 0.651 0.774, 0.696

 Gradient Boosting 0.527, 0.388 0.695, 0.513 0.646, 0.497 0.619, 0.474 0.716, 0.590 0.748, 0.657

 Decision Tree 0.613, 0.482 0.695, 0.580 0.620, 0.483 0.556, 0.454 0.716, 0.617 0.706, 0.612

 Random Forest 0.537, 0.433 0.727, 0.587 0.596, 0.474 0.685, 0.528 0.737, 0.637 0.724, 0.627

Precision, Recall at delta-band

 SVM (Linear) 0.633, 0.539 0.703, 0.549 0.686,0.539 0.510,0.342 0.542, 0.412 0.557, 0.452

 SVM (RBF) 0.569, 0.482 0.665, 0.505 0.683, 0.543 0.581, 0.432 0.538, 0.426 0.479, 0.371

 Gradient Boosting 0.622, 0.519 0.501, 0.345 0.573, 0.432 0.534, 0.380 0.561, 0.477 0.555, 0.431

 Decision Tree 0.636, 0.539 0.553, 0.423 0.592, 0.485 0.475, 0.384 0.585, 0.617 0.552, 0.418

 Random Forest 0.558, 0.468 0.583, 0.468 0.550, 0.457 0.503, 0.417 0.515, 0.414 0.573, 0.465

Precision, Recall at theta-band

 SVM (Linear) 0.633, 0.539 0.703, 0.549 0.686, 0.539 0.510, 0.342 0.542, 0.412 0.557, 0.452

 SVM (RBF) 0.569, 0.482 0.665, 0.505 0.683, 0.543 0.581, 0.432 0.538, 0.426 0.479, 0.371

 Gradient Boosting 0.622, 0.519 0.501, 0.345 0.573, 0.431 0.534, 0.380 0.561, 0.477 0.555, 0.431

 Decision Tree 0.636, 0.539 0.553, 0.423 0.592, 0.485 0.475, 0.384 0.585, 0.617 0.552, 0.418

 Random Forest 0.558, 0.468 0.583, 0.468 0.550, 0.457 0.503, 0.417 0.515, 0.414 0.573, 0.465

Precision, Recall at gamma-band

 SVM (Linear) 0.331, 0.251 0.583, 0.470 0.724, 0.552 0.539, 0.432 0.539, 0.340 0.537, 0.390

 SVM (RBF) 0.409, 0.324 0.632, 0.481 0.686, 0.501 0.642, 0.501 0.501, 0.346 0.501, 0.389

 Gradient Boosting 0.382, 0.317 0.743, 0.651 0.556, 0.442 0.488, 0.406 0.488, 0.368 0.525, 0.403

 Decision Tree 0.468, 0.369 0.761, 0.650 0.550, 0.481 0.559, 0.478 0.505, 0.361 0.548, 0.420

 Random Forest 0.381, 0.353 0.632, 0.490 0.613, 0.537 0.578, 0.462 0.524, 0.415 0.523, 0.419
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where Random Forest classifier performs slightly better 
than the kNN model. Furthermore, it is observed that the 
occurrence (k) is the weakest discriminative feature as it 
results in overall accuracy of 68.8% with 72.8% precision 

and 68.9% recall, whereas duration (k), coverage (k) and 
combination of all features mostly result in accuracy, pre-
cision and recall higher than 80%.

Fig. 6  ROC analysis of the classification method using various EEG signal features in alpha-band

Fig. 7  ROC analysis of the classification method using various EEG signal features in beta-band
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To further evaluate the importance of the frequency 
bands, the so-called leave-one-out tests are performed. 
For this purpose, each microstate feature (i.e., occurrence 
(k), duration (k) and precision (k) and also combination of 

all three features) in all bands (i.e., alpha, beta, delta and 
theta) is inputted to classifiers independently to measure 
accuracy, precision and recall of the classification. The 
results of this test are shown under the header of All in 

Fig. 8  ROC analysis of the classification method using various EEG signal features in delta-band

Fig. 9  ROC analysis of the classification method using various EEG signal features in theta-band
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Table 8. Then, we eliminate one of the frequency bands 
and do the classification again. The results are shown as 
All-alpha, All-beta, All-delta and All-theta in Table  8. 

