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Matching 16S rRNA gene sequencing data to a metabolic reference database

is a meaningful way to predict the metabolic function of bacteria and archaea,

bringing greater insight to the working of the microbial community. However, some

operational taxonomy units (OTUs) cannot be functionally profiled, especially for microbial

communities from non-human samples cultured in defective media. Therefore, we

herein report the development of Hierarchical micrObial functions Prediction by graph

aggregated Embedding (HOPE), which utilizes co-occurring patterns and nucleotide

sequences to predict microbial functions. HOPE integrates topological structures of

microbial co-occurrence networks with k-mer compositions of OTU sequences and

embeds them into a lower-dimensional continuous latent space, while maximally

preserving topological relationships among OTUs. The high imbalance among KEGG

Orthology (KO) functions of microbes is recognized in our framework that usually

yields poor performance. A hierarchical multitask learning module is used in HOPE

to alleviate the challenge brought by the long-tailed distribution among classes. To

test the performance of HOPE, we compare it with HOPE-one, HOPE-seq, and

GraphSAGE, respectively, in three microbial metagenomic 16s rRNA sequencing

datasets, including abalone gut, human gut, and gut of Penaeus monodon. Experiments

demonstrate that HOPE outperforms baselines on almost all indexes in all experiments.

Furthermore, HOPE reveals significant generalization ability. HOPE’s basic idea is

suitable for other related scenarios, such as the prediction of gene function based

on gene co-expression networks. The source code of HOPE is freely available

at https://github.com/adrift00/HOPE.

Keywords: microbial co-occurrence networks, functions prediction, graph embedding, hierarchical multi task

learning, deep learning

INTRODUCTION

The analysis of microbial communities is founded on the characterization of functional diversity,
which is increasingly recognized as the bridge linking biodiversity patterns and ecosystem
functioning, as a way of explaining the interactions between microbes and their responses to
changes in the environment (Bardgett and Der Putten, 2014; Escalas et al., 2019). However, a
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large proportion of microbes remain uncultivated and, therefore,
functionally unknown. However, because of the prevalence of
high-throughput sequencing technologies, large-scale 16S rRNA
marker gene sequencing of microbes is becoming available.
Related approaches, such as PICRUSt (Langille et al., 2013)
and Tax4Fun (Ashauer et al., 2015), are proposed to infer
functional profiles from genomes and phylogeny. PICRUSt and
Tax4Fun identify microbial functions by estimating 16s rRNA
marker gene families based on the similarity between 16s rRNA
sequencing data and known marker gene databases. They rely
on the reference databases on Greengenes (Desantis et al.,
2006) and SILVA (Quast et al., 2012). However, owing to the
incompleteness of the 16S rRNA marker gene database, large
amounts of OTUs cannot be functionally profiled, especially for
microbial communities from non-human samples from defective
culture media (Pachiadaki et al., 2019; Wang X. et al., 2020).

The protein–protein interaction (PPI) network in protein
function prediction gives theoretical insight to our study of
microbial functional diversity. More specifically, network
representation of the PPI network extracts functional context
from topological structure (Gligorijevic et al., 2018; Kulmanov
et al., 2018) and achieves better performance than the previous
algorithm that only uses sequence data (Wass et al., 2012;
Cozzetto et al., 2013). Several researchers found that proteins
with interactions in PPI networks have a high possibility of
sharing the same or similar functions (Lele et al., 2011; Liu
et al., 2017). Inspired by empirical success in using the PPI
network, we can build a microbial co-occurrence network
to provide new insights into the exploration of microbial
functions. Microorganisms do not live in isolation but,
rather, interact with the environment through, for example,
mutualism, competition, parasitism, and predation. “Co-
occurrence” means that microbes have statistically significant
associations of abundance in one microbial community. The
co-occurrence relationship is generally inferred by abundance
correlation over several microbial community samples. The
microbial co-occurrence network was designed to describe
these relationships among microbes, and those microbes with
closely correlated relationships become linked in the microbial
co-occurrence network.

A novel method, Hierarchical micrObial functions Prediction
by graph aggregated Embedding (HOPE), was proposed to
capture potential functions in a microbial co-occurrence
network. Our method is built based on the key hypothesis that
microbes with co-occurring patterns have a high possibility of
sharing the same or similar functions. So, our method tries to
use this property to infer unknown microbe functions from its
neighbors in the microbial co-occurrence network. HOPE has
two main modules: hierarchical multitask learning and graph
embedding. Here, the hierarchical multitask learning framework
solves the class imbalance problem, and the graph embedding
learns the co-occurrence patterns in microbial networks. Two
classic strategies have traditionally been performed: resampling
(Chawla et al., 2002) and cost-sensitive reweighting (Khan et al.,
2018) during our previous experiments. These methods change
the training dataset distribution by either undersampling the
majority class, oversampling the minority class, or giving a

