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Abstract: The multicomponent reaction of aldehydes, cyano-containing C-H acids, esters of 3-
oxocarboxylic acid and ammonium acetate led to unexpected results. The boiling of starting
materials in methanol for one to two hours resulted in the formation of polysubstituted 1,4,5,6-
tetrahydropyridines with two or three stereogenic centers. During the 2020 lockdown, we obtained
key intermediates of this six-step domino reaction. A number of fast and slow reactions occurred
during the prolonged stirring of the reaction mass at rt. Sequence: 1. Knoevenagel condensation;
2. Michael addition; 3. Mannich reaction; 4. cyclization—fast reactions and cyclization of the product
polysubstituted 2-hydroxypiperidine—was isolated after 40 min stirring at rt. Further monitoring
proved the slow dehydration of 2-hydroxypiperidine to obtain 3,4,5,6-tetrahydropyridine after 7 days.
Then, four-month isomerization occurred with 1,4,5,6-tetrahydropyridine formation. All reactions
were stereoselective. Key intermediates and products structures were verified by X-ray diffraction
analysis. Additionally, we specified conditions for the selective intermediates’ preparation.

Keywords: multicomponent reactions; domino processes; stereoselectivity; aldehydes; C-H acids;
1,4,5,6-tetrahydropyridines; 3,4,5,6-tetrahydropyridines; 2-aryl-2-hydroxypiperidines; reaction
monitoring

1. Introduction

Six-membered heterocycles form the main subgroup of nitrogen-containing hetero-
cycles. These compounds are well-known frameworks (piperidine, tetrahydropyridine,
1,4-dihydropyridine and pyridine) with a wide spectrum of biological activities [1,2]. Thus,
piperidine derivatives display antihypertensive [3], neuroprotective [4,5], antibacterial [6],
anticonvulsant [7] and anti-inflammatory [8] abilities, and are inhibitors of farnesyl trans-
ferase [9]. Additionally, substituted piperidines are important therapeutic agents in the
treatment of influenza [10–12], diabetes [13,14], viral infections including AIDS [15–17],
pulmonary embolism [18] and cancer metastases [19]. Tetrahydropyridines are known
as insecticides [20], analgesics [21] and antimalarial agents [22]. Among medications, 4-
phenylpiperidine derivatives are of great importance, because they resemble morphine
pharmacophore [23,24].

The most common synthetic approaches to produce tetrahydropyridines include imines,
in which the nitrogen atom is a source to construct nitrogen-containing six-membered
rings. Diels–Alder reactions [25,26], using azadienophiles or azadienes, and domino
addition–cyclization reactions involving imines were reported [27,28]. The latter reactions
are multicomponent. For organic compounds’ preparation, domino and multicomponent
syntheses are superior to two-component reactions in high atom efficiency [29,30], time,
materials, energy saving, eco-friendliness and access to greater diversity [31–36]. Several
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publications describe the multicomponent synthesis of substituted tetrahydropyridines
from aromatic aldehydes, C-H acids and aromatic amines [37,38], cyanoacetamide [39] or
cyanothioacetamide [40].

We have carried out the multicomponent synthesis of substituted piperidines [41–45].
Ammonium acetate or aqueous ammonia were the nitrogen sources for piperidine cy-
cles. Using this approach, we performed the stereoselective synthesis of substituted
1,4,5,6-tetrahydropyridines from electron-deficient olefins and aqueous ammonia [46]
(three-component synthesis), or from alkylidenemaloninitriles, 3-oxopropanecarboxylates,
aldehydes and ammonium acetate [47] (four-component synthesis) as a nitrogen source
for the newly formed six-membered ring. The reaction was carried out by refluxing
the starting compounds in methanol for 2–12 h. We hypothesized that the formation of
tetrahydropyridine occurs through the following sequence of reactions: Michael addition
to obtain 2-substituted 3-aryl-4,4-dicyanobutanoic acid ester A, Mannich reaction to give
2-substituted 5-amino-3,5-diaryl-4,4-dicyanopentanoic acid B, intramolecular cyclization
yielding polysubstituted 2-hydroxypiperidine C, and dehydration (Scheme 1). Previously,
Verboom et al. [48] studied the formation of close analogues of intermediate A from benzyli-
denemalononitriles and malononitrile, or ethyl cyanoacetate. However, the intermediates
B and C have never been isolated or identified.
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Scheme 1. Presumed mechanism of the substituted 1,4,5,6-tetrahydropyridines’ formation.

Subsequently, we studied the multicomponent synthesis of cyclic [49–51] and hetero-
cyclic [52–56] compounds from carbonyls and C-H acids. The current research is dedicated
to the pseudo-five-component synthesis of 1,4,5,6-tetrahydropyridines 4,5 directly from
aromatic aldehydes 1 (both with electron-withdrawing and electron-donating substituents),
cyano C-H acids 2 (malononitrile or ethyl cyanoacetate), esters of 3-oxocarboxylic acids 3
and ammonium acetate (Scheme 2, Table 1). Additionally, we examine the multicomponent
process mechanism.
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Table 1. Multicomponent synthesis of 1,4,5,6-tetrahydropyridines 4,5 a.

Entry Aldehyde C-H Acid C-H Acid X Ar R1 R2 Product Yield b

1. 1a 2a 3a CN C6H5 Me Me 4a 80
2. 1b 2a 3a CN 2-MeC6H4 Me Me 4b 65
3. 1c 2a 3a CN 3-MeC6H4 Me Me 4c 76
4. 1d 2a 3a CN 4-MeC6H4 Me Me 4d 72
5. 1e 2a 3a CN 3-FC6H4 Me Me 4e 71
6. 1f 2a 3a CN 3-ClC6H4 Me Me 4f 68
7. 1g 2a 3a CN 3-Py Me Me 4g 62
8. 1a 2a 3b CN C6H5 Me Et 4h 86
9. 1h 2a 3b CN 4-FC6H4 Me Et 4i 69

10. 1i 2a 3b CN 4-NO2C6H4 Me Et 4j 63
11. 1a 2a 3c CN C6H5 Et Me 4k 90
12. 1d 2a 3c CN 4-MeC6H4 Et Me 4l 82
13. 1j 2a 3c CN 4-BrC6H4 Et Me 4m 82
14. 1i 2a 3c CN 4-NO2C6H4 Et Me 4n 58
15. 1a 2a 3d CN C6H5 C6H5 Me 4o 76
16. 1e 2a 3d CN 3-FC6H4 C6H5 Me 4p 52
17. 1a 2a 3e CN C6H5 C6H5 Et 4q 58
18. 1k 2a 3e CN 4-OMeC6H4 C6H5 Et 4r 44
19. 1a 2a 3f CN C6H5 4-BrC6H4 Me 4s 62
20. 1d 2a 3f CN 4-MeC6H4 4-BrC6H4 Me 4t 75
21. 1j 2b 3f CO2Et 4-BrC6H4 4-BrC6H4 Me 5a 73
22. 1j 2b 3g CO2Et 4-BrC6H4 4-ClC6H4 Me 5b 66

a Reaction conditions: aldehyde 1 (6 mmol), cyano C-H acid 2 (3 mmol), ester of 3-oxocarboxylic acid 3 (3 mmol),
NH4OAc (6 mmol) and methanol (10 mL), refluxing for 2 h. b Isolated yields.

2. Results and Discussion

The refluxing of the starting compounds in MeOH led to the selective formation
of esters of 2-alkyl(or aryl)-4,6-diaryl-5,5-dicyano-1,4,5,6-tetrahydropyridine-3-carboxylic
acids 4 (X=CN) with two stereogenic centers, or diesters of 5-cyano-2,4,6-triaryl-1,4,5,6-
tetrahydropyridine-5,3-carboxylates 5 (X=COOEt) with three stereogenic centers (Scheme 2,
Table 1). This technique was developed in the study of the four-component synthesis of
1,4,5,6-tetrahydropyridines [47]. The new multicomponent reaction allows us to obtain
1,4,5,6-tetrahydropyridines 4, 5 in moderate to excellent yields in one step from cheap
and available starting materials via the domino process with the formation of three C-C
and two C-N bonds. All reactions were monitored via thin-layer chromatography (TLC).
Product 4 was isolated in a 44–90% yield by simple filtration after freezing the reaction
mixture. Product 5 was isolated by chromatography in moderate yields of 33% and 36%.

