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Abstract

Background: Mutations in the parkin gene, which encodes a ubiquitin ligase (E3), are a major cause of autosomal recessive
parkinsonism. Although parkin-mediated ubiquitination was initially linked to protein degradation, accumulating evidence
suggests that the enzyme is capable of catalyzing multiple forms of ubiquitin modifications including monoubiquitination,
K48- and K63-linked polyubiquitination. In this study, we sought to understand how a single enzyme could exhibit such
multifunctional catalytic properties.

Methods and Findings: By means of in vitro ubiquitination assays coupled with mass spectrometry analysis, we were
surprised to find that parkin is apparently capable of mediating E2-independent protein ubiquitination in vitro, an
unprecedented activity exhibited by an E3 member. Interestingly, whereas full length parkin catalyzes solely
monoubiquitination regardless of the presence or absence of E2, a truncated parkin mutant containing only the catalytic
moiety supports both E2-independent and E2-dependent assembly of ubiquitin chains.

Conclusions: Our results here suggest a complex regulation of parkin’s activity and may help to explain how a single
enzyme like parkin could mediate diverse forms of ubiquitination.
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Introduction

Mutations in the parkin gene are a predominant cause of

autosomal recessive early-onset parkinsonism [1]. Further, emerg-

ing evidence also suggests a link between parkin expression

variability and sporadic Parkinson’s disease (PD) [2]. Accordingly,

a better understanding of parkin function could help elucidate

pathways underlying PD pathogenesis. Initial studies performed

by three independent groups revealed that parkin functions as a

ubiquitin ligase (E3) associated with the ubiquitin-proteasome

system (UPS) [3,4,5], a major intracellular proteolytic machinery

that destroys unwanted proteins. In this system, parkin as an E3

member collaborates with two other members, i.e. ubiquitin-

activating (E1) and -conjugating (E2) enzymes, to catalyze the

formation of a ubiquitin chain on its substrates that acts as a

targeting signal for proteasome-mediated degradation. Typically,

the ligation reaction associated with ubiquitin-mediated protein

degradation occurs between the terminal residue (G76) of one

ubiquitin molecule and an internal lysine (K) residue at position 48

within another. However, ubiquitin chain assembly can also occur

at alternative K residues within the molecule, such as K63. In

addition, proteins can also be monoubiquitinated [6,7]. These

non-canonical ubiquitin modifications usually serve as non-

proteolytic signals involved in various cellular processes including

DNA repair and endocytosis [7].

Although originally associated with protein degradation, we and

others have demonstrated that parkin is a unique E3 capable of

mediating monoubiquitination as well as K63-linked polyubiqui-

tination [8,9,10,11]. However, it is intriguing to note that a

single enzyme could exhibit such multifunctional properties. An

attractive speculation is that the choice of E2 partners could

influence the topology of ubiquitin chain assembly mediated by

parkin. Indeed, parkin interaction with the heterodimeric Ubc13/

Uev1a E2 pair appears to favor K63-linked polyubiquitination

whereas its partnership with UbcH7 promotes K48-linked

polyubiquitination [8,12]. Notwithstanding this, the determinants

that regulate parkin’s choice of E2 remain unknown although a

recent study suggested that parkin phosphorylation by PINK1
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facilitates its recruitment of Ubc13 [13]. Furthermore, the

differential recruitment of E2s by parkin cannot adequately

explain its monoubiquitination activity.

Here, we demonstrated that parkin is a unique E3 capable of

mediating ubiquitination in an E2-independent manner, a novel

activity by an E3 member that is unprecedented. Interestingly,

whereas full length parkin catalyzes E2-independent monoubiqui-

tination in vitro, a truncated mutant retaining only the C-terminal

IBR-R2 region catalyzes both mono and polyubiquitination in

the absence of E2. Supporting this, mass spectrometry (MS)

analysis revealed the presence of K48-linked polyubiquitin in

reaction products catalyzed by IBR-R2 but not full length parkin.

Importantly, ubiquitin chains formed by IBR-R2 become modi-

fied in the presence of E2s. For example, mixed chains of K48-

and K63-linked ubiquitin polymers are generated when UbcH7 is

replaced by Ubc13/Uev1a. No such modifications in the presence

of E2s occur in reactions containing full length parkin. Taken

together, our results suggest that parkin’s IBR-R2 contains an

intrinsic activity that catalyzes the formation of polyubiquitin

chains in the absence or presence of E2s, and that this activity is

masked in the full length protein, which catalyzes solely

monoubiquitination in vitro.