higher cost to misclassification of the minority class. However,
neither of these classic methods could ameliorate the negative
impact of imbalanced classes during our experiments. Both the
majority class and the minority class can be well-classified if
they are trained independently; therefore, we were motivated to
design a hierarchical multitask training scheme to manage the
imbalance of functional datasets with the long-tailed distribution.
To accomplish this, we input two graphs with the majority class
and the minority class, respectively, into the HOPE algorithm
and train the model by multitask learning. A graph embedding
model is designed to map the microbial co-occurrence network
to a lower-dimensional continuous latent space while maximally
preserving the topological relationships among OTU features.
HOPE incorporates k-mer compositions of microbial sequences
and topology of microbial networks, as complementary data
sources, to learn an embedding representation of a microbial
network. The embedded low-dimensional numerical vector
of each OTU node reflects its sequencing features and co-
occurrence correlation with its neighbors. After that, the
multilayer perceptron (MLP) classifier takes embedding vectors
as inputs to predict the function for those OTUs without
functional information from the known database.

Cross-validation was designed to evaluate the performance of
HOPE on three microbial metagenomic 16s rRNA sequencing
datasets from abalone gut, human gut, and gut of Penaeus
monodon, respectively, and all experiments mentioned above
verified the superiority of HOPE in predicting microbial
functions. HOPE is compared with its two variants, HOPE-seq
and HOPE-one, as well as a well-known graph embedding
algorithm, GraphSAGE (Hamilton et al., 2017), in the
experiments. HOPE-seq uses only k-mer frequency vectors
as features with the hierarchical multitask learning framework
to train the classifier on majority classes and minority classes.
HOPE-one ignores the hierarchical multitask learning but
integrates the sequence representation with microbial network
topological structure as embedding features for function
prediction. In the testing set, we learned that HOPE outperforms
HOPE-seq and HOPE-one on almost every measurement. HOPE
outperforms HOPE-one by 9.5% in Micro-F1 on the Abalone
Gut Microbiota dataset and 15.6% in Macro-F1 on the P.
monodon intestine dataset. When compared with GraphSAGE,
using three different aggregator functions, including a mean
aggregator, an LSTM aggregator, and a pooling aggregator,
HOPE achieves the highest score in most measurements with a
significant margin. Compared with GraphSAGE, HOPE gains a
higher accuracy score by 4.4% averagely. Finally, our results show
that HOPE demonstrates significant generalization ability since
it can be used to predict microbial functions without learning
previous information in our experiments.

METHODS

Framework of Microbial Function
Prediction With HOPE
HOPE consists of four steps to predict microbial functions,
including data input, microbial co-occurrence network
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construction, graph embedding generation, and function
prediction. The input are 16s rRNA sequence reads containing
all microbial community information clustered to OTUs for
building the microbial co-occurrence network based on the
co-occurrence correlation relationships among OTUs. During
the graph embedding step, HOPE learns the embedding vectors
of the majority class and the minority class with multitask
learning to mitigate class imbalance. The HOPE algorithm could
distill the high-dimensional information about OTUs and their
“neighbor OTUs” and embed the resultant data on topological
structure into dense representative vectors. In this way, the
original microbial network is converted to a compact embedding
space, while a given node’s features and the topological structure
of its “neighborhood” are preserved. Finally, our approach uses
the low-dimensional embedding vectors to identify microbial
functions via an MLP classifier. The total pipeline of the
framework is shown in Figure 1.

Data Preprocessing
Construction of Microbial Co-occurrence Network
Before microbial function prediction can take place, the raw
data coming from 16s rRNA sequencing data will be input to
the framework, which may have millions of reads and cause
numerous computations. The 16s rRNA sequences are grouped
into OTU bins based on the sequence alignment similarity,
which is a step that can reduce the number of OTUs for faster
calculation. During the experiments, sequences are clustered to
OTUs satisfying the following criteria via the UPARSE-OTU
algorithm (Edgar, 2013). The sequences in the same cluster
(OTU) should have more than 97% pairwise sequence alignment
similarity, and the sequences in a different cluster (OTU) should
have more than 3% pairwise sequence alignment dissimilarity.
The OTU representative sequence is the most abundant contig
in the OTU cluster and is selected to represent the cluster for
the following processing. Then, the “co-occurrence” patterns,
which were revealed as the co-occurrence interaction of two
species or any taxonomically relevant units in habitats, are
calculated via the OTU table and the correlation algorithm.
The OTU table describes the abundances of OTUs in samples
by the USEARCH algorithm (Edgar, 2010), and the correlation
score is computed for each OTU pair by the SparCC algorithm
(Friedman and Alm, 2012). OTUs with a higher correlation score
than the threshold are considered proof of having a strong co-
occurrence correlation, and these OTUs will be connected with
an edge in the microbial network. The microbial co-occurrence
network is constructed to preserve the interaction patterns where
each node represents an OTU, and each edge represents a
pairwise association between them and the pipeline as shown in
Figure 1B.