The results show that the alpha, delta and theta-bands do 
not contain important data for microstate analysis as by 
eliminating them from the classification procedure, the 
accuracy, precision ad recall not only does not decrease 
significantly, but also become pronounced for some 
cases. However, the results for the beta frequency band 
are quite different. It can be seen that by eliminating the 
beta-band from the classification, the values of accuracy, 
precision and recall reduce significantly which highlight 
the importance of the beta-band in microstate analysis. 
This importance is confirmed by all selected classification 
techniques presented in this work.

The classification accuracy of the proposed system is 
also evaluated through receiver operating character-
istic (ROC) curves for different microstate measures 

Fig. 10  ROC analysis of the classification method using various EEG signal features in gamma-band

Table 2  Classification precision and  recall calculated by  the  classifiers using combination of  all features at  different 
frequency bands

Alpha-band Beta-band Delta-band Theta-band Gamma-band

Precision, Recall

 SVM (Linear) 0.615, 0.528 0.613, 0.555 0.674, 0.523 0.685, 0.615 0.751, 0.664

 SVM (RBF) 0.622, 0.547 0.741, 0.593 0.618, 0.554 0.613, 0.444 0.783, 0.688

 Gradient Boosting 0.577, 0.513 0.611, 0.512 0.667, 0.499 0.569, 0.466 0.781, 0.688

 Decision Tree 0.574, 0.447 0.713, 0.716 0.685, 0.532 0.601, 0.514 0.688, 0.577

 Random Forest 0.583, 0.502 0.694, 0.532 0.587, 0.495 0.604, 0.488 0.766, 0.644

Table 3  Classification precision, recall and  accuracy 
calculated by  the  classifiers with  the  best performance 
for different EEG bands

EEG-band Model Precision Recall Accuracy

Alpha SVM (RBF) 0.6906 0.592 0.592

Beta SVM (Linear) 0.6825 0.638 0.638

Delta Random Forest 0.6843 0.584 0.588

Theta SVM (RBF) 0.6492 0.534 0.534

Gamma SVM (Linear) 0.7001 0.554 0.554
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Table 4  Classification precision, recall and  accuracy calculated by  selected classifiers at  different EEG data bands 
when occurrence (k) is considered as the discriminative (or input) feature for classification

Alpha Beta Delta Theta

Accuracy, Precision, Recall

 Random Forest 0.522, 0.522, 0.522 0.702, 0.763, 0.702 0.480, 0.480, 0.480 0.534, 0.498, 0.534

 SVM (Linear) 0.516, 0.519, 0.516 0.766, 0.808, 0.766 0.326, 0.316, 0.326 0.506, 0.512, 0.506

 SVM (RBF) 0.508, 0.519, 0.508 0.724, 0.782, 0.724 0.424, 0.416, 0.424 0.576, 0.573, 0.576

 Decision Tree 0.480, 0.477, 0.480 0.666, 0.683, 0.666 0.588, 0.601, 0.588 0.558, 0.555, 0.558

 kNN 0.534, 0.535, 0.534 0.688, 0.728, 0.689 0.602, 0.615, 0.602 0.646, 0.655, 0.646

 Gradient Boost 0.526, 0.524, 0.526 0.688, 0.721, 0.688 0.614, 0.623, 0.614 0.620, 0.632, 0.620

Table 5  Classification precision, recall and  accuracy calculated by  selected classifiers at  different EEG data bands 
when duration (k) is considered as the discriminative (or input) feature for classification

Alpha Beta Delta Theta

Accuracy, Precision, Recall

 Random Forest 0.552, 0.558, 0.552 0.694, 0.757, 0.694 0.506, 0.5064, 0.506 0.530, 0.539, 0.530