As the NMR spectra of compounds 4, 5 showed only a single set of signals, we
assumed the stereoselective formation of individual diastereoisomers. The structure of
4r is shown in Figure 1. X-ray crystal diffraction data indicated that structure 4a with
two stereogenic centers should be defined as ethyl (4SR,6RS)-5,5-dicyano-2-phenyl-4,6-
bis(4-methoxy)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate. The structure of 5a is
shown in Figure 2. X-ray indicated that structure 5a with three stereogenic centers had
the conformation 4RS,5SR,6RS. In both 4r, 5a diastereomers, we observed bulky aryl
substituents in sterically least-hindered positions relative to each other.

To validate the proposed mechanism (Scheme 1), we monitored the reaction be-
tween aldehydes 1, malononitrile 2a, aryl containing esters of 3-oxocarboxylic acids 3
and ammonium acetate in methanol at room temperature (Scheme 3, Table 2). In all
cases, 40–45 min stirring of the reaction mass created a dense white precipitate. After
filtration and drying, single compounds (by TLC and NMR) were obtained. The 1H
and 13C NMR spectra of compounds 6 showed one set of signals, indicating the for-
mation of a single diastereomer. The 6d structure is shown in Figure 3. X-ray crystal
diffraction data indicated that the structure 6d with four stereogenic centers should be
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defined as methyl (2SR,3RS,4SR,6RS)-5,5-dicyano-2-(4-bromo)phenyl-2-hydroxy-4,6-bis(4-
methyl)phenyl-piperidine-3-carboxylate.
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Table 2. Multicomponent synthesis of (2SR,3RS,4SR,6RS)-2-hydroxypiperidines 6 a.

Entry Aldehyde C-H Acid R R1 R2 Product Yield b

1 1a 3e H C6H5 Et 6a 72
2 1d 3e 4-Me C6H5 Et 6b 61
3 1l 3e 4-Cl C6H5 Et 6c 56
4 1d 3f 4-Me 4-BrC6H4 Me 6d 87

a Reaction conditions: aldehyde 1 (6 mmol), malononitrile 2a (3 mmol), ester of 3-oxocarboxylic acid 3 (3 mmol),
NH4OAc (6 mmol) and methanol (10 mL), rt, 40 min. b Isolated yields.
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the molecules of 6d and DMSO.

It should be noted that the introduction of alkyl-substituted esters of 3-oxocarboxylic
acid 3 (R1 = Alk) into this reaction did not result in the formation of 2-hydroxypiperidine
6. Apparently, the aryl substituent in position 2 is a “stabilizer” of the molecule as a
whole. Thus, we found that 2-hydroxypiperidines 6 are formed as a result of a “fast”
domino sequence: Knoevenagel condensation, Michael addition, Mannich reaction and
intramolecular cyclization. This sequence of reactions takes only 40 min at rt. Unordinary
results were found when one of the reaction mixtures was left for a long time without
stirring due to isolation measures in spring 2020. The TLS monitoring of the reaction
mixture containing 4-methylbenzaldehyde 1d, malononitrile 2a, methyl 3-(4-bromophenyl)-
3-oxopropanoate 3f and ammonium acetate in methanol after one and a half months of
standing at rt showed the presence of a new substance, different (according to TLS) from
2-hydroxypiperidine 6d and the final 1,4,5,6-tetrahydropyridine 4t. We monitored this
reaction for 4.5 months. Every week, we took samples of the precipitate from the reaction
mixture and analyzed it with 1H NMR spectroscopy (Figure 4).

We found the complete conversion of 2-hydroxypiperidine 6d within a week. A set of
signals of the unknown compound 7 and 1,4,5,6-tetrahydropyridine 4t was observed in the
reaction mixture precipitate. Further, over the course of 4 months, we observed the slow
transformation of 7 into 4t. To isolate compound 7, we made the following assumption.
Under reaction conditions, ammonium acetate dissociated into ammonia and acetic acid.
Ammonia was consumed to form a six-membered nitrogen-containing ring, while acetic
acid remained in the reaction mixture. Therefore, the dehydration of 6d to 7t should be
carried out under acidification. The acidity of the reaction medium should influence the
course of dehydration (Scheme 4, Table 3). Indeed, 6d refluxing in methanol for 2 h in the
absence of the acid produced no conversion (Table 3, entry 1). When acidified with 2 eq. of
acetic acid, the compound 6d was completely consumed after 2 h refluxing (Table 3, entry
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2, TLC monitoring, eluting with hexane—ethyl acetate, 3:1). Additionally, we observed the
formation of 7. The increase in the acid amount led to 4t (Table 3, entries 4–7).
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Table 3. Dehydration of 6d a.

Entry AcOH/mol.eq. Time, h Tetrahydropyridine Yield (%) b

1 0 2 - -
2 2 2 7 90
3 4 2 7 88
4 10 2 7/4t = 1:1 90 c

5 10 4 7/4t = 1:1.5 92 c

6 25 2 7/4t = 1:2 88 c

7 50 2 4t 92
a 6d (1 mmol), MeOH (8 mL), refluxing. The progress of the reaction was monitored by TLC. b Isolated yields. c

Total yield of tetrahydropyridines.

The structure of 7 is shown in Figure 5a. X-ray crystal diffraction data indicated that struc-
ture 7 with three stereogenic centers should be defined as methyl (3RS,4SR,6RS)-5,5-dicyano-
2-(4-bromo)phenyl-4,6-bis(4-methyl)phenyl-3,4,5,6-tetrahydropyridine-3-carboxylate. Struc-
ture 7 is the isomer of 4t. The Gibbs free energy of 4t is 15.64 kJ/mol lower than that of
7. DFT calculations were performed with the Gaussian 16 Rev C.01 quantum chemistry
program [57].
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Figure 5. (a) X-ray structure of the 7 3RS,4SR,6RS configuration; (b) X-ray structure of the 8
3SR,4RS,5SR,6SR configuration.

Likewise, we studied the multicomponent reaction between 4-flurobenzaldehyde 1h,
ethyl cyanoacetate 2b, methyl 3-(4-bromophenyl)-3-oxopropanoate 3f and ammonium
acetate in methanol at rt (Scheme 5). TLC and 1H NMR monitoring allowed us to obtain
the reaction intermediate 8 in 24%. The structure of 8 is shown in Figure 5b. X-ray
crystal diffraction data indicated that structure 8 with four stereogenic centers should
be defined as 5-ethyl 3-methyl (3SR,4RS,5SR,6SR)-6-(4-bromophenyl)-3-cyano-2,4-bis(4-
fluorophenyl)-3,4,5,6-tetrahydropyridine-3,5-dicarboxylate. When ethyl cyanoacetate was
introduced into the multicomponent reaction, the formation of an intermediate substituted
2-hydroxypiperidine was not observed.
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Scheme 5. Stereoselective multicomponent synthesis of (3SR,4RS,5SR,6SR)-6-(4-bromophenyl)-3-
cyano-2,4-bis(4-fluorophenyl)-3,4,5,6-tetrahydropyridine-3,5-dicarboxylate 8.

Crystal data and the structure refinement of 4r, 5a, 6d, 7 and 8 are shown in Table 4.

Table 4. Crystal data and structure refinement.

