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ABSTRACT
Brucellosis caused by Brucella melitensis is considered to be one of the most important zoonotic diseases in China. In this
study, Conventional bio-typing, MLVA (multiple locus variable-number tandem repeat analysis), and WGS (whole-genome
sequencing)-SNP (single nucleotide polymorphism) were used to study the genetic similarity of B. melitensis in northern
and southern China and analyze its relationship with worldwide lineages. Currently, the distribution of species/biovars of
B. melitensis has obviously changed, and B. melitensis has become the dominant species in southern regions of China.
Strains from the southern had a common geographic origin with strains from the northern. Many MLVA-16 events
were shared in the genotypes of the southern and northern strains, suggest that genotypic movement occurred from
north to south. Based on WGS-SNP analysis, strains from different provinces were closely related and may have
descended from one common ancestor, suggests that the southern strains originated from northern China. These data
indicate that B. melitensis is a latent “travel bacterium” that spread and expanded from North China to South China.
Moreover, B. melitensis strains from China are also genetically related to strains from other Asian regions (Kazakhstan,
Russia, Mongolia, and India). The movement of infected sheep and their products requires control.

Abbreviations: MLVA: multiple locus variable-number tandem repeat analysis; WGS: whole genome sequencing; SNP:
single nucleotide polymorphism; MST: minimum spanning tree
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Introduction

Brucellosis, a common zoonotic disease globally, is
caused by bacteria of the genus Brucella [1], which
are nonmotile, gram-negative α-proteobacteria that
are facultative intracellular pathogens [2]. Human bru-
cellosis is largely dependent on animal reservoirs and
through direct contact with infected animals or con-
sumption of contaminated animal products [3]. At pre-
sent, Brucella. melitensis, Brucella. abortus, and
Brucella. suis remain the main causes for human and
animal brucellosis worldwide [4]. Chronic infections
with severe complications in humans are a major pub-
lic health problem [5,6]. The brucellosis epidemiologi-
cal situation remains complex, and there are serious
epidemics in many low-income countries, including
in the Mediterranean region, South and Central

America, Africa, Asia, the Arabian Peninsula, the
Indian subcontinent, Eastern Europe, the Middle
East, and China [7]. Despite its low mortality rates,
brucellosis is a very important public health problem
in rural and pasturing areas in China [8]. Brucellosis
has reemerged since 1995, and human brucellosis has
been reported in all mainland provinces, a total of
513,034 brucellosis cases were recorded from 1955 to
2014, of which 99.3% were in northern China [9]. Ani-
mal husbandry suffers great economic losses from bru-
cellosis due to reduced productivity, the culling of
livestock, and costs of associated control measures
[10,11]. The incidence of human brucellosis in
southern China increased in 2005 and 2014 and the
affected area expanded from northern to southern
coastal and southwestern areas [9,12]. B. melitensis is
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responsible for the vast majority of brucellosis in
humans and animals in China [13], but the genetic
relatedness of B. melitensis within China and its
relationship to strains in other world areas is unknown.
Investigation of species and genotype distributions,
genetic relatedness, and molecular epidemiology of
the main circulating strains is essential for understand-
ing the epidemiology of human brucellosis, managing
disease outbreaks and for establishing efficient preven-
tion and control programmes [14].

Multiple-locus variable-number tandem-repeat
analysis (MLVA) has high power to discriminate clo-
sely related strains and can be used for tracing infec-
tions [15], achieves result largely in agreement with
WGS-SNP-based typing [16]. In addition, its low cost
and fast results allow its use as a routine first-line
assay [17]. Ma et al. [18] reported that the Brucella
strain in Qinghai was different from strains in other
regions of the world, possibly owing to the unique
geography, such as the high altitude, of the QTP.
Extensive genotype-sharing events between isolates
obtained from humans and animals showed that
yaks, sheep, and blue sheep were important zoonotic
reservoirs of brucellosis that caused human infections.
Liu et al. [13] reported that human brucellosis in Ulan-
qab, Inner Mongolia (China) occurred as a multipoint
outbreak epidemic caused by multiple common
sources of infection. Many shared MLVA-16 genotypes
were observed among isolates from different regions of
Ulanqab and from other provinces of China. This
suggests that infected animal movement between
different regions is not controlled. Consequently, an
investigation of the genetic relatedness, molecular epi-
demiology, and potential transmission route of
B. melitensis from humans and animals over the
whole country is needed. The purpose of this study
was to determine the distribution profiles, genetic relat-
edness, and potential transmission pattern of 1,382
B. melitensis collected from 29 different regions from
humans and animals at the whole-country scale.