Methods

Antibodies and reagents
MBP-parkin species containing D78, D152, or D237 trunca-

tions were generated by means of PCR using MBP-parkin as a

template and subcloned into BamHI and EcoRI sites of pMAL-p2.

Phospho-mimetic parkin S101D, S127D, S131D, T175D, T217D

and S378D mutants were generated by site-directed mutagenesis

using MBP-parkin (full length) as a template. The mutagenesis

reactions were based on the QuickChangeTM method (Strata-

gene). Other MBP-parkin constructs used were described pre-

viously [11]. TRAF6 cDNA was amplified from cDNA prepara-

tions isolated from HEK293 cells using the following primer pair:

59-CGCGAATTCAGATGAGTCTGCTAAAC-39 and 59 - CG-

CCTCGAGCTATACCCCTGCATC - 39, and subcloned into

EcoRI and XhoI sites of pMAL-p2. Momo and Rma1 as well as

RING finger domains of Trim5, Trim32, Rbx2, March8, Rnf4

and Deltex2 were subcloned by PCR and all recombinant MBP-

fusion proteins were purified by the standard methods [11].

The following commercial antibodies were used: anti-ubiquitin

FK1 and FK2 (BIOMOL), anti-E1 (BIOMOL), anti-parkin

PRK8 (Covance) and anti-MBP (New England BioLabs). Anti-

synphilin-1 was a kind gift from Dr. Engelender S (Technion-

Israel). Unless, otherwise stated, all other reagents were purchased

from Sigma.

In vitro ubiquitination
The in vitro ubiquitination assay was performed essentially as

described previously with slight modifications [11]. Briefly, purified

MBP-tagged protein (20 mg/ml) was incubated in reaction buffer

(50 mM Tris-HCl pH 8.8, 2 mM dithiothreitol, 5 mM MgCl2 and

2 mM ATP) together with 10 mg/ml recombinant human E1

(BIOMOL, unless otherwise stated), 10 mg/ml recombinant UbcH7

(BIOMOL) or purified Ubc13/Uev1a (4 ug/ml each) and 50 mg/

ml ubiquitin (Calbiochem) for 2 h at 32uC. For synphilin-1

ubiquitination assay, 5 mg recombinant synphilin-1 was added into

the reaction mix as a substrate for parkin. Equivalent volumes of

post-reaction mix were boiled briefly before resolution by means of

SDS-PAGE. The reaction products were analyzed by means of

Western Blotting procedures using ECL detection reagents

(Amersham). For MS analysis, the reactions were scaled up. In

this case, 200 mg/ml purified MBP-tagged protein was incubated in

reaction buffer (50 mM Tris-HCl pH 8.8, 2 mM DTT, 5 mM

MgCl2 and 4 mM ATP) together with 20 mg/ml recombinant

human E1 (BIOMOL), 20 mg/ml recombinant UbcH7 (BIOMOL)

or purified Ubc13/Uev1a (8 ug/ml each) and 200 mg/ml ubiquitin

(Calbiochem).

MS analysis
The method for detecting specific linkages of polyubiquitin-

derived tryptic digest via MALDI-TOF MS has been described

previously [14]. Briefly, CBB-stained protein bands were excised

from SDS-polyacrylamide, destained and in gel-digested with

10 mg/ml modified trypsin (Promega) in 20 mM ammonium

bicarbonate. The resulting peptides were recovered, desalted and

eluted with 0.5% TFA-50% acetonitrile before being spotted on

analytical plates for MS analysis (4800 MALDI TOF/TOF,

Applied Biosystems). MS and MS/MS data were analyzed by

ProteinPilot software 2.0 (Applied Biosystems).