Structure 4r 5a 6d 7 8

Empirical formula C30H27N3O4 C29H23Br3N2O4 C29H26BrN3O3·C2H6OS C29H24BrN3O2 C29H23BrF2N2O4

Formula weight 493.54 703.22 622.56 526.42 581.40

Crystal system Monoclinic Monoclinic Monoclinic Orthorhombic Triclinic

Space group P21/n P21/c P21 P212121 P1

Unit cell parameters

a, Å 13.5215(6) 14.1399(5) 9.3382(4) 8.9278(2) 7.9773(3)

b, Å 14.4873(6) 13.7544(4) 17.1583(8) 14.0848(3) 15.5602(6)

c, Å 13.6402(6) 14.6488(5) 10.1005(5) 19.5522(4) 21.8741(8)

α, ◦ 90 90 90 90 91.0048(12)

β, ◦ 109.0602(13) 107.0120(11) 116.3107(12) 90 91.2217(12)

γ, ◦ 90 90 90 90 103.2089(14)

Volume, Å3 2525.49(19) 2724.32(16) 1450.72(12) 2458.62(9) 2642.06(17)

Z 4 4 2 4 4

Density (calcd.),
g/cm3 1.298 1.715 1.425 1.422 1.462

µ, mm−1 0.087 4.481 1.530 1.704 1.608

F (000) 1040 1392 644 1080 1184

θ range, ◦ 2.58–30.00 2.07–33.73 2.43–30.50 2.51–33.74 2.32–31.53

Completeness to θmax 0.999 1.000 1.000 0.999 0.995

Index ranges
−19 < = h < = 15,
−20 < = k < = 20,
−19 < = l < = 19

−13 < = h < = 13,
−21 < = k < = 22,
−30 < = l < = 29

−13 < = h < = 13,
−24 < = k < = 24,
−14 < = l < = 14

−13 < = h < = 13,
−21 < = k < = 22,
−30 < = l < = 29

−11 < = h < = 11,
−22 < = k < = 22,

0 < = l < = 32

Reflections collected 37323 90656 42307 80903 20648

Independent
reflections (R(int)) 7344 [0.0737] 10,873 [0.0808] 8837 [0.0539] 9808 [0.0411] 20,648 [-]

Observed reflections
(I > 2σ(I)) 4852 6974 7570 8717 11,148

Data, restraints,
parameters 7344, 0, 341 10,873, 1, 357 8837, 8, 386 9808, 0, 321 20,648, 0, 691

Goodness of fit on F2 1.037 1.019 1.039 1.050 1.019

Final R1, wR2
(I > 2σ(I)) 0.0523, 0.0942 0.0491, 0.1042 0.0328, 0.0637 0.0295, 0.0667 0.0593, 0.0984

Final R1, wR2
(all data) 0.0951, 0.1171 0.0955, 0.1250 0.0454, 0.0693 0.0383, 0.0712 0.1452, 0.1219

Absolute structure
parameter - - 0.016(6) 0.388(6) -

Largest diff. peak,
hole, e/Å3 0.321, −0.282 0.993, −1.176 0.377, −0.488 0.348, −0.378 0.595, −0.861

CCDC number 1979309 2032519 1979186 2011646 2011600
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Thus, the multicomponent reaction between aldehyde 1, cyano C-H acids 2 (mal-
ononitrile or ethyl cyanoacetate), esters of 3-oxocarboxylic acids 3 and ammonium acetate
is a six-step domino process (Scheme 6). At the first stage, the Knoevenagel condensa-
tion between aldehydes and cyano C-H acid occurs. Ammonium acetate is a catalyst
for this reaction. The formation of cyano olefins A under ammonium salts catalysis is
already known [58]. The second step of the process is the Michael addition of C-H acid
3 to the electron-poor styrene A to form the Michael adduct B. The formation of close
analogues of intermediate B from benzylidenemalononitriles and malononitrile or ethyl
cyanoacetate was studied previously by Verboom et al. [48]. The subsequent Mannich
reaction of B, aldehyde 1 (second equivalent) and ammonia, which is formed from ammo-
nium acetate, leads to intermediate C. The latter undergoes intra-molecular cyclization
with the formation of a substituted 2-hydroxypiperidine 6, which was identified and
characterized in this work for the first time. A similar sequence of Knoevenagel conden-
sation —Michael addition—Mannich reaction—intramolecular cyclization was described
by Latypova et al. when studying the multicomponent reaction between 1,3-dicarbonyl
compounds (two equiv.), formaldehyde and diamines with the formation of substituted
bis-1,2,3,4-tetrahydropyridines [59]. None of the intermediates were isolated. Moreover,
we tried to isolate C in the course of the work, but failed because in the reaction mass, after
10–30 min from the reaction start, there were many compounds (by TLC) that were almost
impossible to isolate due to the rapid reaction rate. Polysubstituted 2-hydroxypiperidines 6
were isolated up to 87% even after stirring at rt for 40 min (see Table 2). The fifth step of the
domino process is C dehydration. We established formation of 3,4,5,6-tetrahydropyridines
7, 8. A final isomerization produces 1,4,5,6-tetrahydropyridines 4, 5.
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3. Experimental Procedure
3.1. General Information

All melting points were measured with a Stuart SMP30 melting point apparatus (Bibby
Sterling Ltd., Granton, UK). 1H and 13C NMR spectra were recorded with a Bruker AM300
(Bruker, Bremen, Germany) and Bruker DRX 500 (Bruker BioSpin GmbH, Bremen, Ger-
many) at ambient temperature in DMSO-d6 or CDCl3 solutions. Chemical shifts values
are given in δ scale relative to Me4Si. The J values are given in hertz. Only discrete or
characteristic signals for the 1H NMR are reported. IR spectra were recorded with a Bruker
ALPHA-T FT-IR spectrometer (Bruker Corporation, Bremen, Germany) in KBr pellets.
HR-ESI-MS were measured on a Bruker microTOF II instrument (Bruker Daltonik GmbH,
Bremen, Germany); external or internal calibration was performed with electrospray cali-
brant solution (Fluka). All starting materials were obtained from commercial sources and
used without purification. All reactions were monitored with thin-layer chromatography
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(TLC) and carried out with Merck precoated plates DC-AlufolienKieselgel60 F254 (Merck
KGaA, Darmstadt, Germany). X-ray crystallographic analyses were performed with Bruker
Quest D8 diffractometer (Bruker AXS GmbH, Bremen, Germany).

3.2. DFT Calculations

DFT calculations were performed with Gaussian 16 Rev C.01. B3LYP DFT (Gaussian
Inc., Wallingford CT, USA, 2016) functional with GD3BJ empirical dispersion correction,
and a Def2SVP basis set was used for geometry optimization and calculations of ther-
modynamics. Data from X-ray diffraction experiment for 7 were used as starting points
for geometry optimizations. Cartesian coordinates are given in angstroms; absolute ener-
gies for all substances are given in hartrees. The analysis of vibrational frequencies was
performed for all optimized structures. All compounds were characterized by only real
vibrational frequencies. Wavefunction stability, using stable keyword, was also checked for
each molecule. For more information see Supplementary Materials.

For the calculations of the optimized geometries, frequencies and thermodynamics
with the following keywords were used:

# opt freq b3lyp nosymm def2svp empiricaldispersion = gd3bj test

3.3. X-ray Crystallographic Data and Refinement Details

X-ray diffraction data for all compounds were collected at 100 K on a Bruker Quest D8
diffractometer equipped with a Photon-III area detector, using graphite-monochromatized
Mo Kα-radiation (0.71073 Å) and the shutterless ϕ- andω-scan technique. Relying on the
analysis of preliminary collected reflections with the Cell_Now program [60], all crystals
of 8 from various batches contained over seven major domains with apparently chaotic
orientations. This, along with a chiral space group, seriously impeded data analysis,
resulting in six attempts to collect reflection data and to solve the structure. The intensity
data were integrated by the SAINT program [61] and were semi-empirically corrected for
absorption and decay, using SADABS [62] for 4r, 6d, 5a and 7 or using TWINABS [61] for
8. The structures were solved by direct methods using SHELXT [63] and refined by the
full-matrix least-squares method on F2 using SHELXL-2018 [64]. The crystals of 6d and 7
were refined as inversion twins, for which the absolute structure parameter (Flack) was
determined by classical fit [65]. The selected specimen of 8 was refined as a non-merohedral
2-component twin.