 SVM (Linear) 0.430, 0.2539, 0.430 0.522, 0.431, 0.522 0.478, 0.336, 0.478 0.512, 0.432, 0.512

 SVM (RBF) 0.498, 0.429, 0.498 0.502, 0.291, 0.502 0.514, 0.440, 0.514 0.498, 0.249, 0.498

 Decision Tree 0.568, 0.5721, 0.568 0.730, 0.752, 0.730 0.544, 0.546, 0.544 0.604, 0.613, 0.604

 kNN 0.576, 0.5838, 0.576 0.808, 0.839, 0.808 0.560, 0.584, 0.560 0.660, 0.668, 0.660

 Gradient Boost 0.580, 0.587, 0.580 0.718, 0.751, 0.718 0.612, 0.618, 0.612 0.640, 0.653, 0.640

Table 6  Classification precision, recall and  accuracy calculated by  selected classifiers at  different EEG data bands 
when coverage (k) is considered as the discriminative (or input) feature for classification

Alpha Beta Delta Theta

Accuracy, Precision, Recall

 Random Forest 0.478, 0.487, 0.478 0.794, 0.840, 0.794 0.508, 0.543, 0.508 0.556, 0.563, 0.556

 SVM (Linear) 0.492, 0.487, 0.492 0.668, 0.708, 0.668 0.416, 0.410, 0.416 0.546, 0.553, 0.546

 SVM (RBF) 0.474, 0.479, 0.474 0.656, 0.688, 0.656 0.396, 0.383, 0.396 0.442, 0.433, 0.442

 Decision Tree 0.502, 0.498, 0.502 0.764, 0.783, 0.764 0.578, 0.586, 0.578 0.620, 0.631, 0.620

 kNN 0.564, 0.571, 0.564 0.776, 0.814, 0.776 0.548, 0.551, 0.548 0.596, 0.612, 0.596

 Gradient Boost 0.546, 0.549, 0.546 0.788, 0.826, 0.788 0.636, 0.652, 0.636 0.602, 0.614, 0.602

Table 7  Classification precision, recall and  accuracy calculated by  selected classifiers at  different EEG data bands 
when  the  combination of  occurrence (k), duration (k) and  coverage (k) is  considered as  the  discriminative (or input) 
feature for classification

Alpha Beta Delta Theta

Accuracy, Precision, Recall

 Random Forest 0.516, 0.518, 0.516 0.728, 0.792, 0.728 0.492, 0.504, 0.492 0.594, 0.609, 0.594

 SVM (Linear) 0.432, 0.259, 0.432 0.604, 0.565, 0.604 0.464, 0.341, 0.464 0.480, 0.361, 0.480

 SVM (RBF) 0.504, 0.531, 0.504 0.530, 0.528, 0.530 0.514, 0.440, 0.514 0.498, 0.249, 0.498

 Decision Tree 0.570, 0.575, 0.570 0.716, 0.738, 0.716 0.584, 0.592, 0.584 0.582, 0.587, 0.582

 kNN 0.576, 0.584, 0.576 0.808, 0.839, 0.808 0.566, 0.591, 0.566 0.662, 0.670, 0.662

 Gradient Boost 0.572, 0.575, 0.572 0.808, 0.831, 0.808 0.650, 0.663, 0.650 0.634, 0.645, 0.634



Page 19 of 22Ahmadi et al. Brain Inf.             (2020) 7:6 	

Table 8  Calculated classification accuracy, precision and recall using all frequency bands (All), and excluding alpha-band 
(All-alpha), beta-band (All-beta), delta-band (All-delta) and theta-band (All-theta)

All All-alpha All-beta All-delta All-theta

Accuracy, Precision, Recall using occurrence (k) as the discriminative (input) feature

 Random Forest 0.696, 0.732, 0.696 0.700, 0.738, 0.700 0.536, 0.537, 0.536 0.708, 0.741, 0.708 0.734, 0.784, 0.734