Results

Parkin mediates apparent E2-independent ubiquitination
in vitro

MBP-parkin, -IBR-R2 and -C441R were purified according to

recently published methods (Fig. S1A) and their activities in the

presence of UbcH7 were independently assessed by means of a

standard in vitro ubiquitination assay. Consistent with our

previous results [11], we observed the presence of high molecular

weight (HMW) parkin species derived from MBP-parkin self-

ubiquitination in full reaction mixtures containing either full

length parkin or IBR-R2 but not parkin C441R RING2 mutant

(Fig. 1A). These HMW parkin species are not detected when E1

or parkin (referred to as ‘‘-E3’’ in figures) is omitted in the assay

(Fig. 1A). Unexpectedly, in the absence of E2, both MBP-parkin

and IBR-R2 appear capable of mediating autoubiquitination

(Fig. 1A). Interestingly, FK1 immunoblotting, which specifically

recognizes polyubiquitin species, generates a laddering pattern in

MBP-parkin as well as IBR-R2 catalyzed reactions in the

presence or absence of E2, although ubiquitinated species

generated by IBR-R2 tend to be of higher molecular weight

than those produced by the full length protein (Fig. 1A). FK2

immunoblotting, which recognizes both mono- and poly-

ubiquitinated proteins, reveals a laddering pattern that is similar

to FK1 (Fig. 1A). When compared side by side, both FK1 and

FK2 immunoreactivities are significantly more robust in reactions

catalyzed by IBR-R2 than those catalyzed by the full length

protein (Fig. 4 & 5). In contrast, no FK1 or FK2 immunoreac-

tivity is detectable in reactions conducted with parkin C441R

mutant (Fig. 1A). Similar results were obtained with E1 enzyme

from other commercial companies (Fig. S1B). Our results

therefore suggest that parkin-mediated ubiquitination in vitro

could occur in the presence or absence of E2 and that the nature

of ubiquitination catalyzed by full length parkin and IBR-R2

probably differs.

To exclude the trivial possibility that E1 used in our reactions,

although from different commercial preparations, may all be

contaminated with trace amounts of E2s, we repeated our

experiments with recombinant E1 purified from insect cells as

well as from E. coli. Because E. coli is devoid of endogenous protein

ubiquitination system, recombinant E1 purified from E. coli is

absolutely free from contaminating E2s. We obtained essentially

the same results with these highly pure E1 preparations (Fig. S1C).

Similarly, baculovirus-expressed His-tagged full length parkin

purified from insect cells also exhibits E2-independent auto-
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ubiquitination (Fig. 1B), suggesting that the phenomenon is not an

artifact that has arisen from the fusion of an artificial substrate, i.e.

MBP, to parkin. Importantly, in the absence of His-tagged parkin,

E1 and E2 alone do not generate appreciable ubiquitin-positive

bands (Fig. 1B). To extend on these findings, we also performed a

time-dependent parkin ubiquitination assay in the absence of E2.

Anti-parkin immunoblotting of the reaction products reveals an

increase in the levels of oligomeric and HMW parkin species over

time that correlate with a decrease in the level of monomeric

parkin, suggesting progressive self ubiquitination (Fig. 1C). This is

true for both MBP-parkin and IBR-R2-catalyzed reactions, except

that the latter, is again apparently more active in mediating the

formation of higher molecular weight parkin species (Fig. 1C).

Notably, ubiquitinated reaction products generated by both MBP-

parkin and IBR-R2 started to appear as early as half an hour after

the start of reaction, suggesting that the observed E2-independent

activity is unlikely a result of non-catalytic event (Fig. 1C). Taken

together, our results demonstrate that parkin could mediate

ubiquitination in the apparent absence of E2 in vitro.

Curiously, our previous characterization of MBP-parkin did not

reveal its E2-independent activity [11]. We noted that a difference

between our previous and current study is the concentration of E1

used, i.e. 1.6 and 10 mg respectively. To test if E1 concentration

influences the E2-independent activity of recombinant parkin, we

performed parkin ubiquitination assay in the presence of 1.6, 5.0

and 10 mg of E1. As expected, parkin-mediated E2-independent

auto-ubiqiuitination increases in an E1 dose-dependent manner

(Fig. 1D). Moreover, when E1 is kept at a low concentration (i.e.

1.6 mg), the presence of E2 markedly enhances parkin activity

(Fig. 1E). This dependency on E2 by parkin is however dimin-

ished at higher concentrations of E1 (Fig. 1D & E). Our results

thus suggest a relationship between E1 activity and parkin’s

E2 dependency and provide an explanation to the apparent

discrepancy between our previous and current findings.

Figure 1. Parkin mediates self ubiquitination in the presence or absence of E2. (A) In vitro ubiquitination reaction products generated by
MBP-parkin, C441R or IBR-R2 in the absence of E1, E2 or parkin (i.e. ‘‘-E3’’), or in the presence of all three components (Full) were subjected to
immunoblotting with anti-parkin, anti-FK1 and anti-FK2, as indicated. Notice the ladders of immunoreactivities observed in MBP-parkin and IBR-R2-
catalyzed reactions but not in C441R-containing reactions. (B) Reaction products generated by His-tagged parkin (His-parkin) purified from insect
cells in the presence or absence of UbcH7 at various time points were subjected to immunoblotting with anti-parkin, anti-FK2 and anti-E1, as
indicated. Arrows indicate His-parkin. (C) Reaction products generated by MBP-parkin or IBR-R2 in the absence of E2 at various time points were
subjected to immunoblotting with anti-parkin, anti-FK1 and anti-FK2. Control refers to full reactions. (D & E) MBP-parkin autoubiquitination assay was
performed in the presence of different doses of E1 (i.e. 1.6, 5 or 10 mg/ml), in the presence or absence of E2 (as indicated) and visualized by means of
anti-parkin and anti-FK2 immunoblotting.
doi:10.1371/journal.pone.0019720.g001
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E2-independent activity is specific to parkin and is
dependent on RING2 integrity