The OTU representative sequences offer sequence signatures
and potential information about their functions. K-mer means
nucleotide sequences of length k. The k-mer frequency is the
number of occurrences of k-mer within the whole sequence(s)
normalized by the total number of occurrences in the vector
for each data. The k-mers frequency is adopted as OTU
features, whose statistical distribution of frequency reflects the

sequence signatures. The short sequence representation, k-
mers frequency, further reduces calculation and reflects the
compositional distribution of DNA sequence(s). Previous studies
have shown that k-tuple frequencies are similar across different
regions of the same genome but differ between genomes (Karlin
et al., 1997), which offers the theoretical basis to measure the
dissimilarity between contigs. The length of k has a significant
impact on the final results. When k ≥ 20 bp (long k-mer), k-
mer reflects more detail and local biological information in the
nucleotide sequences, but the high sparsity of the frequency
vector lead by too long k-mer would lose the statistical power
(Wang et al., 2014, 2018; Wang Y. et al., 2020). However, when k
≤ 10 bp (short k-mer), the frequency of k-mers reflects the global
compositional distribution of the whole sequences (Ren et al.,
2016). In our study, the representative sequence of each OTU is
∼103 bp; generally, k should be set from 4 to 10 (Wang et al.,
2014). After testing on the different length of k-mer, the k-mer
length of 7–10 has no much impact on performance. Therefore,
we select k= 7 to reduce the running time of k-mer counting.

Function Labeling in Co-occurrence Network
As supervised learning, the labels of OTUs in the training set
and the validation set need to be annotated. The multiclass
classification means that there are more than two classes
in the classification problem, and in our study, existence of
multiple KEGG Orthology (KO) functions means multiple
classes (Kanehisa and Goto, 2000). Multilabel means that a
sample might belong to multiple classes, and in our study,
there would be multiple KO functions for one OTU. Therefore,
the function prediction task is formulated as a multiclass,
multilabel classification problem. The label vectors containing
the ground truth of OTU’s functions utilize multihot encoding.
This encoding approach could convert the useful information
into a binary string with a single bit value of 1 or 0. If the
OTU is annotated on the K00001 and K00003 function, then we
will assign 1 to the first position and the third position in the
binary string as a positive sample for this function. Every unique
function category is represented as a binary value at a specific
position in the labeled vector.

Working Principle of HOPE
The HOPE algorithm includes two critical modules, a
hierarchical multitask learning scheme and a graph embedding
module (Figure 2). In the hierarchical multitask learning part,
the HOPEmodel is trained on themajority class and theminority
class, respectively, wherein the majority class means this class
exists in more than half of OTUs, and the minority class only
appears in less than half of OTUs. Then the graph embedding
module learns embedding vectors of OTUs by propagating
nodes’ neighbor feature to the nodes along the edges and
aggregating the topological structure of nodes’ neighborhood
with the k-mer representation of OTUs, along with the microbial
co-occurrence network.

Hierarchical Multitask Learning Scheme
During the learning of embedded representation of nodes, the
highly skewed distribution of the functional class is observed
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FIGURE 1 | Schematic illustration of the framework for predicting microbial functions using HOPE. (A) 16s rRNA sequencing reads from a microbial community are

adopted for network construction. (B) Pipeline for constructing microbial networks. OTUs are binned by clustering reads from the same source population. Then, the

abundance matrix that describes the relative abundance of OTUs in every microbiota sample is calculated. Pairwise scores between OTUs are then computed gaining

the correlation matrix, and OTU pairs with correlation score over the threshold are connected by an edge. Gray areas in the correlation matrix indicate similarity of

OTUs. Finally, the whole microbial community is visualized as a network wherein nodes represent OTUs, and edges represent the correlation between them. (C)

Embedding representations of each OTU via the HOPE algorithm. (D) Function prediction matrix of OTUs. Different colors indicate different KO functions.

(Figure 3), which will cause a class imbalanced problem. Long-
tailed and skewed distributions among different functions cause
the classifier to ignore the minority classes (Huang et al., 2016).

The majority class will influence the classifier to be biased
toward the majority class so that the minority class will be
overwhelming, wherein the majority class means this class exists
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FIGURE 2 | Schematic illustration of generating the embedding representations of microbial network with sequence k-mer counting. (A) We process the long-tailed

distribution class with hierarchical multitask learning, which learns the majority class and the minority class independently with two microbial networks. (B) The

embedding generation layer learns the embedding vector of OTUs via aggregating the sequence information from current nodes and their neighbors.