Materials and methods

Ethics statement

This study was carried out according to the principles
of the Declaration of Helsinki. This study is a retro-
spective investigation of historical strain collections
using molecular typing methods, and the research pro-
tocol was approved by the Ethics Committees of the
National Institute for Communicable Disease Control
and Prevention and the Chinese Center for Disease
Control and Prevention. All strains from humans
were collected as a part of a standard clinical investi-
gation of patients with suspected brucellosis. The
patients were anonymized. All strains from animals
were obtained during related research on animal

brucellosis. The majority Brucella strains (human and
animals) used in this study were collected from pub-
lished academic articles found on PubMed and Chinese
life science databases (e.g. WanFang data and CNKI)
and MLVA bank (http://microbesgenotyping.i2bc.
paris-saclay.fr/databases).

Clinical strains characterization

A total of 1382 B. melitensis (385 in animals and 997 in
humans) were collected from patients and animals
from 1955 to 2018 in 29 provinces of China. Fewer
B. melitensis strains from Anhui Provinces and Tibet
have been reported but MLVA genotyping of these
strains has not yet completed. Because of this, strains
from these regions were excluded from this study. All
strains were isolated and identified according to stan-
dard bacteriology approaches [19]. Biotypes were
assigned by conventional identification methods, and
all strains were gram negative, agglutinated with poly-
valent brucellosis serum, had oxidase and catalase
activity, did not produce H2S, synthesized urease, and
were capable of growing in atmospheric conditions.
Both AMOS-PCR [20] and ladder PCR [4] were
applied to verify the results from bio-typing assays.

DNA preparation, genotyping, and data
analysis

Bacterial cultures were scrapped from the surfaces of
solid agar medium. DNA was isolated using the
QIAamp DNA Mini Kit (Qiagen, United States)
according to the manufacturer’s instructions. The
MLVA-16 assay was performed as previously described
[21,22]. Briefly, 16 loci were divided into three panels:
panel 1 (also called MLVA8), panel 2A, and panel 2B.
The combination of panels MLVA8 and 2A was called
MLVA11, while the combination of all three panels (16
loci) was designated MLVA16. The MLVA11 panel
allows for tracing the geographic origin of strains ana-
lyzed, while the panel 2B loci are highly discriminatory
and their combination with MLVA11 was used in
tracking local outbreaks. PCR was used to determine
the number of repeats from a sample, and its products
were purified and directly sequenced using an ABI
Prism Big Dye Terminator. Size analysis of VNTR
repeats was performed using GeneMapper 4.1 (Applied
Biosystems). Dendrograms from strains analyzed
(Table S1) were constructed using BioNumerics 5.0
(Applied Maths, Sint-Martens-Latem, Belgium) based
on the categorical coefficient and unweighted pair
group method using arithmetic averages (UPGMA).
Minimum spanning trees (MST) were constructed
based on MLVA-11 (Table S2) and MLVA-16 (Table
S3) data using BioNumerics 7.6 to investigate the geo-
graphic origin and genetic relatedness of strains. Phylo-
genetic analysis of representative strains (Table S4) was
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performed based on WGS-SNP using the maximum
parsimony method [17], B. abortus bv.1 str. 9–941
used as the outgroup strain. Microsoft Excel 2016
(Microsoft, Redmond, WA, USA) was used for data
processing, and ArcGis 10.5 (ESRI, Redlands, CA,
USA) was applied to display analysis results.

Results

Distribution characteristics of species biotypes
of Chinese B. melitensis strains

A total of 1382 B. melitensis strains were collected from
29 provinces (including autonomous regions and
cities); with the exceptions of Tibet and Anhui, all
mainland provinces had obtained B. melitensis strains.
Among them, 977 were obtained from human blood
samples and 385 strains were recovered from animal
samples: 291 in Inner Mongolia, 200 in Guangdong,
165 in Liaoning, 113 in Xinjiang, 107 in Shanxi, 91 in
Qinghai, 54 in Shandong, 52 in Ningxia, and other
regions contained 3–44 strains as shown in Table 1.
A total of 35.5% of the strains were from Inner Mongo-
lia and Guangdong Provinces; the former is a historical
area for brucellosis, and the latter is an emerging region
for brucellosis. 1382 B. melitensis samples were divided
into four distinct epidemic areas: seven provinces in
which all three B. melitensis biovars (1, 2, and 3)
were collected (I); six provinces in which B. melitensis
biovars bv. 1 and 3 were found (II); six provinces in
which B. melitensis bv. 2 and 3 were found (III); and
ten provinces in which B. melitensis bv. 3 was obtained

(IV) (Figure 1). B. melitensis strains were found in 14
provinces in China before 2000, while strains were
found in 29 provinces in 2018 (Figure 1). These data
demonstrated that B. melitensis has expanded its distri-
bution to all of mainland China.