All non-hydrogen atoms were refined with individual anisotropic displacement pa-
rameters. The locations of atoms H1 (in 4r, 5a) and H1A, H1B (in 6d) were found from the
electron density difference map; these H atoms were refined with individual isotropic dis-
placement parameters. All other hydrogen atoms were placed in geometrically calculated
positions and refined as riding atoms with relative isotropic displacement parameters. A
rotating group model was applied for methyl groups. Mercury program [66] was used
for molecular graphics. Crystal data, data collection and structure refinement details are
summarized in Table 4.

3.4. Synthesis of 4–5

A mixture of aldehydes 1 (6 mmol), cyano C-H acid 2 (3 mmol), ester of 3-oxocarboxylic
acids 3 (3 mmol) and ammonium acetate (6 mmol) was refluxed in methanol (10 mL) for
2 h. After the reaction completion, the mixture was maintained at –10 ◦C for 30 min for the
complete precipitation of the product, the precipitate was collected by filtration and dried to
obtain pure tetrahydropyridine 4. Compound 5 was purified by column chromatography.

Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-diphenyl-1,4,5,6-tetrahydropyridine-3-car
boxylate (4a) Yield: 0.86 g (80%); white solid; m.p. 218–219 ◦C. (lit. [46] m.p. 218–219 ◦C);
1H-NMR (DMSO-d6, 300.13 MHz): δ = 7.63–7.7 (m, 2H, Ar), 7.52 (dd, 4 H, Ar, J1 = 5.9 Hz,
J2 = 1.6 Hz), 7.34–7.28 (m, 4H, Ar + NH), 5.27 (s, 1H, CH), 4.83 (s, 1H, CH), 3.11 (s, 3H,
OCH3), 2.32 (s, 3H, CH3).
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Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(2-methyl)phenyl-1,4,5,6-tetrahydropyr
idine-3-carboxylate (4b) Yield: 0.75 g (65%); white solid; m.p. 233–235 ◦C; 1H-NMR (CDCl3,
300.13 MHz): δ = 7.92–7.86 (m, 1H, Ar), 7.51–7.18 (m, 7H, Ar), 5.22 (s, 1H, CH), 5.09 (s,
1H, CH), 4.35 (s, 1H, NH), 3.26 (s, 3H, OCH3), 2.59 (s, 3H, CH3), 2.56 (s, 3H, CH3), 2.4 (s,
3H, CH3); 13C-NMR (CDCl3, 75.47 MHz): δ = 166.67, 151.99, 137.24, 136.92, 135.95, 131.95,
131.47, 130.69, 130.20, 128.03, 127.29, 126.49, 126.34, 126.22, 113.82, 112.61, 99.28, 57.54, 50.44,
46.09, 45.63, 20.04, 19.89; IR (KBr): 3343, 2249, 1686, 1460, 1247 cm−1; HRMS (ESI) m/z [M +
H]+ calcd for C24H24N3O2+: 386.1863; found: 386.1857.

Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(3-methyl)phenyl-1,4,5,6-tetrahydropy
ridine-3-carboxylate (4c) Yield: 0.88 g (76%); white solid; m.p. 191–193 ◦C; 1H-NMR (CDCl3,
300.13 MHz): δ = 7.11–7.48 (m, 8H, Ar), 4.72 (s, 1H, CH), 4.57 (s, 1H, CH), 4.43 (s, 1H, NH),
3.30 (s, 3H, OCH3), 2.44 (s, 3H, CH3), 2.42 (s, 3H, CH3), 2.38 (s, 3H, CH3); 13C-NMR
(CDCl3, 75.47 MHz): δ = 166.92, 151.88, 139.25, 138.11, 137.65, 133.55, 131.46, 129.23, 129.17,
128.47, 128.39, 124.96 (s, 2C), 113.77, 111.91, 97.84, 61.92, 51.05, 50, 51, 47.99, 21.48 (s, 2C),
20.29; IR (KBr): 3422, 2252, 1655, 1453, 1248 cm−1; HRMS (ESI) m/z [M + H]+ calcd for
C24H24N3O2+: 386.1863; found: 386.1857.

Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(4-methyl)phenyl-1,4,5,6-tetrahydropy
ridine-3-carboxylate (4d) Yield: 0.83 g (72%); white solid; m.p. 208–210 ◦C. (lit. [47] m.p.
208–210 ◦C); 1H-NMR (DMSO-d6, 300.13 MHz): δ = 7.51 (d, J = 8.0 Hz, 2H, Ar), 7.44 (s, 1H,
NH), 7.32 (d, J = 8.0 Hz, 2H, Ar), 7.21–7.14 (m, 4H, Ar), 5.19 (s, 1H, CH), 4.75 (s, 1H, CH),
3.13 (s, 3H, OCH3), 2.36 (s, 3H, CH3), 2.30 (s, 6H, 2CH3).

Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(3-fluoro)phenyl-1,4,5,6-tetrahydropyr
idine-3-carboxylate (4e) Yield: 0.84 g (71%); white solid; m.p. 174–176 ◦C. (lit. [47] m.p.
174–176 ◦C); 1H-NMR (DMSO-d6, 300.13 MHz): δ = 7.7–7.13 (m, 8H, Ar + NH), 7.06 (d,
J = 10.11 Hz, 1H, Ar), 5.32 (s, 1H, CH), 4.87 (s, 1H, CH), 3.17 (s, 3H, CH3), 2.34 (s, 3H, CH3).

Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(3-chloro)phenyl-1,4,5,6-tetrahydropy
ridine-3-carboxylate (4f) Yield: 0.87 g (68%); white solid; m.p. 210–213 ◦C; 1H-NMR
(DMSO-d6, 300.13 MHz): δ = 7.68 (d, J = 10.15 Hz, 2H, Ar), 7.63–7.25 (m, 7H, Ar + NH),
5.31 (s, H, CH), 4.86 (s, H, CH), 3.18 (s, 3H, OCH3), 2.34 (s, 3H, CH3); 13C-NMR (CDCl3,
75.47 MHz): δ = 166.39, 152.75, 139.74, 135.36, 135.19, 134.46, 131.06, 130.68, 129.9, 128.8,
128.07 (s, 2C), 126.27, 125,86, 113.22, 111.36, 97, 19, 61.22, 50.68, 50.46, 47, 48, 20.35;
IR(KBr): 3411, 2240, 1712, 1458, 1247, 711 cm−1; HRMS (ESI) m/z [M + H]+ (for 35Cl)
426.0760 calcd for C22H18Cl2N3O2+: 426.0771, (for 35Cl and 37Cl) 428.0736 calcd for
C22H18Cl2N3O2+: 428.0742.

Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-(3-pyridine)-1,4,5,6-tetrahydropyridine-
3-carboxylate (4g) Yield: 0.67 g (62%); white solid; m.p. 200–203 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): δ = 8.81 (d, J = 8 Hz, 1H, Ar), 8.72 (dd, J = 4.8 Hz, J1 = 1.5 Hz, 1H, Ar),
8.56–8.53 (m, 2H, Ar), 8.03 (dt, J = 8 Hz, J1 = 1.7 Hz, 1H, Ar), 7.8 (s, 1H, NH), 7.68 (dt,
J = 8 Hz, J1 = 1.6 Hz, 1H, Ar), 7.6 (dd, J = 8 Hz, J1 = 4.8 Hz, 1H, Ar), 7.43 (dd, J = 8 Hz,
J1 = 4.8 Hz, 1H, Ar), 5.42 (s, 1H, CH), 4.95 (s, 1H, CH), 3.16 (s, 3H, OCH3), 2.36 (s, 3H,
CH3); 13C-NMR (DMSO-d6, 125.76 MHz): δ = 166.01, 153.02, 152.28, 149.94, 149.60, 149.48,
135.23 (s, 2C), 133.51, 129.22, 124.2, 123.55, 112.85, 113.30, 96.97, 59.70, 50.82, 48.51, 47.55,
20.58; IR (KBr): 3204, 2248, 1651, 1459, 1263 cm−1; HRMS (ESI) m/z [M + H]+ calcd for
C20H18N5O2+: 360.1455; found: 360.1456.

Ethyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-diphenyl-1,4,5,6-tetrahydropyridine-3-carbo
xylate (4h) Yield: 1.00Γ (90%); white solid; m.p. 200–202 ◦C; 1H-NMR (DMSO-d6, 500.13
MHz): δ = 7.72–7.31 (m, 11H, Ar + NH), 5.31 (s, 1H, CH), 4.86 (s 1HCH), 3.73–3.55 (m,
2H CH2), 2.36 (s, 3H, CH3), 0.57 (t, J = 7.12Hz, 3H, CH3); 13C-NMR (DMSO-d6, 75.47
MHz): δ =166.25, 154.33, 139.71, 134.84, 130.43, 129.06 (s, 2C), 128.82 (s, 2C), 128.63 (s, 2C),
128.33 (s, 3C), 114.44, 113.36, 94.9, 60.01, 58.61, 49.64, 48.2, 19.43, 13.79; IR (KBr): 3312, 2252,
1644, 1470, 1456, 1247 cm−1; HRMS (ESI) m/z [M + H]+ calcd for C23H22N3O2+: 372.1707;
found: 372.1700.

Ethyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(4-fluoro)phenyl-1,4,5,6-tetrahydropyrid
ine-3-carboxylate (4i) Yield: 0.84 g (69%); white solid; m.p. 154–156 ◦C; 1H-NMR (DMSO-



Molecules 2022, 27, 4367 12 of 18

d6, 300.13 MHz): δ = 7.72–7.61 (m, 2H, Ar), 7.55 (s, 1H, NH), 7.44–7.3 (m, 4H, Ar), 7.29–7.16
(m, 2H, Ar), 5.31 (s, 1H, CH), 4.85 (s, 1H, CH), 3.77–3.54 (m, 2H, CH2), 2.32 (s, 3H, CH3),
0.61 (t, J = 7.19 Hz, 3H, CH3); 13C-NMR (DMSO-d6, 75.47 MHz): δ = 166.09, 163.44 (s,
J1

C-F = 246.7 Hz, 1C), 162.24 (s, J1
C-F = 244.1Hz, 1C), 154.51, 135.08 (d, J4

C-F = 2.9Hz, 2C),
131.01 (d, J3

C-F = 8.7Hz, 2C), 130.05 (d, J3
C-F = 8.6Hz, 2C), 116.06 (d, J2

C-F = 21.8Hz, 2C),
115.54 (d, J2

C-F = 21.6Hz, 2C), 114.28, 113.23, 94,81, 59.16, 58.69, 48.74, 48.31, 19.47, 13.87;
IR (KBr): 3352, 2253, 1688, 1458, 1250, 1158 cm−1; HRMS (ESI) m/z [M + H]+ calcd for
C23H20F2N3O2+: 408.1518; found: 408.1512.

Ethyl (4SR, 6RS)-5,5-dicyano-2-methyl-4,6-bis(4-nitro)phenyl-1,4,5,6-tetrahydropyrid
ine-3-carboxylate (4j) Yield: 0.87Γ (63%); white solid; m.p. 242–243 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): δ = 8.43 (d, J = 8.66 Hz, 2H, Ar), 8.30 (d, J = 8.69 Hz, 2H, Ar), 7.92 (s, 1H, NH),
7.88 (d, J = 5.15 Hz, 2H, Ar), 7.61 (d, J = 8.31 Hz, 2H, Ar), 5.54 (s, H, CH), 5.09 (s, H, CH),
3.77–3.58 (m, 2H, OCH2), 0.62 (t, J = 7.07 Hz, 3H, CH3); 13C-NMR (DMSO-d6, 125.76 MHz):
δ = 165.68, 155.48, 149.13, 147.75, 147.29, 141.16, 130.40 (s, 2C), 124.29 (s, 4C), 124.07 (s, 2C),
113.62, 112.65, 94.04, 59.04, 58.95, 48.76, 46.99, 19.76, 13.94; IR (KBr): 3372, 2250, 1689, 1348,
1242 cm−1; HRMS (ESI) m/z [M + H]+ calcd for C23H20N5O6+: 462.1408; found: 462.1402.

Methyl (4SR,6RS)-5,5-dicyano-2-ethyl-4,6-diphenyl-1,4,5,6-tetrahydropyridine-3-carb
oxylate (4k) Yield: 1.00 g (90%); white solid; m.p. 115–117 ◦C. (lit. [47] m.p. 115–117 ◦C);
1H-NMR (CDCl3 400.16 MHz): δ = 7.69–7.31 (m, 10H, Ar), 4.78 (s, 1H, CH), 4.63 (s, 1H, CH),
4.54 (s, 1H, NH), 3.27 (s, 3H, OCH3), 2.94–2.67 (m, 2H, CH2),1.35 (t, J = 7.5 Hz, 3H, CH3).

Methyl (4SR,6RS)-5,5-dicyano-2-ethyl-4,6-bis(4-methyl)phenyl-1,4,5,6-tetrahydropyrid
ine-3-carboxylate (4l) Yield: 0.98 g (82%); white solid; m.p. 112–115 ◦C; 1H-NMR (CDCl3
300.13 MHz): δ = 7.53 (d, J = 8.1 Hz, 2H, Ar), 7.31 (d, J = 7.8 Hz, 4H, Ar), 7.17 (d, J = 8 Hz,
2H, Ar), 4.72 (s, 1H, CH), 4.58 (s, 1H, CH), 4.46 (s, 1H, NH), 3.30 (s, 3H, OCH3), 2.92–2.64
(m, 2H, CH2), 2.42 (s, 3H, CH3), 2.35 (s, 3H, CH3), 1.33 (t, J = 7.5 Hz, 3H, CH3); 13C-NMR
(DMSO-d6, 75.47 MHz): δ = 166.59, 157.37, 140.84, 138, 134.79, 130.75, 130 (s, 2C), 129.27 (s,
2C), 127.71 (s, 4C), 113.92, 111.94, 61.47, 50.64, 50.53, 48.34, 26.92, 21.28, 21.18, 13.38; IR (KBr):
3354, 2254, 1695, 1466, 1261 cm−1; HRMS (ESI) m/z [M + H]+ calcd for C25H26N3O2+:
400.2020; found: 400.2014.

Methyl (4SR,6RS)-5,5-dicyano-2-ethyl-4,6-bis(4-bromo)phenyl-1,4,5,6-tetrahydropyrid
ine-3-carboxylate (4m) Yield: 1.30 g (82%); white solid; m.p. 214–217 ◦C. (lit. [47] m.p.
214–217 ◦C); 1H-NMR (CDCl3 300.13 MHz): δ = 7.66 (d, J = 8.4 Hz, 2H, Ar), 7.54–7.49 (m,
4H, Ar), 7.3 (d, J = 8.4 Hz, 2H, Ar), 4.74 (s, 1H, CH), 4.59 (s, 1H, CH), 4.49 (s, 1H, NH), 3.33
(s, 3H, OCH3), 2.93–2.65 (m, 2H, CH2), 1.32 (t, J = 7.5 Hz, 3H, CH3).

Methyl (4SR, 6RS)-5,5-dicyano-2-ethyl-4,6-bis(4-nitro)phenyl-1,4,5,6-tetrahydropyrid
ine-3-carboxylate (4n) Yield: 0.80 g (58%); white solid; m.p. 243–248 ◦C; IR (KBr): 3387, 2250,
1685, 1484, 1349, 1256 cm−1; 1H-NMR (DMSO-d6, 300.13 MHz): δ = 8.44 (d, J = 8.7 Hz, 2H,
Ar), 8.3 (d, J = 8.8 Hz, 2H, Ar), 7.92 (s, 1H, NH), 7.9 (d, J = 8.9 Hz, 2H, Ar), 7.58 (d, J = 8.5 Hz,
2H, Ar), 5.52 (s, 1H, CH), 5.08 (s, 1H, CH), 3.16 (s, 3H, OCH3), 2.88–2.65 (m, 2H, CH2), 1.27
(t, J = 7.3Hz, 3H, CH3); 13C-NMR (DMSO-d6, 75.47 MHz): δ = 165.99, 161.28, 149.06, 147.65,
147.19, 141.04, 130.31 (s, 2C), 129.24 (s, 2C), 124.13 (s, 2C), 123.99 (s, 2C), 113.51, 112.45,
92.83, 58.88, 50.51, 48.47, 46.99, 26.19, 14.49; IR (KBr): 3387, 2250, 1685, 1484, 1349, 1256
cm−1; HRMS (ESI) m/z [M + H]+ calcd for C23H20N5O6+: 462.1408; found: 462.1401.