FIGURE 3 | The KO function number of appearance cure. The cure is highly

skewed because a few dominant function classes claim most of the samples,

while most of the other function classes are represented by relatively a

few samples.

in more than half of OTUs, and the minority class only appears
in less than half of OTUs. Traditional class rebalancing strategies,

such as resampling and reweighting solutions, perform poorly
on our tasks and slow down the training process. In fact, both
majority and minority classes can be classified when trained
independently. This motivated us to develop a hierarchical
multitask training scheme designed to account for the poor
prediction performance of minority classes (Figure 2A). The
hierarchal multitask learning trains on the majority class and the
minority class, respectively, so that the majority class in one task
will not interfere the other task to learn the minority class and
finally ameliorates the negative impact of the class imbalanced
problem. The threshold of identifying a class belonging to a
majority class or a minority class is a parameter that should be
determined before model training, and the best threshold lets
the model achieve the highest measurements on the validation
set. Assume that the dataset is represented by space V × Y ,
where V indicates an OTU set with n OTU, and Y indicates
the corresponding KO function set. The KO function set is then
divided into the majority class Yma and the minority class Ymi by
the number of samples. The OTU set and the KO function set can
be shown as

V = {v1, v2, . . . , vn−1, vn} (1)

Y = Yma + Ymi (2)

Frontiers in Genetics | www.frontiersin.org 5 January 2021 | Volume 11 | Article 608512

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hou et al. Hierarchical Microbial Functions Prediction

The goal is to learn two functions, f1, f2, that classify every input
data point to the proper classes:

ymai ≈ f1(vi), i ∈ {1, . . . , n} (3)

ymii ≈ f2(vi), i ∈ {1, . . . , n} (4)

Two models are considered to learn the majority class and
the minority class from the long-tailed dataset separately and
simultaneously. The input data vi are the same for all tasks, but
the output values yi are different for each task so that the novel
method can mitigate the biased tendency of the classifier toward
either the majority or minority class. The HOPE approach uses
cross-entropy loss function as the feedback information to train
to learn the embedding vector. A drop in the loss valuemeans less
bias between predicted values and observed targets:

Lossma = −

n
∑

i=1

(ymailog(f1(vi))+ (1− ymai)log(1− f1(vi)))

(5)

Lossmi = −

n
∑

i=1

(ymiilog(f2(vi))+ (1− ymii)log(1− f2(vi)))

(6)

Embedding of Microbial Co-occurrence Network
Based on the hierarchical learning framework, HOPE also
computes the embedding vectors of microbial co-occurrence
networks (Figure 2B). Our learning model for graph embedding
builds upon the GraphSAGE (Hamilton et al., 2017) algorithm,
which performs learnable aggregation to replace full-graph
Laplacian and finds the embedding map for a large graph. Our
algorithm integrates topological information for neighbors of
each node with its own sequence information and conserves
the useful graph data as completely as possible. Embedding
vectors not only save node information but also save the graph’s
edge information. HOPE maps two nodes to close points in the
embedding space if and only if their features are highly similar
and their neighborhoods are topologically similar. These closed
OTUs in the embedding space have a high probability of similar
functions. Thus, the embedding vectors could be used intuitively
for classification.

Graph embedding involves two key steps. First, randomly
select the neighbor nodes of the target nodes and aggregate the
features of these nodes with those of the target nodes via a SUM
function. The microbial co-occurrence network has a feature set
h =

{

h1, h2, . . . , hn
}

, hi ∈ R
f , where n denotes the number of

nodes in the graph. We uniformly sampled N nodes to pick out a
fixed-size set of neighbor nodes VN :

VN = N(v) (7)

A sum aggregator function is used to combine these features of
neighboring nodes, and we gain the aggregated representation of
neighbor hN :

hN = Aggregator
({

hi,∀i ∈ VN

})

(8)

The node’s neighborhood embedding should be unique when
no isomorphic neighborhoods exist. To aim this target, the
aggregator function in the graph embedding algorithm has to
be injective to achieve the upper bound method, the Weisfeiler–
Lehman (WL) graph isomorphism test (Xu et al., 2019). Although
the WL test has powerful capability in discriminating different
graph structures, it does not know how to learn the intrinsic
properties of nodes in a graph and generates unsuitable node
features, which might be quite essential for function prediction
task in testing. Thus, the WL test has poor generalization and
would not be used in our study. The SUM aggregator that is
used in this work is injective so that our method could be
maximally powerful from a theoretical perspective and have
well generalization. After aggregating features of the neighboring
nodes, we then concatenate the target nodes feature, hT , with
the aggregated neighbor feature, hN , and the concatenated vector
is imported into the MLP layer with non-linear activation
function σ :

hE = σ

([

W1 · hT
]