To address the specificity of parkin-mediated E2-independent

ubiquitination, we tested a spectrum of E3 ligases including TRAF6,

Momo and Rma1, as well as RING finger domains of Trim5,

Trim32, Rbx2, March8, Rnf4 and Deltex2, and found that none of

these enzymes exhibit appreciable activity in the absence of their

respective cognate E2s (Fig. 2A and S2A). On the other hand, all the

E3s examined mediate robust self-ubiquitination in full reaction

mixtures containing their cognate E2s (Fig. 2A and S2A). Thus,

parkin appears uniquely endowed with E2-independent activity.

However, as we have observed earlier, neither this activity nor the

one produced in collaboration with UbcH7 is evident in the C441R

mutant (Fig. 1A). Notably, we and others have previously

demonstrated that RING2 mutations abolish parkin-mediated

catalysis, whereas several parkin mutants harboring mutations

outside of RING2 are catalytically-competent [9,11]. Accordingly,

we examined the ability of several disease-associated parkin

Figure 2. E2-independent activity is specific to parkin and is dependent on RING2 integrity. (A) In vitro ubiquitination reaction products
generated by MBP-TRAF6, Rma or Momo in the absence of E1, E2 or E3, or in the presence of all three components including their respective cognate
E2 (Full) were subjected to immunoblotting with anti-MBP and anti-FK2, as indicated. Unlike parkin, none of these E3 ligase could catalyze E2-
independent ubiquitination. (B) Reaction products generated by disease-associated MBP-parkin K211N and G430D mutants in the absence of E1, E2
or E3, or in the presence of all three components (Full) were subjected to immunoblotting with anti-parkin and anti-FK2, as indicated. Reaction
products catalyzed by wild type MBP-parkin in the presence or absence of UbcH7 were immunoblotted alongside for comparison.
doi:10.1371/journal.pone.0019720.g002
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mutants, including K211N, T240R, T415N and G430D, to

mediate E2-independent ubiquitination. Consistent with previous

reports [9,11], we found that RING2 parkin mutants remain

catalytically-null both in the presence or absence of E2s while

mutations outside of parkin’s RING2 retain their E2-dependent as

well as E2-independent catalytic competency (Fig. 2B and S2B).

Thus, the presence of an intact RING2 is essential for both E2-

dependent and E2-independent parkin-mediated ubiquitination.

MS analysis reveals different ubiquitin topologies
associated with MBP-parkin and IBR-R2-catalyzed
reactions in the absence or presence of E2

To examine the nature of E2-independent and E2-dependent

ubiquitination mediated by MBP-parkin and IBR-R2, we analyzed

the reaction products directly via MS (Fig. 3). Although we detected

ubiquitin via MS in MBP-parkin-catalyzed reactions both in the

presence or absence of UbcH7, there is no evidence of isopeptide

linkages indicative of ubiquitin chain assemblies (Table 1), suggest-

ing that ubiquitin molecules detected are in their monomeric form

and that MBP-parkin catalyzes solely monoubiquitination. This

result is consistent with our earlier observations as well as previous

reports demonstrating that parkin mediates monoubiquitination in

vitro [9,11]. In contrast, we detected the presence of both

monoubiquitin as well as polyubiquitin linked specifically via K48

in reactions containing IBR-R2 in the presence or absence of

UbcH7 (Fig. 3C–D and Table 1). In view of this and previous results

by several groups showing that parkin could also collaborate with

Ubc13/Uev1a to mediate K63-linked polyubiquitination [8,10,12],

we wondered whether IBR-R2-catalyzed ubiquitin chain assembly

could be modified by the heterodimeric E2 pair. Consistent with

this, MS analysis of reaction products catalyzed by IBR-R2 in the

presence of Ubc13/Uev1a reveals the presence of both K48 as well

as K63-linked polyubiquitin species, along with monoubiquitin

(Fig. 3E, S3–6 and Table 1). On the other hand, neither K48 nor

K63-linked ubiquitin chains are detected when IBR-R2 is absent or

is replaced by MBP-parkin (Fig. S4–6 and Table 1). Taken together,

our results suggest that IBR-R2 contains an intrinsic activity that

catalyzes polyubiquitin chains and that this activity is masked in full

length parkin, which catalyzes solely monoubiquitination in vitro.