Methyl (4SR,6RS)-5,5-dicyano-2–4,6-triphenyl-1,4,5,6-tetrahydropyridine-3-carboxylate
(4o) Yield: 0.95 g (76%); white solid; m.p. 223–225 ◦C. (lit. [47] m.p. 223–225 ◦C); 1H-NMR
(CDCl3 300.13 MHz): δ = 7.73–7.33 (m, 15H, Ar), 4.98 (s, 1H, CH),4.78 (s, 1H, CH), 4.61 (s,
1H, NH), 3.15 (s, 3H, OCH3).

Methyl (4SR,6RS)-5,5-dicyano-2-phenyl-4,6-bis(3-fluoro)phenyl-1,4,5,6-tetrahydropyr
idine-3-carboxylate (4p) Yield: 0.69 g (52%); white solid; m.p. 191–193 ◦C; 1H-NMR
(CDCl3 300.13 MHz): δ = 7.55–7.19 (m, 12H, Ar), 7.1 (t, J = 8Hz, 1H, Ar), 4.96 (s, 1H, CH),
4.77 (s, 1H, CH), 4.62 (s, 1H, NH), 3.19 (s, 3H, OCH3); 13C-NMR (CDCl3, 125.76 MHz):
δ = 165.68, 162.93 (d, J1

C-F = 249.7Hz, 1C), 162.77 (d, J1
C-F = 247Hz, 1C), 154.36, 139.49

(d, J4
C-F = 7.1 Hz, 1C), 136.07, 135.28 (d, J4

C-F = 7.2 Hz, 1C), 131.27 (d, J3
C-F = 8.3 Hz, 1C),

130.34 (d, J3
C-F = 8.3 Hz, 1C), 129.99, 128.38 (s, 2C), 128.34 (s, 2C), 123.8 (d, J6

C-F = 3 Hz, 2C),
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118.08 (d, J2
C-F = 21 Hz, 1C), 115.88 (d, J2

C-F = 21.1 Hz, 1C), 115.25, 115.07, 113.21, 111.40,
98.68, 61.60, 50.80, 50.75, 47.64; IR(KBr): 3376, 2250, 1704, 1263, 1105 cm−1; HRMS (ESI) m/z
[M + H]+ calcd for C27H20F2N3O2+: 456.1518; found: 456.1507.

Ethyl (4SR,6RS)-5,5-dicyano-2-phenyl-4,6-diphenyl-1,4,5,6-tetrahydropyridine-3-carbo
xylate (4q) Yield: 0.75 g (58%); white solid; m.p. 118–121 ◦C; IR(KBr): 3385, 2240, 1699, 1466,
1260 cm−1; 1H-NMR (CDCl3 300.13 MHz): δ = 7.72–7.34 (m, 15H, Ar), 4.98 (s, 1H, CH), 4.79
(s, 1H, CH), 4.6 (s, 1H, NH), 3.75–3.56 (m, 2H, CH2), 0.6 (t, J = 7.1 Hz, 3H, CH3); 13C-NMR
(CDCl3, 75.47 MHz): δ = 165.37, 153.91, 137.29, 136.54, 133.33, 130.77, 129.66, 129.42 (s, 2C),
128.68 (s, 2C), 128.63, 128.51 (s, 2C), 128.24 (s, 4C), 127.93 (s, 2C), 113.66, 111.85, 99.18, 62.23,
59.53, 51.31, 48.17, 13.3; HRMS (ESI) m/z [M + H]+ calcd for C28H24N3O2+: 434.1863;
found: 434.1850.

Ethyl (4SR,6RS)-5,5-dicyano-2-phenyl-4,6-bis(4-methoxy)phenyl-1,4,5,6-tetrahydropyr
idine-3-carboxylate (4r) Yield: 0.65 g (44%); white solid; m.p. 177–179 ◦C; 1H-NMR (CDCl3
300.13 MHz): δ = 7.58 (d, J = 8.6 Hz, 2H, Ar), 7.53–7.42 (m, 7H, Ar), 7 (d, J = 8.6 Hz, 2H, Ar),
6.94 (d, J = 8.6 Hz, 2H, Ar), 4.92 (s, 1H, CH), 4.72 (s, 1H, CH), 4.52 (s, 1H, NH), 3.84 (s, 3H,
OCH3), 3.83 (s, 3H, OCH3), 3.72–3.59 (m, 2H, CH2), 0.64 (t, J = 7.1, 3H, CH3); 13C-NMR
(CDCl3, 75.47 MHz): δ = 165.53, 161.29, 159.74, 153.50, 136.69, 129.54, 129.28 (s, 2C),129.18,
129.15 (s, 2C), 128.44 (s, 2C), 128.19 (s, 2C), 125.35, 114.74 (s, 2C), 114.06 (s, 2C), 113.94,
112.12, 99.42, 61.70, 59.50, 55.38, 55.22, 50.66, 48.77, 13.39; IR (KBr): 3345, 2256, 1699, 1445,
1252 cm−1; HRMS (ESI) m/z [M + H]+ calcd for C30H28N3O4+: 494.2074; found: 494.2062.

Methyl (4SR,6RS)-5,5-dicyano-2-(4-bromo)phenyl-4,6-diphenyl-1,4,5,6-tetrahydropyri
dine-3-carboxylate (4s) Yield: 0.92 g (62%); white solid; m.p. 167–170 ◦C. (lit. [47] m.p.
167–170 ◦C); 1H-NMR (CDCl3 300.13 MHz): δ = 7.69–7.33 (m, 14H, Ar), 4.96 (s, 1H, CH),
4.75 (s, 1H, CH), 4.57 (s, 1H, NH), 3.17 (s, 3H, OCH3).

Methyl (4SR,6RS)-5,5-dicyano-2-(4-bromo)phenyl-4,6-bis(4-methyl)phenyl-1,4,5,6-tetr
ahydropyridine-3-carboxylate (4t) Yield: 1.18 g (75%); white solid; m.p. 131–134 ◦C; 1H-
NMR (CDCl3 300.13 MHz): δ = 7.59 (d, J = 8.2 Hz, 2H, Ar), 7.53 (d, J = 7.9 Hz, 2H, Ar),
7.42 (d, J = 6.3 Hz, 2H, Ar), 7,39 (d, J = 6.6 Hz, 2H, Ar), 7.3 (d, J = 9 Hz, 2H, Ar), 7.22 (d,
J = 7.8 Hz, 2H, Ar), 4.90 (s, 1H, CH), 4.70 (s, 1H, CH), 4.54 (s, 1H, NH), 3.18 (s, 3H, OCH3),
2.41 (s, 3H, CH3), 2.38 (s, 3H, CH3); 13C-NMR (DMSO-d6, 75.47 MHz): δ =165.99, 154.72,
135.77, 136.24, 137.72, 139.86, 131.48 (s, 2C), 130.98 (s, 2C), 129.4 (s, 2C), 129.34 (s, 2C), 128.83
(c, 2C),128.13 (c, 3C), 122.64, 114.51, 113.34, 97.06, 60.43, 50.46, 49.47, 48.82, 21.26, 21.2; IR
(KBr): 3484, 2255, 1690, 1433, 1262, 726 cm−1; HRMS (ESI) m/z [M + H]+ (for 79Br) 526.1128
calcd for C29H25BrN3O2+: 526.1125.