Geographic origins of Chinese B. melitensis
strains based on MLVA-11

1382 B. melitensis strains yielded 71 MLVA-11 geno-
types, including 53 new MLVA-11 genotypes and 18
known genotypes, of which 69 belonged to the East
Mediterranean lineage, and two new (N50 and N20)
genotypes were of the Americas lineage (Figure 2).
Seven MLVA-11 genotypes (116, 111,108, 297, N11,
N24, and N3) made up the predominant circulating
genotypes, of which 69% (951/1382) were genotype
116, which was shared by strains from 28 different pro-
vinces in northern and southern China (S. Figure 1).
These southern provinces had fewer B. melitensis
before 2000 (S. Figure 1), suggesting that there has
been continuous expansion from northern to southern
regions. These dominant MLVA-11 genotypes were
shared by strains from 5 to 28 distinct provinces (S.
Figure 2), of which 89 strains were MLVA-11 genotype
111, accounting for 6.4% (89/1382) and distributed in
eleven provinces; 76 strains were MLVA-11 genotype
108, accounting for 5.5% (76/1382) and distributed in
seven regions; 39 strains were MLVA-11 genotype
297, accounting for 2.8% (39/1382) and shared by
strains from ten provinces; 20 strains were MLVA-11
genotype 120, accounting for 1.4% (20/1382) and

Table 1. Location, numbers, percentages (%), species, and hosts of 1382 B. melitensis isolates in 29 provinces.
Province No. % Species-biovar Host

Hubei 3 0.22 B. melitensis bv. 3 Human
Tianjin 3 0.22 B. melitensis bv. 3 Human
Beijing 4 0.29 B. melitensis bv. 1, 3 Human
Shanghai 4 0.29 B. melitensis bv. 2, 3 Human, Sheep, Cattle
Chongqing 4 0.29 B. melitensis bv.2, 3 Human, Sheep
Guizhou 5 0.36 B. melitensis bv. 3 Human, Goat
Hunan 5 0.36 B. melitensis bv. 1, 3 Human
Sichuan 7 0.51 B. melitensis bv. 3 Human Sheep, Cattle, Yak
Heilongjiang 8 0.58 B. melitensis bv. 3 Human, Sheep
Jilin 8 0.58 B. melitensis bv. 1, 2, 3 Human, Sheep, Cattle, Deer
Henan 12 0.87 B. melitensis bv. 2, 3 Human, Sheep
Jiangxi 14 1.01 B. melitensis bv. 1, 3 Human
Jiangsu 17 1.23 B. melitensis bv. 3 Human
Fujian 18 1.30 B. melitensis bv. 1, 2, 3 Human
Hebei 19 1.37 B. melitensis bv. 3 Human, Sheep
Yunnan 20 1.45 B. melitensis bv. 3 Human
Guangxi 22 1.59 B. melitensis bv. 3 Human
Gansu 26 1.88 B. melitensis bv. 1, 3 Sheep
Shaanxi 28 2.03 B. melitensis bv. 1, 2, 3 Human
Zhejiang 38 2.75 B. melitensis bv. 3 Human, Goat
Hainan 44 3.18 B. melitensis bv. 1, 2, 3 Human, Sheep
Ningxia 52 3.76 B. melitensis bv. 2, 3 Human, Sheep, Goat
Shandong 54 3.91 B. melitensis bv. 1, 2, 3 Human, Sheep
Qinghai 91 6.58 B. melitensis bv. 2, 3 Human, Sheep, Cattle, Blue sheep, Yak,