Linker region represses intrinsic polyubiquitination
activity of parkin

Given that IBR-R2 is devoid of parkin’s N-terminal sequence,

it is conceivable that the N-terminal region of parkin may repress

its intrinsic polyubiquitination activity as exhibited by IBR-R2.

To examine this possibility, we generated several parkin mutants

with various lengths of their N-terminal sequence deleted (Fig. 4A

and S7A) and assayed their activities. A truncated parkin mutant

that is deleted of its entire Ubl domain (DUbl) behaves essentially

like the wild type protein (Fig. S7B), as are mutants that are

partially devoid of their linker region (Fig. 4B and S7B).

However, a parkin mutant (D237) containing RING1 and IBR-

R2 sequences but is completely deleted of its Ubl and linker

region sequences exhibits catalytic properties that bear striking

resemblance to that displayed by IBR-R2 (Fig. 4B). Notably, the

D237 mutant generated robust FK1-immunoreactive species both

in the absence and presence of E2 (Fig. 4B), suggesting a capacity

of the mutant to mediate polyubiquitination. In contrast, a

corresponding deletion mutant (D152) that retained a portion of

the linker region from amino acid 152–237 fails to generate

appreciable FK1-immunoreactive products (Fig. 4B). Supporting

this, MS analysis of reaction products catalyzed by D237 mutant

in the absence or presence of E2 (UbcH7) reveals the presence of

K48-linked ubiquitin chains, whereas no isopeptide linkages are

detectable in reaction products catalyzed by the D152 parkin

mutant (Table 1 and Fig. S8). Taken together, our results suggest

that the stretch of parkin sequence at the linker region from

amino acid 152–237 likely exerts repression on its intrinsic

polyubiquitination activity.

Notwithstanding the above, how the intrinsic polyubiquitina-

tion activity of parkin becomes unmasked in the full length

protein is unclear. However, a recent study by Sha and colleagues

has demonstrated that parkin phosphorylation by PINK1

activates its poly-ubiquitination activity, although the exact site(s)

where parkin is phosphorylated was not mapped [13]. In a

related study, Kim and colleagues found that threonine-175

(T175) on parkin is a major residue phosphorylated by PINK1

[15]. Notably, T175 resides within the ‘‘repressor’’ sequence (i.e.

a.a. 152–237) of parkin that we have identified above and it is

attractive to speculate that its modification via phosphorylation

might stimulate the intrinsic polyubiquitination activity of the

enzyme. To examine this possibility, we generated MBP-parkin

T175D phospho-mimetic mutant and assayed its activity

alongside full length parkin and IBR-R2. Additionally, we also

generated various other parkin phospho-mimetic mutants includ-

ing S101D, S127D, S131D, T217D and S378D (Fig. 5A). All of

these residues on parkin have been reported to undergo

phosphorylation in vivo [15,16,17,18]. However, we found that

MBP-parkin T175D behaves catalytically like the wild type full

length protein in the absence or presence of UbcH7 (Fig. 5B &

C). Further, switching the E2 from UbcH7 to Ubc13 did not alter

the ubiquitination profile of the mutant relative to wild type

parkin (Fig. 5B). Similar observations were also made with other

phospho-mimetic mutants examined (Fig. 5C). Thus, mimicking

parkin phosphorylation via S-D substitution does not appear to

result in the unmasking of the enzyme’s intrinsic polyubiquitina-

tion activity.

Figure 3. MS analysis of reaction products catalyzed by MBP-parkin or IBR-R2. (A) CBB-stained gel showing the reaction products
produced by MBP-parkin or IBR-R2 under different conditions, as indicated. (B) Schematic diagrams of b and y ion assignments of K48- and K63-
linkage ubiquitin peptides (C-E) MS/MS analysis of K48- or K63-linked ubiquitin chains catalyzed by IBR-R2. Precursor peaks estimated as K48- and
K63-linkages were subsequently confirmed by MS/MS analysis.
doi:10.1371/journal.pone.0019720.g003

Table 1. Summary of MS/MS results.

E2 Ubiquitin Linkage Topology

Parkin (full length) no E2 no-linkage

UbcH7 no-linkage

Ubc13/Uev1 no-linkage

IBR-Ring2 no E2 K48

UbcH7 K48

Ubc13/Uev1 K48, K63

D152 no E2 no-linkage

UbcH7 no-linkage

D237 no E2 K48

doi:10.1371/journal.pone.0019720.t001
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IBR-R2 but not full length parkin promotes
polyubiquitination of synphilin-1

Notably, our above results regarding parkin’s catalytic

properties were derived from its auto-ubiquitination activity.