CONCAT
[

W2 · hN
])

(9)

Wp, p ∈ {1, 2} are a set of weight matrices containing
trainable weights that can be learned by back-propagation. This
embedding generation process will be iterated in a loop as the
searching depth deepens, K. For each iteration, target nodes
will aggregate features from neighboring nodes to update the
representation of a node, and the target node will gradually
capture more and more information from further reaches of
the nodes of the graph after two iterations of aggregation.
After aggregating feature information from neighboring nodes
in depth K, the layer outputs new embedding node features,
as hEK =

{

he1, he2, . . . , hen
}

, hei ∈ R
d, d < F. Then in the

next iteration, the outputs feature hEK from the previous depth
would be considered as the neighboring features in depth K-1,
hN(K−1), and they will be aggregated with new target features,
hT(K−1), for updating. Thus, for the embedding representation
vector, we get a target node feature after iterations. Figure 4
shows an example of an aggregating target node with its
neighbors in two depths.

RESULTS

Experimental Design
The Experimental Datasets
In this study, three 16s rRNA sequencing datasets from abalone
gut, human gut from early pregnancy, and P. monodon gut
are tested in the experiments. The three datasets are available
in NCBI with accession IDs ERP017548, SRP266217, and
SRP261546. We constructed the microbial networks of the
datasets by co-occurrence correlation, and the detail of these
networks is shown in Table 1.

Experimental Strategies
Before making a comparison of specific methods, we first
take steps to confirm our key hypothesis, i.e., that the
co-occurrence relationship among microbes, together with
neighborhood topological structures in the microbe network,
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FIGURE 4 | Illustration of sampled two-hop neighborhood and aggregation of features for these nodes. (A) Example of aggregating one-hop sampled neighborhood.

(B) Example of aggregating two-hop sampled neighborhood.

TABLE 1 | Summary of the datasets used in our experiments.

Abalone gut Human gut Penaeus monodon gut

Nodes 15,796 3,254 42,84

Average edges 41.4 6.08 18.05

Classes 4,075 4,289 5,144

Training nodes 11,058 2,278 2,999

Validation nodes 3,159 649 855

Test Nodes 1,579 327 430

provides a fully functional context for function prediction. After
that, to further evaluate the performance of our method, we
design two experimental strategies: function prediction within
a microbial community and function prediction across the
microbial community. In the first strategy, both the training set
and the test set come from the same microbial community to
check the normal prediction ability of our method. The second
strategy trains the model on one type of microbial community
and then tests that model on a different, but related, microbial
community, aiming to test the generalization ability of HOPE.
Thus, HOPE must learn the universal knowledge on the training
set and the validation set to make sound prediction results on the
test set.

Function prediction for each OTU is modeled as a multiclass,
multilabel supervised classification problem. In our study, the
experimental dataset is divided into three distinct parts, including
the training set, the validation set, and the testing set. We
randomly split 20% of all OTUs into an independent testing set
and designed an eight-fold cross-validation on the remaining
80% of all OTUs. The cross-validation is applied to learn the
appropriate parameters in the weight matrices and select the
appropriate hyperparameters. The goal is to develop the best

model on both training and validation sets to achieve the
highest prediction performance on the testing set. All methods
mentioned above use rectified linear units (ReLUs) as the non-
linearity functions to evaluate all datasets.

Hyperparameters of the Training Process
In training, we use the cross-entropy loss function for multiclass,
multilabel classification together with the Adam optimizer
(Kingma and Ba, 2015). The cross-entropy loss function treats
each class independently andmeasures the difference between the
ground truth label and predicted labels. The ground truth label of
each class is 0 or 1, and the predicted result of each class is the
probability between 0 and 1. When the predicted probability is
far from the ground truth label, the loss value will be large.

We set K = 2 as the neighborhood region and sample sizes
S1 = 25 and S2 = 10 at each hop of a neighborhood leading to
the best performance during the graph embedding step. Adam
and L2 regularization are adopted for model optimization with
the size of mini batch at 128 and a learning rate of 0.01. To avoid
overfitting, dropout is set as = 0.4. All experiments use ReLUs
as activation functions. The experiments are run on a single
machine with 4 NVIDIA GeForce GTX1080 TI with CUDA
Version 10.2, Intel(R) Xeon(R) CPU (E5-2620 v4 @ 2.10 GHz),
and 128 Gb of RAM.