 SVM (Linear) 0.732, 0.758, 0.732 0.734, 0.768, 0.734 0.396, 0.391, 0.396 0.724, 0.756, 0.724 0.700, 0.725, 0.700

 SVM (RBF) 0.730, 0.774, 0.730 0.724, 0.772, 0.724 0.524, 0.535, 0.524 0.728, 0.772, 0.728 0.758, 0.793, 0.758

 Decision Tree 0.646, 0.683, 0.646 0.680, 0.711, 0.680 0.602, 0.615, 0.602 0.656, 0.682, 0.656 0.680, 0.715, 0.680

 kNN 0.794, 0.814, 0.794 0.822, 0.841, 0.822 0.694, 0.708, 0.694 0.762, 0.788, 0.762 0.802, 0.831, 0.802

 Gradient Boost 0.692, 0.729, 0.692 0.696, 0.746, 0.696 0.654, 0.669, 0.654 0.688, 0.732, 0.688 0.698, 0.731, 0.698

Accuracy, Precision, Recall using duration (k) as the discriminative (input) feature

 Random Forest 0.686, 0.735, 0.686 0.684, 0.741, 0.684 0.538, 0.544, 0.538 0.674, 0.747, 0.674 0.670, 0.731, 0.670

 SVM (Linear) 0.690, 0.740, 0.690 0.740, 0.806, 0.740 0.464, 0.401, 0.464 0.614, 0.668, 0.614 0.662, 0.733, 0.662

 SVM (RBF) 0.614, 0.758, 0.614 0.590, 0.713, 0.590 0.598, 0.623, 0.598 0.694, 0.716, 0.694 0.578, 0.678, 0.578

 Decision Tree 0.662, 0.685, 0.662 0.718, 0.743, 0.718 0.584, 0.587, 0.584 0.730, 0.758, 0.730 0.644, 0.668, 0.644

 kNN 0.724, 0.746, 0.724 0.744, 0.773, 0.744 0.530, 0.541, 0.530 0.776, 0.820, 0.776 0.740, 0.765, 0.740

 Gradient Boost 0.754, 0.796, 0.754 0.772, 0.810, 0.772 0.632, 0.636, 0.632 0.722, 0.767, 0.722 0.710, 0.743, 0.710

Accuracy, Precision, Recall using coverage (k) as the discriminative (input) feature

 Random Forest 0.730, 0.776, 0.730 0.734, 0.782, 0.734 0.560, 0.567, 0.560 0.710, 0.769, 0.710 0.754, 0.794, 0.754

 SVM (Linear) 0.674, 0.702, 0.674 0.664, 0.696, 0.664 0.460, 0.439, 0.460 0.672, 0.707, 0.672 0.672, 0.704, 0.672

 SVM (RBF) 0.618, 0.6631, 0.618 0.620, 0.666, 0.620 0.380, 0.354, 0.380 0.634, 0.681, 0.634 0.616, 0.656, 0.616

 Decision Tree 0.698, 0.711, 0.698 0.738, 0.753, 0.738 0.682, 0.692, 0.682 0.678, 0.704, 0.678 0.628, 0.661, 0.628

 kNN 0.776, 0.806, 0.776 0.764, 0.786, 0.764 0.634, 0.644, 0.634 0.778, 0.802, 0.778 0.738, 0.784, 0.738

 Gradient Boost 0.762, 0.804, 0.762 0.782, 0.815, 0.782 0.696, 0.707, 0.696 0.758, 0.797, 0.758 0.748, 0.792, 0.748

Accuracy, Precision, Recall using combination of occurrence (k), duration (k) and coverage (k) as the discriminative (input) feature

 Random Forest 0.678, 0.738, 0.678 0.698, 0.764, 0.698 0.562, 0.567, 0.562 0.688, 0.757, 0.688 0.710, 0.779, 0.710