5-ethyl 3-methyl (4RS,5SR,6RS)-5-cyano-2-(4-bromo)phenyl-4,6-bis(4-bromo)phenyl-
1,4,5,6-tetrahydropyridine-5,3-carboxylate (5a) Yield: 0.77 g (36%); white solid; m.p.
221–223 ◦C; 1H-NMR (CDCl3 300.13 MHz): δ = 7.62–7.18 (m, 12H, Ar), 4.87 (s, 1H, CH),
4.82 (s, 1H, CH),4.5 (s, 1H, NH), 3.93 (q, J = 7 Hz, 2H, OCH2), 3.17 (s, 3H, OCH3), 0.89
(t, J = 7,1 Hz, 3H, CH3); 13C-NMR (CDCl3, 75.47 MHz): δ = 166.14, 166.09, 152.55, 137.52,
135.69, 133.13, 132.33 (s, 2C),131.71, 131.59 (s, 2C), 131.44 (s, 2C), 130.14 (s, 2C), 129.46 (s, 2C),
129.34, 124.35, 123.86, 121.8, 114.87, 100.12, 63.14, 61.31, 57.65, 50.63, 49.16, 13.6; IR(KBr):
3334, 2247, 1737, 1259, 501 cm−1; HRMS (ESI) m/z [M + H]+ (for 79Br) 700.9281 calcd for
C29H24Br3N2O4+: 700.9276.

5-ethyl 3-methyl (4RS,5SR,6RS)-5-cyano-2-(4-chloro)phenyl-4,6-bis(4-bromo)phenyl-
1,4,5,6-tetrahydropyridine-5,3-carboxylate (5b) Yield: 0.61 g (33%); white solid; m.p.
205–208 ◦C; IR (KBr): 3333, 2247, 1739, 1259, 810, 500 cm−1; 1H-NMR (CDCl3 300.13MHz):
δ = 7.59–7.21 (m, 12H, Ar), 4.87 (s, 1H, CH), 4.83 (s, 1H, CH), 4.48 (s, 1H, NH), 3.93 (q,
J = 7 Hz, 2H, OCH2), 3.17 (s, 3H, OCH3), 0.89 (t, J = 7,1 Hz, 3H, CH3); 13C-NMR (CDCl3,
75.47 MHz): δ = 166.17, 166.1, 152.56, 137.55, 135.65, 135.18, 133.14, 132.34 (s, 2C), 131.6 (s,
2C), 129.91 (s, 2C), 129.47 (s, 2C), 129.33 (s, 2C), 128.48 (s, 2C), 124.35, 121.8, 114.89, 100.1,
63.15, 61.30, 57.67, 50.63, 49.15, 13.61; IR (KBr): 3333, 2247, 1739, 1259, 810, 500 cm−1; HRMS
(ESI) m/z [M + H]+ (for 35Cl and 79Br) 656.9786 calcd for C29H24Br2ClN2O4+: 656.9776.
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3.5. Synthesis of 6

A mixture of aldehyde 1 (6 mmol), malononitril 2a (3 mmol), ester of 3-oxocarboxylic
acid 3 (3 mmol) and ammonium acetate (6 mmol) was stirred in methanol (7 mL) at rt for
40 min. The precipitate was collected by filtration and dried to obtain piperidine 6.

Ethyl (2SR,3RS,4SR,6RS)-5,5-dicyano-2-phenyl-2-hydroxy-4,6-diphenyl-piperidine-3-
carboxylate (6a) Yield: 0.97 g (72%); white solid; m.p. 135–137 ◦C; 1H-NMR (DMSO-d6,
300.13 MHz): 7.72 (d, J = 7.2 Hz, 4H, Ar), 7.5–7.3 (m, 11H, Ar), 6.01 (s, OH), 5.14 (s, H, CH),
4.39 (d, J = 12.4 Hz, H, CH), 3.58 (s, NH), 3.52 (q, J = 7.1 Hz, 2H, CH2), 3.45 (d, J = 12.4 Hz,
H, CH), 0.56 (t, J = 7.1 Hz, 3H, CH3); 13C-NMR (DMSO-d6, 75.47MHz): 168.2, 144.7, 136.9,
136.2, 130.06, 129.3, 129.04 (s, 4C), 128.9 (s, 4C), 128.4, 128.3 (s, 2C), 126.5 (s, 2C), 114.1, 113.5,
84.4, 60.12, 59.5, 54.7, 49.2, 46.7, 13.7; IR (υmax) (KBr), ν/cm−1: 3503, 3317, 1711, 703 cm−1;
HRMS (ESI) m/z [M + H]+ 452.1969 calcd for C28H26N3O3+: 452.1977.

Ethyl (2SR,3RS,4SR,6RS)-5,5-dicyano-2-phenyl-2-hydroxy-4,6-bis(4-methyl)phenyl-
piperidine-3-carboxylate (6b) Yield: 0.88 g (61%); white solid; m.p. 130–132 ◦C; 1H-NMR
(DMSO-d6, 300.13 MHz): 7.71 (d, J = 7.1 Hz, 2H, Ar), 7.59 (d, J = 8.1 Hz, 2H, Ar), 7.45–7.24
(m, 7H, Ar), 7.19 (d, J = 8.1 Hz, 2H, Ar), 6 (s, OH), 5.06 (s, H, CH), 4.31 (d, J = 12.4 Hz, H,
CH), 3.51 (q, J = 7.1 Hz, 2H, CH2), 3.47 (s, NH), 3.41 (d, J = 12.4 Hz, H, CH), 2.31 (s, 3H,
CH3), 2.28 (s, 3H, CH3), 0.58 (t, J = 7.1 Hz, 3H, CH3); 13C-NMR (DMSO-d6, 75.47MHz):
168.2, 144.8, 139.5, 138.6, 134, 133.3, 129.6 (s, 2C), 129.4 (s, 2C), 128.9 (s, 2C), 128.7 (s, 2C),
128.4, 128.3 (s, 2C), 126.5 (s, 2C), 114.2, 113.5, 84.4, 60.1, 59.2, 54.7, 49.5, 46.3, 21.3, 21.1, 13.7;
IR (υmax) (KBr), ν/cm−1: 3498, 3320, 2224, 1713, 702 cm−1; HRMS (ESI) m/z [M + H]+
480.2293 calcd for C30H30N3O3+: 480.2282.

Ethyl (2SR,3RS,4SR,6RS)-5,5-dicyano-2-phenyl-2-hydroxy-4,6-bis(4-chloro)phenyl-pip
eridine-3-carboxylate (6c) Yield: 0.87 g (56%); white solid; m.p. 126–128 ◦C; 1H-NMR
(DMSO-d6, 300.13 MHz): δ = 7.72 (d, J = 8.6 Hz, 2H, Ar), 7.73–7.69 (m, 2H, Ar), 7.56 (d,
J = 8.5 Hz, 2H, Ar), 7.48 (d, J = 2.4 Hz, 3H, Ar), 7.52–7.31 (m, 4H, Ar), 6.07 (s, OH), 5.17 (s, H,
CH), 4.46 (d, J = 12.4 Hz, H, CH), 3.75 (s, NH), 3.54 (q, J = 7.1 Hz, 2H, CH2), 3.42 (d, J = 12.3
Hz, H, CH), 0.59 (t, J = 7.1 Hz, 3H, CH3); 13C-NMR (DMSO-d6, 75.47 MHz): δ = 168, 144.5,
135.75, 135.27, 134.7, 134.1, 131.95 (s, 2C), 130.7 (s, 2C), 129.2 (s, 2C), 128.96 (s, 2C), 128.4,
128.3 (s, 2C), 126.6 (s, 2C), 113.8, 113.2, 84.5, 60.3, 58.7, 54.6, 48.98, 45.75, 13.7; IR (υmax)
(KBr), ν/cm−1: 3501, 3317, 1711, 1494, 705 cm−1; HRMS (ESI) m/z [M + H]+ 520.1189 calcd
for C28H24Cl2N3O3+: found: 520.1177.