Hypothesis Verification
As noted above, this work is driven by the hypothesis that
microbes with strong correlations, or strong neighborhood
topology profiles, have similar, or highly correlated, functions.
Therefore, we designed the following experiments to confirm that
the topological structure of a neighbor node is predictive, or not,
by comparing the similarity of KOs between OTU nodes with
similar and different neighbors.
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FIGURE 5 | Sketch of extracting “Adjacent Group” and “Non-adjacent Group”.

FIGURE 6 | Box plot comparing KO similarities 1,000 times with each test

extracting 1,000 pairs of nodes for two groups and calculating the average

Jaccard distance.

Verify Whether Two Adjacent Neighbors Share Highly

Correlated Functions
By the adjacent matrix of the microbial network, 1000 pairs of
adjacent OTU nodes are randomly extracted as the “Adjacent
Group.” Meanwhile, a three-step reachability matrix of OTUs
is computed from the adjacency matrix. The two OTU nodes
that cannot reach each other within three steps are extracted as
the “Non-adjacent Group,” which ensures that the node pairs
are sufficiently far from each other. The extraction process
of the two groups is shown in Figure 5. OTU functions are
represented by a row of KO function vectors using 0/1 to indicate
whether the OTU possesses the KO function or not. The distance

between function vectors of twoOTUs is calculated by the Jaccard
distance. The function distances between the “Adjacent Group”
and the “Non-adjacent Group” are calculated and averaged,
respectively, and the tests are repeated 1,000 times. Figure 6
shows the average function distances from the “Adjacent Group”
and the “Non-adjacent Group” over the course of 1,000 respective
tests. The median of average Jaccard distances of the “Adjacent
Group” is 0.515, which is significantly lower than that of the
“Non-adjacent Group.” Even the maximum average distance
from the “Adjacent Group” is smaller than the minimum average
distance from the “Non-adjacent Group,” which suggests that the
adjacent relationships of OTU nodes contain the information
required to predict KO functions.

Verify Whether Two Nodes Sharing Similar Neighbors

Would Have Highly Correlated Functions
To further confirm that two nodes sharing similar neighbors
have highly correlated functions, we use the corresponding row
of the adjacent matrix to present the neighbor structure of each
OTU. Hamming distance between every two rows of the adjacent
matrix is adopted to evaluate neighborhood similarity between
two corresponding OTUs. The smaller the Hamming distance
between the two rows is, the more similar the neighborhood
of the two nodes is. As shown in Figure 7, we selected the
10,000 pairs of nodes with the smallest Hamming distance in
the neighborhoods as the “Similar Group” and the 10,000 pairs
with the largest Hamming distance in the neighborhoods as
the “Different Group.” Therefore, OTU pairs in the “Similar
Group” share similar neighbors, and the other pairs in the
“Different Group” do not. Function similarity is also measured
by the Jaccard distance between KO function vectors. Function
distances for the “Similar Group” and the “Different Group” are
calculated and plotted as boxplots, as shown in Figure 8. It is
clear that KO functions are closer to each other for OTUs sharing
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FIGURE 7 | The extraction of “Similar Group” and “Different Group”.

FIGURE 8 | Box plot comparing KO similarities by calculating Jaccard

distances with each group, including 10,000 pairs of OTUs with similar or

different neighbors.

common neighbors. For OTUs with highly different neighbors,
KO functions are farther apart. The mean of Jaccard distances of
the “Similar Group” is 0.1111, which is much smaller than that of
the “Different Group.” Based on the two verification experiments,
we infer that the OTUs that are adjacent to, or share, common
neighbors would have highly similar KO functions. Therefore,
learning the topological structure of the microbial co-occurrence
network would provide clear and beneficial information for
function predictions.

Evaluations and Comparisons of
Experimental Results
HOPE, its two variants, HOPE-seq and HOPE-one, and
GraphSAGE are applied to three datasets to evaluate by
comparison the performance of HOPE. Recall that HOPE
features hierarchical multitask learning to solve the highly
skewed class distribution problem, and it incorporates
information of both microbe sequences and microbe interactions
in a co-occurrence network. Therefore, the variant HOPE-
seq only uses the microorganism sequence representations
as input but utilizes hierarchical multitask learning to train

the classifier on majority and minority classes. HOPE-one
ignores class imbalance problems but integrates the vector
representation of sequences with microbial network information
as an input feature. Both of the variant methods use the same
hyperparameters and training strategies as parent HOPE.
GraphSAGE (Hamilton et al., 2017) is a well-known and widely
used graph embedding algorithm that provides an inductive
framework to generate embeddings by sampling and aggregating
features from a node’s local neighborhood. The aggregation
function can have various forms, and the authors suggest three
aggregator functions: a mean aggregator, an LSTM aggregator,
and a pooling aggregator (shown as GS-Mean, GS-LSTM, and
GS-Pooling, respectively). The mean aggregator simply takes the
elementwise mean of the node’s features. The LSTM aggregator
is built on a standard LSTM architecture (Hochreiter and
Schmidhuber, 1997) to aggregate the nodes’ neighbors, which are
listed to a random permutation, to embedding representations.
The detailed description of the LSTM aggregator can be found in
the study of GraphSAGE (Hamilton et al., 2017). In the pooling
aggregator, an elementwise max-pooling operation is applied to
aggregate information across the node’s neighbors.

