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EDITORIAL COMMENT
Early Life Cardiovascular Risk Factors and
Midlife Epigenetic Aging
An Enduring Legacy*
Paul S. de Vries, PHD,a Anthony S. Zannas, MD, PHDb,c
A ging can be seen as a progressive deteriora-
tion of our physiological functions. Although
a person’s chronological age based simply on

their date of birth is a strong predictor of this process,
there can be interindividual differences in the speed
at which biological aging occurs. To capture such
interindividual differences, several composite epige-
netic markers have been developed that combine
the DNA methylation status of multiple sites across
the human genome to predict age-related traits. The
first-generation measures of epigenetic aging, such
as the ones developed by Horvath1 and Hannum
et al,2 were derived by regression models that
merely predict chronological age, whereas second-
generation measures, such as the widely used Pheno-
Age and GrimAge, further predicted health span and
lifespan by including in their regression health and
mortality endpoints.3,4 For all these markers, the de-
gree to which epigenetic age outpaces chronological
age—that is, the individual’s “epigenetic age accelera-
tion”—is used as a measure of biological aging.

Following these developments, an exponentially
increasing number of studies have repeatedly found
associations between accelerated epigenetic aging
and a variety of age-related traits, independent of
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chronological age.3 For example, studies have shown
cross-sectional associations between epigenetic age
acceleration and cardiovascular risk factors.5 Epige-
netic aging has also been associated with measures of
subclinical atherosclerosis and with risk of incident
clinical coronary heart disease.6 What has remained
understudied, however, is whether cardiovascular
risk factors early in life can result in enduring effects
on epigenetic age acceleration that are still detectable
later in life.

In this issue of JACC: Basic to Translational Science,
Sun et al7 provide novel insights into this research
gap. The investigators used the Bogalusa Heart Study,
a population-based, prospective cohort study that has
followed 1,580 participating children from 1973 on-
ward. They studied cardiovascular risk factors during
childhood in relation to epigenetic age acceleration in
midlife. They found that unfavorable metabolic pro-
files in childhood, including increased body mass in-
dex (BMI), systolic blood pressure, and triglycerides,
and decreased high-density lipoprotein cholesterol,
predicted midlife epigenetic age acceleration, as
measured with 3 of the 4 aforementioned markers
(Hannum, PhenoAge, GrimAge). They performed
cross-lagged panel analyses, a well-suited and so-
phisticated approach for clarifying temporal re-
lationships, thereby providing evidence that BMI,
triglycerides, and high-density lipoprotein choles-
terol are more likely to be determinants rather than
consequences of epigenetic age acceleration. The in-
vestigators further found that cardiovascular risk
factors during childhood were associated with carotid
intima media thickness, a measure of subclinical
atherosclerosis. They found that PhenoAge and
GrimAge mediated up to 27% of the associations of
BMI and triglycerides with subclinical atheroscle-
rosis. Together these findings extend prior work and
suggest a temporal relationship and potential causal
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pathway through which cardiovascular risk factors
early in life can exert enduring effects on epigenetic
aging, thereby contributing to atherosclerosis risk
later in life.

Although the study by Sun et al7 provides valuable
insights, it also reveals lingering questions that
should be clarified by future research. First, although
the longitudinal design reduces the likelihood of
reverse causation, these analyses may still be
vulnerable to confounding. Orthogonal approaches
for causal inferences such as Mendelian randomiza-
tion for time-varying exposures could further support
and clarify the underlying causal relationships.8

Second, it is unclear whether the observed associa-
tion and mediation is explained by an overall effect
on biological age or a more specific effect on epige-
netic age. This question is relevant because different
markers of biological aging have been suggested to
have independent or even additive effects on disease
risk.9 To better characterize such effects, future
studies should integrate epigenetic with other estab-
lished measures of biological age such as telomere
length and proteomic age. Finally, the investigators
used carotid intima media thickness as a measure of
subclinical atherosclerosis. Given that carotid intima
media thickness is not a particularly strong predictor
of clinical events, it would be worthwhile to
demonstrate this same mediation by epigenetic age
acceleration with other measures of atherosclerosis
such as coronary artery calcification or harder end-
points of cardiovascular disease such as clinical cor-
onary heart disease events.

Keeping these unresolved questions in mind, the
findings from Sun et al7 underscore the importance of
preventing or ameliorating cardiovascular risk early
in life and may help guide health policies. Early
studies suggest that epigenetic aging can be modu-
lated by simple lifestyle interventions, such as diet
and exercise.10 Although the clinical benefits of such
modulation remain to be determined, evidence to
date raises the intriguing possibility that epigenetic
aging can be leveraged as a biomarker to monitor
early interventions and promote health across the
lifespan.
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