We were therefore curious to examine how full length parkin and

IBR-R2 might ubiquitinate a physiological substrate in the

presence or absence of E2. For this purpose, we have prepared

recombinant synphilin-1 (an a-synuclein interactor that we have

previously demonstrated to be a substrate of parkin [10]) and

subjected the protein to parkin-mediated ubiquitination in vitro.

Anti-synphilin-1 immunoblotting, which allows us to assess

synphilin-1 ubiquitination directly (against the background of

parkin auto-ubiquitination), revealed that both full length parkin

and IBR-R2 fail to promote synphilin-1 ubiquitination in the

absence of E2 (Fig. 6). However, in the presence of UbcH7,

parkin IBR-R2 but not the full length protein mediates robust

synphilin-1 ubiquitination, an observation that is consistent with

the ability of IBR-R2 to catalyze polyubiquitination (Fig. 6). The

auto-ubiquitination activity of parkin in the absence or presence

of E2 is otherwise not appreciably affected by synphilin-1 (Fig. 6).

Curiously, IBR-R2-mediated synphilin-1 ubiquitination is con-

siderably weaker when UbcH7 is replaced by Ubc13/Uev1a

(Fig. 6), suggesting that additional factors/events present in

cellular system might account for parkin-mediated K63-linked

ubiquitination of synphilin-1 that we have previously observed in

vivo [10].

Figure 4. N-terminal region of parkin represses its intrinsic polyubquitination activity. (A) Schematic depiction of full length parkin
protein and the deletion mutants D152 and D237. (B) In vitro ubiquitination reaction products generated by MBP-parkin, D152, D237 or IBR-R2 in the
absence of E2 were subjected to immunoblotting with anti-parkin, anti-FK1 and anti-FK2, as indicated. (C) As in (B) except that reactions were
conducted in the presence of UbcH7.
doi:10.1371/journal.pone.0019720.g004
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Discussion

We have demonstrated here an unprecedented ability of an E3

member to mediate E2-independent ubiquitin modification. This

is intriguing, as it markedly differs from the canonical mechanism

of protein ubiquitination where sequential actions of E1, E2 and

E3 are needed to catalyze the addition of ubiquitin molecules on a

substrate. Further, in the ‘‘sequential’’ model, it is widely

presumed that following the initial identification and conjugation

of a substrate with ubiquitin, the same E2/E3 complex is essential

for the assembly of polyubiquitin chain on the substrate

[19,20,21]. Notably, none to date has established that E3 in the

absence of E2 is capable of catalyzing protein ubiquitination,

although one group has recently demonstrated that ubiquitin

chain can be preassembled on an E2 before being transferred to a

substrate by an E3 [22], whereas another has shown that E1 is

capable of extending polyubiquitin chain on E2 [23]. Here, we

have established that the ubiquitin ligase activity of parkin can

support ubiquitination (albeit auto-ubiquitination) in vitro in the

complete absence of E2. Further, we have demonstrated that

parkin-mediated E2-independent ubiquitination is a rather specific

property of the enzyme, as several other related E3 ligases that we

have tested alongside are clearly devoid of this activity. Taken

together, parkin thus appears to be a unique ubiquitin ligase

capable of recruiting E1 directly (i.e. without an intermediate E2

member) to carry out protein ubiquitination.

Notwithstanding the above, there are a few caveats in our

findings that are worth highlighting. Firstly, we do not know at this

moment whether and how the proposed transfer of activated

ubiquitin from E1 to parkin occurs, i.e. whether the transfer occur

through the internal E1-ubiquitin thioester of the ternary complex

or through the bound ubiquitin adenylate intermediate and whether

it involves the active site cysteine of parkin. Secondly, our in vitro

assays (as with the case with the majority of those reported in the

literature) were conducted in the presence of the reducing agent

DTT, which can act as an acceptor of E1 ubiquitin thioester in the

absence of E2. In this case, parkin might be capable of orienting

ubiquitin-DTT moieties on its surface to catalyze by proximity

effect a slow basal rate of ubiquitination. However, as reducing

agents are required to prevent cysteine modifications and as such to

maintain the integrity of RING domains, it is difficult to evaluate

the in vitro activity of parkin(or other RING-containing E3 ligases) in

the absence of DTT. Importantly, our results demonstrated that the

rate of parkin-mediated E2-independent reaction, as shown in

Fig. 1C, is not exactly sluggish, as appreciable product formation

could be detected shortly after the start of reaction. Furthermore, a

mechanism based on proximal effect would not provide an

adequate explanation to the different modes of ubiquitination (i.e.

mono- and polyubiquitination) exhibited by full length parkin and

IBR-R2 in the apparent absence of E2 (notwithstanding that no

other E3 examined in this study is capable of E2-independent

ubiquitination).