 SVM (Linear) 0.712, 0.753, 0.712 0.734, 0.792, 0.734 0.514, 0.488, 0.514 0.612, 0.634, 0.612 0.656, 0.742, 0.656

 SVM (RBF) 0.530, 0.337, 0.530 0.500, 0.250, 0.500 0.494, 0.308, 0.494 0.514, 0.393, 0.514 0.508, 0.268, 0.508

 Decision Tree 0.692, 0.725, 0.692 0.698, 0.719, 0.698 0.612, 0.624, 0.612 0.660, 0.690, 0.660 0.646, 0.678, 0.646

 kNN 0.724, 0.746, 0.724 0.744, 0.773, 0.744 0.530, 0.540, 0.530 0.776, 0.820, 0.776 0.740, 0.7652, 0.740

 Gradient Boost 0.754, 0.792, 0.754 0.772, 0.805, 0.772 0.702, 0.712, 0.702 0.714, 0.763, 0.714 0.758, 0.786, 0.758

Fig. 11  ROC analysis of the classification method using various 
microstate features in alpha-band

Fig. 12  ROC analysis of the classification method using various 
microstate features in beta-band
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shown in Figs.  11, 12, 13 and 14. From these curves 
it can be seen that the area under the curve (AUC) of 
ROC in beta-band is larger for all microstate measures. 

This indicates that the beta-band is most accurate sub-
band for our classification purpose. Furthermore, it is 
obvious from Fig.  12 that the coverage mainly results 
in larger AUC compared to other presented measures. 
The importance of the microstate features is presented 
in Table 9. The results show that by leaving out the cov-
erage from the classification in beta-band, the accuracy, 
precision and recall of the classification reduce signifi-
cantly compared to other measures. Hence, the cover-
age and beta-band are the most important features for 
classification of epileptic seizure and PNES using the 
microstate analysis.

4 � Conclusion
In this paper, we investigated the EEG signal and func-
tional brain network features for the automatic clas-
sification of epilepsy and PNES patients. An epileptic 
seizure is a transient occurrence of signs due to abnor-
mal excessive or synchronous neuronal activity in the 
brain, where as PNES are events resembling an epilep-
tic seizure, but without the characteristic electrical dis-
charges associated with epileptic seizure. Hence, in the 
absence of the electrical discharge, the PNES is com-
monly misdiagnosed as an epileptic seizure. Generally, 
by performing a long-time EEG monitoring and record-
ing the physicians can see if epileptiform discharges 
occur that aid in diagnosing the disorder. However, this 
monitoring is quite expensive and time-consuming. 
Hence, we aimed to effectively classify these two brain 
disorders in the absence of a seizure by analyzing vari-
ous short-term EEG signal and network features using 
machine learning algorithms. All of our results showed 
that the beta-band is the most representative frequency 
sub-band for subject classification. Generally, the clas-
sification based on the EEG signal features and func-
tional network features does not lead to classification 
with a strong performance even if various classifica-
tion techniques are applied. The prediction accuracy 
was found to be around 80% when the classification was 
computed based on the microstate features extracted 
from the beta-bands.

Fig. 14  ROC analysis of the classification method using various 
microstate features in theta-band

Table 9  Importance of different microstate features

Combination of all features All without occurrence All without duration All without coverage

Accuracy, Precision, Recall

 Alpha-band 0.572, 0.575, 0.572 0.562, 0.566, 0.562 0.546, 0.546, 0.546 0.552, 0.557, 0.552

 Beta-band 0.808, 0.851, 0.808 0.820, 0.863, 0.820 0.794, 0.836, 0.794 0.774, 0.811, 0.774

 Delta-band 0.650, 0.663, 0.650 0.646, 0.658, 0.646 0.618, 0.625, 0.618 0.696, 0.714, 0.696

 Theta-band 0.634, 0.645, 0.634 0.634, 0.639, 0.634 0.624, 0.635, 0.624 0.628, 0.639, 0.628

Fig. 13  ROC analysis of the classification method using various 
microstate features in delta-band
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