Pseudois nayaur, Tibetan gazelle
Shanxi 107 7.74 B. melitensis bv. 2, 3 Human, Sheep, Cattle
Xinjiang 113 8.18 B. melitensis bv. 1, 2, 3 Human, Sheep, Cattle, Goat, Yak
Liaoning 165 11.94 B. melitensis bv. 1, 3 Human
Guangdong 200 14.47 B. melitensis bv. 1, 3 Human
Inner Mongolia 291 21.06 B. melitensis bv. 1, 2, 3 Human, Sheep, Cattle, Camel
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shared by strains from five regions, dominating in
southern regions including Fujian, Hainan, Yunnan,
and Guangxi provinces. The distributed range in the
remaining genotypes was limited. All predominant
MLVA-11 genotypes were shared by strains from

different epidemic periods of brucellosis, including
1950–1970, 1980–2000, and 2001–2018 (S. Figure 3).
Moreover, 14 circulating MLVA-11 genotypes were
also shared by strains from north and south China
(S. Figure 4).

Figure 1. Geographic distribution of B. melitensis samples in China.
Note: the map of this study does not represent the true borders of administrative regions of China.

Figure 2. Minimum spanning tree for B. melitensis using MLVA-11 data with Chinese isolates (red) and East Mediterranean isolates
(blue).
Note: numbers in lines show the values of locus variants and numbers in nodes represent MLVA-11 genotypes.

Emerging Microbes & Infections 1621



Epidemiological characteristics of animal and
human brucellosis

Based on the MLVA-16 genotype, 385 animal
B. melitensis strains were sorted into 157 genotypes,
of which 91 were shared genotypes in that each geno-
type present in 2–17 strains, and the cluster rate of
strains was 82.3% (317/385). Among the 91 shared
genotypes, 24 shared genotypes were present in 103
strains from two to four different provinces (S. Figure
5) (Table S5), accounting for 32.5% (103/317); the
other shared genotypes were all from strains from the
same provinces. A total of 977 human B. melitensis
strains were divided into 391 MLVA-16 genotypes, of
which 158 shared genotypes were present in 744
strains, and the cluster rate of these strains was 76.2%
(744/977); 88 genotypes were in 268 strains from two
to eight different provinces (Table S5), accounting for
36.0% (268/744); and the remaining 233 strains rep-
resented single genotypes, with each being an indepen-
dent strain, accounting for 24% (233/977). The strains
from the southern provinces had more similar MLVA-
16 genotypes with strains from northern regions, the
latter being a historical area of animal and human

brucellosis (Figure 3). In particular, three shared geno-
types were present in strains from both southern and
northern provinces, including Jilin, Qinghai, Guang-
dong, Inner Mongolia, Guangxi, Fujian, Liaoning,
and Shaanxi; Inner Mongolia, Qinghai, Henan, Guang-
dong, Shanxi, Shaanxi, and Guangxi; and Inner Mon-
golia, Jilin, Shanxi, Liaoning, Shandong, Guangdong,
and Hainan (S. Figure 6). The other 70 shared geno-
types were present in strains from the same provinces,
accounting for 64% (476/744). Meanwhile, completely
identical MLVA-16 genotypes were shared by strains
from the three different epidemic periods (S. Figure
7). Moreover, many shared genotypes were observed
among strains from livestock, humans, and wild ani-
mals (S. Figure 8).

Genetic relatedness of B. melitensis strains on a
global scale

To reveal the genetic links of Chinese strains with those
in the rest of the world, the genetic relatedness among
3480 B. melitensis strains on a global level were com-
pared using MST based on MLVA-16 data. MST

Figure 3. Transmission pattern of B. melitensis isolates from humans.
Note: the map of this study does not represent the true borders of administrative regions of China.
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analysis showed that these strains sort into three
groups (G I ∼ III) (Figure 4). Many shared genotypes
were observed in strains from this study with strains
from Kazakhstan, Turkey, and Mongolia (Figure 4, G
I); these regions are important states along the silk
road with close geographies. However, there were sig-
nificant genetic differences between strains from
China and Italy, France, and Peru (Figure 4, G II and
III). Phylogenetic analysis of strains was performed
based on WGS-SNP of 74 B. melitensis strains from
NCBI GenBank. Phylogenetic analysis based on
whole-genome SNPs and geographical distribution of
the isolates revealed spatial clustering of the
B. melitensis isolates were divided into five clades (A-
E) (Figure 5). The Mediterranean strains, identified
as clade A, occupied the basal node of the phylogenetic
tree. The majority of the Chinese B. melitensis strains
clustered into clade E and represented the Asia lineage
(Figure 5). Strains obtained from southern and central
regions had close relationships with strains from
northern regions, China, including the Inner Mongo-
lian Autonomous Region, Xinjiang, and Shandong
Provinces (Figure 5 C (I), D (I and II), E (I - V)),
which are ongoing epidemic regions of animal and
human brucellosis. However, B. melitensis strains
from Chinese provinces had a close genetic relation-
ship to strains from other Asian regions including

Russia, India, and Georgia, which are traditional epi-
demic regions of brucellosis (Figure 5(C and D)).