Methyl (2SR,3RS,4SR,6RS)-5,5-dicyano-2-(4-bromo)phenyl-2-hydroxy-4,6-bis(4-methy
l)phenyl-piperidine-3-carboxylate (6d) Yield: 1.42 g (87%); white solid; m.p. 144–146 ◦C;
1H-NMR (DMSO-d6, 300.13 MHz): δ = 7.56–7.7 (m, 4H, Ar), 7.58 (d, J = 8.1 Hz, 2H, Ar),
7.33–7.24 (m, 4H, Ar), 7.19 (d, J = 7.9 Hz, 2H, Ar), 6.15 (s, OH), 5.04 (s, H, CH), 4.32 (d,
J = 12.4 Hz, 1H, CH), 3.63 (s, NH), 3.4 (d, J = 12.4Hz, H, CH), 3.09 (s, 3H, OCH3), 2.33 (s,
3H, CH3), 2.28 (s, 3H, CH3); 13C-NMR (DMSO-d6, 75.47 MHz): δ = 168.59, 144.36, 139.5,
138.67, 133.88, 133.22, 131.21 (s, 2C), 129.67 (s, 2C), 129.4 (s, 2C), 128.80 (s, 4C), 128.67 (s,
2C), 121.75, 114.15, 113.44, 84.20, 59.1, 54.6, 51.56, 49.4, 46.2, 21.26, 21.1; IR (υmax) (KBr),
ν/cm−1: 3490, 3316, 2250, 1715, 512 cm−1; HRMS (ESI) m/z [M + H]+ (for 79Br) 544.1230
calcd for C29H27BrN3O3+: 544.1217.

3.6. Synthesis of 7

(2SR,3RS,4SR,6RS)-5,5-dicyano-2-(4-bromo)phenyl-2-hydroxy-4,6-bis(4-methyl)phenyl-
piperidine-3-carboxylate 6d (1 mmol) and acetic acid (2 mmol) were refluxed in methanol
(8 mL) for 2 h. The mixture was maintained at –10 ◦C for 30 min for the complete pre-
cipitation of the product. The precipitate was collected by filtration and dried to obtain
pure 7.

Methyl (3RS,4SR,6RS)-5,5-dicyano-2-(4-bromo)phenyl-4,6-bis(4-methyl)phenyl-3,4,5,6-
tetrahydropyridine-3-carboxylate (7) Yield: 0.18 g (90%); white solid; m.p. 235–237 ◦C;
1H-NMR (DMSO-d6, 300.13 MHz): δ = 7.86 (d, J = 8.6 Hz, 2H, Ar), 7.69 (d, J = 8.6 Hz, 2H,
Ar), 7.54 (d, J = 8.1 Hz, 2H, Ar), 7.35–7.25 (m, 6H, Ar), 6.03 (d, J = 3 Hz, H, CH), 5 (dd,
J1 = 11.2 Hz, J2 = 3 Hz, H, CH), 4.4 (d, J = 11.2 Hz, H, CH), 3.32 (s, 3H, OCH3), 2.35 (s, 6H,
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2CH3); 13C-NMR (DMSO-d6, 75.47 MHz): δ = 169.97, 163.36, 139.4, 138.8, 136.74, 134.66,
131.96 (s, 2C), 131.93, 130.03 (s, 2C), 129.5 (s, 2C), 129.37 (s, 2C), 129.04 (s, 2C),128.72 (s,
2C), 125.20, 113.91, 112.69, 65.78, 53.25, 48.18, 47.16, 45.37, 21.22 (s, 2C); IR (υmax) (KBr),
ν/cm−1: 2952, 2252, 1742, 1636, 1259, 500; HRMS (ESI) m/z [M + H]+ (for 79Br) 526.1125
calcd for C29H27BrN3O3+: 526.1118.

3.7. Synthesis of 8

4-flurobenzaldehyde 1h (6 mmol), ethyl cyanoacetate 2b (3 mmol), methyl 3-(4-
bromophenyl)-3-oxopropanoate 3f (3 mmol) and ammonium acetate (6 mmol) in methanol
(10 mL) were stirred at rt for 3 days. The solvent was evaporated under reduced pressure.
Compound 8 was purified by column chromatography (eluent hexane/ethyl acetate = 3/1).

5-ethyl 3-methyl (3SR,4RS,5SR,6SR)-6-(4-bromophenyl)-3-cyano-2,4-bis(4-fluoropheny
l)-3,4,5,6-tetrahydropyridine-3,5-dicarboxylate (8) Yield: 0.42 Γ (24%); white solid; m.p.
183–185 ◦C; 1H-NMR (DMSO-d6, 300.13 MHz): δ = 7.78 (d, J = 8.6 Hz, 2H, Ar), 7.67 (d,
J = 8.6 Hz, 2H, Ar), 7.45–7.18 (m, 8H, Ar), 5.92 (d, J = 2.8 Hz, H, CH), 4.85 (dd, J1 = 11.2 Hz,
J2 = 2.8 Hz, H, CH), 4.2 (d, J = 11.2 Hz, H, CH), 3.9 (q, J = 7.2 Hz, 2H, CH2), 3.32 (s, 3H,
OCH3), 0.88 (t, J = 7.1 Hz, 3H, CH3); 13C-NMR (DMSO-d6, 75.47 MHz): δ = 170.88, 165.02,
162.84, 162.67 (d, J1

C-F = 245.5 Hz, 2C), 162.38 (d, J1
C-F = 245.5 Hz, 2C), 137.35, 134.77 (d,

J4
C-F = 2.9 Hz, 2C), 132.16 (d, J4

C-F = 2.9 Hz, 2C), 131.96 (s, 2C), 131.23 (d, J3
C-F = 8.5 Hz, 2C),

130.61 (d, J3
C-F = 8.5 Hz, 2C), 129.15 (s, 2C), 124.65, 117.61, 116.3 (d, J2

C-F = 21.5 Hz, 2C),
115.49 (d, J2

C-F = 21.5 Hz, 2C), 65.85, 63.12, 54.01, 53.01, 48.26, 47.13, 13.81; IR (υmax) (KBr),
ν/cm−1: 2250, 1734, 1230, 1009, 517 cm−1; HRMS (ESI) m/z [M + H]+ (for 79Br) 581.0884
calcd for C29H23BrF2N2O4

+: 581.0882.

4. Conclusions

We developed a one-pot pseudo-five-component stereoselective synthesis of substituted
1,4,5,6-tetrahydropyridine, utilizing aldehydes (both with electron-withdrawing and electron-
donating substituents), malononitrile or ethylcyanoacetate, esters of 3-oxocarboxylic acids
and ammonium acetate, which played a dual role, acting as a base and as a nitrogen
source for six-membered nitrogen-containing rings. Five bonds were formed as a result of
the multicomponent process. Our method allows to obtain 2-substituted alkyl (4SR,6RS)-
4,6-diaryl-5,5-dicyano-1,4,5,6-tetrahydropyridine-3-carboxylates with two stereogenic cen-
ters and 3,5-dialkyl (4RS, 5SR,6RS)-5-cyano-2,4,6-triaryl-1,4,5,6-tetrahydropyridine-5,3-
carboxylates with three stereocenters. We established the formation mechanism of 1,4,5,6-
tetrahydropyridines. These compounds were formed in a sequence of fast and slow
reactions, including Knoevenagel condensation, Michael addition, Mannich reaction, in-
tramolecular cyclization, dehydration and isomerization. The polysubstituted (4RS,6SR)-
1,4,5,6-tetrahydropyridine was found to be more stable than the isomeric intermediate
(3RS,4SR,6RS)-3,4,5,6-tetrahydropyridine. The conditions of all intermediates selective
preparations were specified.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27144367/s1, Pages S2–S28: 1H and 13C NMR spectra of compounds 4–8; Pages
S29–S32: 2D spectra of compounds 6d, 7; Pages S33–S37: DFT calculations.
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