Importantly, we also showed that parkin contains an intrinsic

polyubiquitination activity that is normally masked in the full

length protein. As a result, full length parkin catalyzes solely

monoubiquitination in vitro regardless of the presence or absence of

Figure 5. Parkin S/T-D phospho-mimetic mutants display similar ubiquitination profile as the wild type protein. (A) Schematic
depiction of full length parkin protein with the position of known S/T phosphorylation sites indicated by arrows (B) In vitro ubiquitination reaction
products generated by MBP-parkin, MBP-parkin T175D or IBR-R2 in the presence of UbcH7 or Ubc13 were subjected to immunoblotting with anti-
parkin, anti-FK1 and anti-FK2, as indicated. (C) In vitro ubiquitination reaction products generated by various parkin phospomimetic mutants in the
absence or presence of E2 (UbcH7) were subjected to immunoblotting with anti-parkin and anti-FK1.
doi:10.1371/journal.pone.0019720.g005
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E2, a phenomenon that is consistent with previous reports by

ourselves and others [9,11]. Surprisingly, full length parkin-

catalyzed reactions exhibit some immunoreactivity towards FK1

antibody (albeit modestly so relative to IBR-R2-catalyzed

reactions), which specifically recognizes polyubiquitin chains. It

is possible that anti-FK1 may exhibit a low level of cross-reactivity

with multiple-monoubiquitinated products, which parkin is known

to mediate [9,11]. When unmasked, the intrinsic activity encoded

within the sequence of IBR-R2 supports both E2-independent and

E2-dependent assembly of ubiquitin chains. However, the E2-

independent activity applies to parkin self-ubiquitination and not

to its activity towards its substrate (at least with synphilin-1).

Indeed, the effect of E2 on parkin-mediated ubiquitination

becomes significantly more pronounced when the enzyme is

acting on its substrate. Consistent with the repressed state of the

full length protein, only IBR-R2 is capable of mediating

appreciable synphilin-1 ubiquitination in the presence of E2. It

is currently unclear how the intrinsic polyubiquitination activity of

parkin becomes activated in the full length protein. Although none

of our single phospho-mimetic parkin mutants seems to work, it is

possible that the activation event requires multiple parkin

phosphorylation, or perhaps the recruitment of an unknown

activator by the enzyme. Notably, several recent reports from our

laboratories and others have uncovered parkin’s function in

the surveillance pathway for damaged mitochondria [24,25,26,

27,28,29,30]. During this process, parkin specifically polyubiqui-

tinates depolarized mitochondrial proteins. Interestingly, the

ubiquitin ligase activity of parkin is repressed in the cytoplasm

under steady-state conditions in cells; however, PINK1-dependent

mitochondrial localization liberates the latent enzymatic activity of

Parkin [28], whereupon it promotes the degradation of mitochon-

drial outer membrane proteins [31,32]. We speculate that the full-

length parkin whose polyubiquitination activity is repressed in vitro

may reflect inactivated parkin in the cytoplasm under steady state

conditions in cells. Further, consistent with our findings described

here, SILAC analysis revealed a substantial increase in parkin-

mediated K48-linked (9-fold) and K63-linked (28-fold) polyubi-

quitination upon mitochondrial depolarization [33].

It is noteworthy that our MS data reveal that IBR-R2 catalyzes

the formation of K48-linked ubiquitin chain in an E2-independent

manner, suggesting that once unmasked, parkin-mediated poly-

ubiquitination is inherently primed for proteasome degradation.

Alternatively, when Ubc13/Uev1a is recruited, parkin could

modify its substrate (or itself) via K63-linked ubiquitin chains,

although our results with recombinant synphilin-1 would suggest

the involvement of additional factor/events for parkin-mediated

K63 ubiquitination to occur in vivo. The multiple modes of parkin-

mediated ubiquitination would presumably endow the protein

with a greater flexibility to react to changing cellular conditions.

For example, upon mitochondrial depolarization, parkin is known

to modify proteins on the damaged organelles via a variety of

ubiquitin linkages, including K27, K48 and/or K63 [24,29].

Further, in times of proteasomal stress, parkin-mediated K63

ubiquitination may be favored over the proteasome-linked K48

ubiquitination as the former mode of ubiquitin modification

has the ability to divert protein load away from an otherwise

overwhelmed proteasome (reviewed in [34]) as well as enhance the

pro-survival NFkB pathway [35].