Discussion

Brucellosis is the most common zoonotic disease and it
is mainly caused by B. melitensis infection (biovars 1
and 3). Brucellosis poses a threat to both animals and
humans [23]. A previous study showed that 84.5% of
the Brucella strains isolated from humans with brucel-
losis in China were B. melitensis [24]. B. melitensis
strains are now widely distributed throughout China
and the distribution of pathogenic species of brucellosis
in China has obviously changed. Since the 1950s,
B. melitensis was most common in the grassland
areas of northern China, where sheep and goats are
the main livestock [24]. B. melitensis strains were
found in 14 provinces in China before 2000. Now,
B. melitensis strains occur in 29 provinces (auton-
omous regions and cities) and B. melitensis is the domi-
nant circulating species in southern regions of
China [25,26]. This supports our hypothesis that
B. melitensis has spread and expanded from northern
to southern China. Brucellosis occurred earlier in the
north than in the south and due to the introduction
of northern sheep and other species, human brucellosis
is increasing in the southern provinces [12]. Since

Figure 4. Minimum spanning tree (MST) was constructed using MLVA-16 data on a global scale.
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2010, human brucellosis has occurred or reappeared in
all provinces in southern China [27]. These data
confirm that the geographic distribution of the disease
has also evolved, with the movement of B. melitensis
strains to the south.

In this study, 69% (951/1382) of the strains were
genotype 116 and belonged to the East Mediterranean
lineage. Genotype 116 is shared by strains from 28
different provinces in northern and southern China,
revealing that these strains had a common geographic
origin. Genotype 116 is responsible for the vast
majority of Brucella infections in humans and animals

[28] and is predominant in many countries, accounting
for more than 77% of cases in Portugal and Kazakh-
stan, 37% in Spain, 16% in Turkey, and 10% in France
[29]. Many shared MLVA-16 genotypes were observed
among strains from northern and southern regions,
and three brucellosis epidemic periods. This finding
coincides with species distributions and geographic
origin profiles of strains in this study. These data
suggest that B. melitensis spreads and expands continu-
ally and has moved from northern to southern, China
[30], while affected area now covers all of mainland,
China [9].

Figure 5. Phylogenetic tree of B. melitensis strains based on WGS-SNP over all of global. (Clades coloured with orange that rep-
resentation strains from South were closely related to North and Central regions, Clades coloured with purple showed that
there were closely related among strains from North regions.)
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Brucellosis is associated with large-scale farming
and trading of sheep and goats. The inventory of
sheep is correlated with the presence of brucellosis
cases in mainland China [31]. The non-regulated ani-
mal trade has an important impact on the dissemina-
tion of brucellosis. Infected sheep and their products
that have not been quarantined in the north before
import to the south may be the main cause for the
increasing incidence of human brucellosis in southern
China [27]. Introduced infected sheep from northern
regions may have led to a brucellosis outbreak epi-
demic in Zhejiang Province, China [32]. The increasing
demand for meat and expanding animal husbandry in
southern China have also increased the infection risk
for brucellosis due to occupational exposure [33]. Bru-
cellosis is an emerging disease and there is unfamiliar-
ity with its infection in most provinces in southern
China. Therefore, the occupational protections used
in populations are relatively few. Control of brucellosis
in southern China requires strict restrictions on the
inter-provincial movement of infected animals. Live-
stock serologically negative for brucellosis can be
allowed to move without restriction. Livestock that
test positive for brucellosis, or those with unknown dis-
ease status, should only be allowed to move if they have
a negative serological test issued up to 30 days before
movement [34]. An improved culling policy is also
needed. Sick animals cannot be properly disposed
because of unacceptable compensation funds for farm-
ers and this leads to persistence of the source of infec-
tion [35]. There should be improved capability in
immunization, quarantine, diagnosis, and treatment
in animal disease control and prevention organizations
to meet the increasing need for disease control. Lastly,
improved awareness of the need for personal protec-
tion for those working with animals or animal products
is needed. Individuals should wear gloves and other
appropriate protective clothing.