In our experiments, we use four different measurements,
including micro-averaged F1 score, macro-averaged F1 score,
accuracy, and ROC-AUC score, to judge the comparison results.
Micro-averaged F1 score and macro-averaged F1 score are both
F1 scores, but they differ in the averaging method.

The micro-F1 score will aggregate the true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) of all
classes to compute the average F1-score. Assuming n classes, the
TP-value, FP-value, and TF value of the ith class are represented
as TPi, FPi, and FNi, respectively:

precisionmi =

∑n
i=1 TPi

∑n
i=1 TPi +

∑n
i=1 FPi

(10)

recallmi =

∑n
i=1 TPi

∑n
i=1 TPi +

∑n
i=1 FNi

(11)

micro− F1 = 2
recallmi × precisionmi

recallmi + precisionmi

(12)

On the other hand, the macro-F1 score will compute the F1-score
independently for each class and then take the average as
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precisioni =
TPi

TPi + FPi
(13)

precisionma =

∑n
i=1 precisioni

n
(14)

recalli =
TPi

TPi + FNi
(15)

recallma =

∑n
i=1 recalli

n
(16)

macro− F1 = 2
recallma × precisionma

recallma + precisionma

(17)

Accuracy is the ratio of correct predictions to total input samples.
The ROC-AUC score is defined as the area under the ROC
curve. It provides an aggregate measure of performance across
all possible classification thresholds. The ROC-AUC score varies
between 0 and 1, and the closer it is to 1, the better the
performance of the classifier.

Functional Prediction Within the Same Microbial

Community
In this part, we use the training, validation, and testing data
from the same microbial community and calculate various
measurements for every experiment (see Table 2). HOPE is
compared against its variants and GraphSAGE. According to
the results, HOPE nearly outperforms all baselines on various
measurements, especially the micro-F1 score and macro-F1
score. However, the performance of HOPE is comparable to its
two variants in terms of accuracy and ROC-AUC. For example,
HOPE outperforms HOPE-one by 9.5% in the micro-F1 score on
the Abalone Gut Microbiota dataset and 15.6% in the macro-F1
score on the P. monodon intestine dataset. In some parameters,

the performance of HOPE-one is better than that of HOPE-
seq, like accuracy and ROC-AUC, but HOPE-seq can improve
upon HOPE-one by a margin of 5.7% in the micro-F1 score on
the Abalone Gut Microbiota. Since HOPE integrates sequence
information with microbial network information via graph
embedding, thus combining the advantages of its two variants,
it nearly achieves the highest performance. Table 2 also shows
the performance results of HOPE compared to the variants of
GraphSAGE on the benchmark datasets. HOPE nearly achieves
the highest score in all measurements and outperforms two
baselines by a significant margin. According to Table 2, we find
that HOPE-one achieves better results on accuracy and ROC-
AUC thanHOPE on three datasets because HOPE sacrifices some
performance on themajority class to learn theminority class well.

Functional Prediction Across Different Microbial

Communities
We further consider generalizing across different microbial
communities, which requires our model to learn the context
of common functions from one microbe to infer the functions
of other organisms. Some researchers may want to know novel
microbial functions but have only information about related
microbial functions. In this case, the generalization ability of
the algorithm is very important. Therefore, in this part, we
design experiments with the different test sets to evaluate the
generalization ability of HOPE.

We first set the training and validation data from the abalone
gut microbiota and use human feces and shrimp intestine
microbiota to construct microbial networks as a test set. In these
scenarios, we evaluate the performance of our model when the
training data are different from the data used in the test set.

TABLE 2 | The performance of HOPE and its variants and GraphSAGE within the same microbial community for training and testing.

Method Abalone gut microbiota Human feces Penaeus monodon intestine

Mi- F1* Ma-F1* Accuracy ROC-AUC Mi-F1 Ma-F1 Accuracy ROC-AUC Mi-F1 Ma-F1 Accuracy ROC-AUC

HOPE-seq 0.786 0.500 0.887 0.840 0.742 0.236 0.861 0.807 0.907 0.701 0.941 0.923

HOPE-one 0.729 0.544 0.921 0.881 0.742 0.199 0.883 0.816 0.941 0.675 0.963 0.955

GS-mean 0.727 0.433 0.861 0.822 0.672 0.217 0.843 0.780 0.872 0.515 0.918 0.908

GS-LSTM 0.677 0.290 0.843 0.777 0.711 0.205 0.867 0.800 0.713 0.263 0.829 0.787

GS-pooling 0.735 0.387 0.879 0.806 0.747 0.183 0.888 0.816 0.738 0.263 0.845 0.804

HOPE 0.824 0.592 0.908 0.869 0.758 0.309 0.870 0.811 0.941 0.831 0.963 0.949

*Mi-F1 and Ma-F1 represent micro-F1 score and macro-F1, respectively. The bold values mean the best performance of each column of index.