In conclusion, we have provided evidence here demonstrating

that parkin contains an intrinsic polyubiquitination activity that is

normally masked in the full length state. We also showed that

parkin is a unique E3 member not only in terms of its ability to

mediate multiple forms of E2-dependent ubiquitination, but also

its ability to mediate ubiquitination in the absence of E2. However,

we remain cognizant of the several caveats associated with our

current findings, which we hope would be clarified by future

studies.

Supporting Information

Figure S1 MBP-parkin catalyzes E2-independent ubi-
quitination. (A) Left, Schematic depiction of various recombi-

nant MBP-parkin proteins including MBP-parkin (FL), MBP-

parkin C441R (C441R) and MBP-parkin IBR-R2 (IBR-R2). Right,

Coomassie Brillant Blue (CBB)-stained gel and anti-parkin

immunoblots showing the purity of the various recombinant

parkin species. (B & C) In vitro ubiquitination reaction products

generated by MBP-parkin in the presence or absence of UbcH7

and different forms of E1 were subjected to immunoblotting with

anti-parkin and anti-FK2, as indicated.

(PDF)

Figure S2 Other E3 members as well as parkin RING2
mutants are devoid of E2-independent activity. In vitro

ubiquitination reaction products generated by purified MBP-

proteins containing the catalytic RING domain of various E3

members in the presence or absence of their cognate E2, UbcH5,

were subjected to immunoblotting with anti-FK2, as indicated. (B)

Reaction products generated by MBP-parkin T240R and T415N

(RING2 domain) mutant in the absence of E1, E2 or E3, or in the

presence of all three components (Full) were subjected to

immunoblotting with anti-parkin. Reaction products catalyzed

by wild type MBP-parkin in the presence of UbcH7 were

immunoblotted alongside for comparison.

(PDF)

Figure 6. IBR-R2 but not full length parkin promotes synphilin-1
ubiquitination. In vitro ubiquitination reaction was carried out with
synphilin-1 as a substrate in the absence of parkin (i.e. –E3) or in the
presence of MBP-parkin (FL) or IBR-R2 in combination with either
UbcH7, Ubc13 or no E2 (as indicated). Parkin-mediated ubiquitination of
synphilin-1 was analyzed by means of anti-synphilin-1 immunoblotting
(top panel) whereas parkin-mediated self ubiquitination was analyzed
by means of anti-parkin immunoblotting (bottom panel).
doi:10.1371/journal.pone.0019720.g006
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Figure S3 Parkin-mediated ubiquitination in the pres-
ence of Ubc13/Uev1a. In vitro ubiquitination reaction products

generated by MBP-parkin or IBR-R2 in the presence or absence

of Ubc13/Uev1a under different conditions were subjected to

immunoblotting with anti-parkin, anti-FK1 and anti-FK2, as

indicated.

(PDF)

Figure S4 Sample collection for MS analysis. (A–C) CBB-

stained gel showing the reaction products produced by MBP-

parkin or IBR-R2 under different conditions, as indicated. Portion

of gels corresponding to ubiquitinated protein species used for MS

analysis are shown alongside.

(PDF)

Figure S5 K48-linked ubiquitin chains associated with
IBR-R2 catalyzed reactions in the presence of Ubc13/
Uev1a. MS results derived from IBR-catalyzed reaction products

in the presence of Ubc13/Uev1a revealing the presence of both

K48-linked ubiquitin. The peak corresponding to K48–linkages is

indicated.

(PDF)

Figure S6 K63-linked ubiquitin chains associated with
IBR-R2 catalyzed reactions in the presence of Ubc13/
Uev1a. Besides K48-linked ubiquitin chains, MS results derived

from IBR-catalyzed reaction products in the presence of Ubc13/

Uev1a also revealed the presence of K63-linked ubiquitin. The

peak corresponding to K63-linkages is indicated.

(PDF)

Figure S7 Lack of E2-independent activity in several
parkin deletion mutants (A) Schematic depiction of full length

parkin protein, IBR-R2 and various deletion mutants (B) In vitro

ubiquitination reaction products generated by the various MBP-

parkin species in the absence of E2 were subjected to

immunoblotting with anti-parkin and anti-FK1, as indicated.

(PDF)

Figure S8 Parkin D237 mutant exhibits E2-independent
and E2-dependent polyubiquitination activity. (A) CBB-

stained gel showing the reaction products produced by MBP-

parkin D152 or D237 mutant under different conditions, as

indicated. (B) CBB-stained gel showing excised portion of gels

corresponding to ubiquitinated protein species produced by MBP-

parkin D152 or D237 were used for MS analysis. (C–D) MS results

derived from MBP-parkin D237-catalyzed reaction products

revealing the presence of K48-linked ubiquitin.

(PDF)
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