Many shared genotypes were observed among
strains from different hosts. These data showed a
potential transmission pattern for B. melitensis in
China and demonstrate direct or indirect transmission
among livestock and wild animals, eventually infecting
humans. Previous reports have shown that wild ani-
mals are a significant brucellosis reservoir for livestock
and humans [36,37]. To better understand the epide-
miological characteristics of brucellosis in China,
studies on brucellosis epidemics in wild animals at
the country level are needed.

MST analysis showed that the strains studied here
had a common geographic origin and a close relation-
ship with strains from Kazakhstan, Mongolia and Tur-
key [15]. The most MLVA-16 shared genotypes were
found for strains from China and Kazakhstan. These
regions are geographically close and have historically
exchanged livestock. Animals were a common form
of payment in ancient commerce, and the modern

version of this practice has promoted disease trans-
mission [38].

Based on WGS-SNP analysis, the Mediterranean
strains, identified as clade A, occupied the basal node
of the phylogenetic tree. This indicates that
B. melitensismay have originated in the Mediterranean
regions. Brucellosis may have been identified in the late
Roman era; however, the disease was first described by
Sir David Bruce, Hughes, and Zammit while working
in Malta [39]. Clade E comprised 26 out of the 74
B. melitensis strains used in the study. It represented
the largest B. melitensis genotype, with isolates col-
lected from diverse locations of China. It exhibited a
ladder-like phylogram, suggesting a possible single
introduction of these genotype strains into China
[40]. WGS-SNP analysis showed close relationships
among strains from southern provinces, central, and
many northern regions, indicating that B. melitensis
strains from the southern region originated from
northern regions. This conclusion is consistent with
previous reports that the sources of infection of
human brucellosis in southern regions (Guangxi,
Hunan and Hainan Provinces) originated in northern
provinces, including Inner Mongolia [25,26,41]. How-
ever, B. melitensis strains from China have a genetic
relationship to strains from Asian regions including
Russia, India, and Georgia, which are traditional
epidemic regions of brucellosis. Although few
B. melitensis isolates were from Russia, they are geneti-
cally similar to Chinese strains [42], and these strains
had high homogeneity [43]. India harbours the largest
ruminant populations and there are high seropreva-
lence estimates of brucellosis in livestock and humans
[44]. Importantly, the absence of a clear differentiation
according to territorial affiliation between these regions
indicates the frequent penetration of the B. melitensis
strains from one country to another [43], and active
trade based on the ancient Silk Road, Tea Horse
Road and Trans-Eurasia exchange among these nearby
regions could have promoted this process. Brucellosis
has a “knows no borders” character, making it challen-
ging to monitor and control [45]. A positive response
to a “National brucellosis control plan (2016–2020)”
is needed. It is also necessary to enforce animal con-
trols, vaccinate all susceptible animals, and increase
the level of education and awareness among people,
especially regarding contact with infected animals
and consumption of contaminated milk and other
byproducts.

This study has several limitations. First, there was
considerable variability in the number of strains col-
lected among different regions and periods. In some
high-endemic areas of brucellosis, Jilin and Heilong-
jiang had fewer strains, affecting the study conclusions.
Second, data on the distribution of prevalence of ani-
mal brucellosis, sheep population mobility, and strains
obtained from animals (sheep) from southern
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provinces were lacking. Further animal studies includ-
ing seroprevalence and strain distributions are essen-
tial. Genomic data of strains from China in the Gene
bank were limited and additional phylogenetic analysis
of more Chinese B. melitensis is warranted.

Conclusion

Although a national brucellosis control programme in
China has been ongoing for many years (2009–2020),
disease prevalence has not obviously declined. This
indicates a need to reformulate the existing manage-
ment strategies. At present, B. melitensis is the predo-
minant species in southern China. Sheep and animal
products are traded frequently between northern and
southern regions and this promotes the spread and
expansion of B. melitensis strains. Because sheep play
a large role of the spread of brucellosis, surveillance
and disease countermeasures for sheep populations
should be a priority. Quarantine and inspections of
sheep transfer and trade are urgently needed. Brucello-
sis is a disease that has spread across extensive regions
and provinces and is transmitted by food, air, and soil.
It occurs in areas dominated by traditional hygiene
practices and these areas have limited access to health
services. We encourage government organizations
(veterinary and health authorities) to play a greater
role in disease management. The active participation
of livestock producers as well as industry partners is
also essential.
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