TABLE 3 | Evaluation of generalization performance of HOPE across different microbial communities.

Training set organism Test set organism Mi-F1 Ma-F1 Accuracy ROC-AUC

Human feces Human feces 0.758 0.309 0.842 0.811

Abalone gut Human feces 0.728 0.217 0.867 0.819

Penaeus monodon intestine Penaeus monodon intestine 0.941 0.831 0.963 0.949

Abalone gut Penaeus monodon intestine 0.837 0.529 0.877 0.866

The first and second columns list the microbial communities used in the training set and the testing set, respectively. The first and third rows list the baseline of performance when

training and test sets are from the same microbial community.

Frontiers in Genetics | www.frontiersin.org 10 January 2021 | Volume 11 | Article 608512

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hou et al. Hierarchical Microbial Functions Prediction

Table 3 summarizes the performance of HOPE with different
test sets. Compared to baselines, experiments utilizing a test set
different from the training set achieve lower scores but within
an acceptable range. We train the model on the abalone gut
microbiota dataset and test the model on datasets from human
feces and shrimp intestine microbiota. Although using training
sets from a different source, results show that HOPE achieves
nearly 90% performance of experiments when the training set
and test set data belong to the same species. HOPE achieves high
performance in generalization, which means that our approach
can learn the fundamental knowledge from known microbial
functions and infer the functions of unseen microorganisms.

Discussion for Class Imbalance Problem
We find that KO functions with a large number of annotation
samples generally outperform KO functions with a few
annotations. Further experiments explore the relationship
between the number of training samples and the variance in
predictive performance and plot the result in Figure 9. It can
be seen that the predictive performance is strongly correlated
with the number of instances in the training set. We build
linear regressions for the measurement scores and the number
of samples for every KO function, and the coefficients of the
explanatory variable in all regressions are significantly greater
than zero (P = 0.0000). The statistical results prove that KO
functions with rich training sample annotations perform better
than KO functions represented by only a few samples.

In all experiments mentioned above, we observe that some
specific KO functions are easily classified to wrong places, causing
low scores across the measurements evaluated. Even though
some specific KO functions have been learned by a large amount
of training samples, like K00096, K02080, and K10014, their F1
scores are nearly zero. Owing to the hierarchical nature of KOs,
these bad KOs are defined as low-level, or rare, existing functions.
In the future, additional weights based on the general level of KO
should be assigned to each class to achieve better performance.

CONCLUSION AND DISCUSSION

In this paper, a pipeline for the HOPE method is proposed
for the analysis of microbial functions. The method leverages
hierarchical multitask learning and graph embedding to extract
features from sequence compositional signatures and topological
patterns in non-linear microbial interaction networks. The
hierarchical multitask learning module is to cope with class
imbalanced datasets and achieve significant performance
gains on predicting functions that appear in a few training
samples. Using the graph embedding model, HOPE integrated
the sequence compositional signatures and co-occurrence
relationship among OTUs in microbial communities with the
k-mer frequency feature in each node and topological patterns
in microbial networks. Therefore, HOPE outperforms baselines
on almost all indexes in all experiments. In detail, the percentage
of macro-F1 scores reached from our classifier has an increased
score of at least seven percentage points compared to the
other methods. Experiment results also showed that HOPE has
satisfactory generalization ability when it predicts functions

FIGURE 9 | Performance of KOs with different annotated samples. The

graphs plot the predictive performance of each KO in our method as a

function of the number of training samples.

across different microbial communities. Because the graph
embedding of microbial co-occurrence networks conserves the
interactions and similarities among OTUs, which are useful for
inferring unknown functions, HOPE demonstrates significant
generalization ability. Several potential improvements are
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possible. In the future, during the construction of the microbial
network, the threshold of defining an edge between two OTUs
could change to a learnable value. The training of HOPE is more
time-consuming than the previous algorithms because the extra
MLP layer for function prediction requires the optimization of
much more parameters.

Although the primary purpose of HOPE is the prediction
of microbial functions on the microbial co-occurrence network,
the framework can be used on other related scenarios, such
as the prediction of gene function based on the gene co-
expression network.
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