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Abstract
Due to activation of fibroblast into cancer-associated fibroblasts, there is often an increased deposition of extracellular matrix 
and fibrillar collagens, e.g. type III collagen, in the tumor microenvironment (TME) that leads to tumor fibrosis (desmoplasia). 
Tumor fibrosis is closely associated with treatment response and poor prognosis for patients with solid tumors. To assure that 
the best possible treatment option is provided for patients, there is medical need for identifying patients with high (or low) 
fibrotic activity in the TME. Measuring unique collagen fragments such as the pro-peptides released into the bloodstream 
during fibrillar collagen deposition in the TME can provide a non-invasive measure of the fibrotic activity. Based on data 
from 8 previously published cohorts, this review provides insight into the prognostic value of quantifying tumor fibrosis 
by measuring the pro-peptide of type III collagen in serum of a total of 1692 patients with different solid tumor types and 
discusses the importance of tumor fibrosis for understanding prognosis and for potentially guiding future drug development 
efforts that aim at overcoming the poor outcome associated with a fibrotic TME.
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α-SMA  Alpha smooth muscle actin
BMI  Body mass index
CAF  Cancer-associated fibroblast
CBD  Collagen-binding domain
DFS  Disease free survival

ECM  Extracellular matrix
FAP  Fibroblast activation protein
FDA  Food and Drug Administration
HR  Hazard ratio
IHC  Immunohistochemistry
IL  Interleukin
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LAIR1  Leukocyte-specific collagen receptor
MDSC  Myeloid-derived suppressor cell
OS  Overall survival
PDGF  Platelet derived growth factor
PD-L1  Programmed death-ligand 1
TAM  Tumor-associated macrophages
TGF-β  Transforming growth factor-β
TMB  Tumor mutational burden
TME  Tumor microenvironment

Introduction to the extracellular matrix 
(ECM) and collagens in the tumor 
microenvironment (TME)

The tumor microenvironment (TME) is important for tumor 
progression and patient survival. The extracellular matrix 
(ECM) comprises an important component of the TME in 
addition to the tumor cells, stromal cells and immune infil-
trate [1]. The ECM is the non-cellular component of tissues 
and organs that provides crucial physical, bio-mechanical 
and bio-chemical properties that is required for tissue mor-
phogenesis, differentiation and homeostasis [2]. The major 
components of the ECM are the collagens, of which 28 dif-
ferent types have been described, each with a unique role in 
supporting the tissue microarchitecture [3]. Under normal 
conditions, a homeostatic state of collagen turnover is main-
tained by a refined balance between synthesis, degradation 
and post-translational modifications that maintains tissue 
integrity. In contrast to a normal healthy stroma, this colla-
gen homeostasis is disrupted in the TME as the composition 
and quality of the tumor tissue becomes altered [4]. Changes 
in the composition of the ECM/collagens have been shown 
to modulate the hallmarks of cancer and are thought to play 
a vital role in tumor progression and metastasis as well as in 
defining the likelihood of responding to anti-cancer therapies 
[5–8].

Overall, the ECM can be divided into the basement 
membrane and the interstitial matrix [2, 3]. The basement 
membrane underlies the epithelial and endothelial cells and 
supports glandular structures and blood vessels [9]. It is a 
relatively loose ECM with so-called network forming col-
lagens, where type IV collagen is the most abundant protein 
together with laminins. The basement membrane allows 
nutrients and oxygen to diffuse through. In the context of 
cancer, loss of basement membrane structures has been asso-
ciated with tumor cell invasion and angiogenesis [10, 11]. It 
has been well investigated and documented since the early 
discoveries of Mina Bissel and colleagues that the basement 
membrane is important for cell function and can even revert 
a malignant cell phenotype [12, 13]. Recent findings sup-
port that the basement membrane is key for determining the 

metastatic potential of cancer [14]. Cellular invasion through 
the basement membrane is a key factor in tumorigenesis and 
is driven primarily by the increased matrix metalloprotease 
(MMP) activity in the TME that degrade e.g. type IV col-
lagen and alters cellular adhesion and integrin-signaling and 
hereby affects cell behavior [4, 15–21].

Below the basement membrane appears the interstitial 
matrix [2, 3]. The interstitial matrix consists of a fibrillar 
collagen network of type I, III, V, and XI collagens that form 
a 3D lattice to support tissue structure and cell function. 
The two major fibrillar collagens in the interstitial matrix 
are type I collagen and type III collagen. Type I collagen 
is the most abundant protein in the body and can be found 
in bone and connective tissues [3]. Type III collagen is the 
second most abundant collagen, found primarily in connec-
tive tissues.

In the TME, there is often an increased interstitial matrix 
deposition and remodeling of fibrillar collagens due to acti-
vation of quiescent fibroblasts into cancer-associated fibro-
blasts (CAFs) that not only synthesize excess amount of 
ECM and collagen but also contribute to MMP mediated 
fibrillar collagen degradation [22]. This chronic-active scar-
ring process is also known as tumor fibrosis, or desmopla-
sia. As described below, tumor fibrosis has been shown to 
be closely associated with tumor aggressiveness, treatment 
response and prognosis for patients. However, we are only 
beginning to understand the potential impact of a fibrotic 
TME, the ECM and associated collagens.

Major drivers and impact of fibrosis 
in the TME

The major pathological signature of tumor fibrosis is a 
fibrous connective tissue of interstitial matrix formed by 
proliferation and activation of fibroblasts which takes place 
inside, adjacent to, and around a solid tumor [23]. All the 
fibrillar collagens associated with tumor fibrosis are pro-
duced by CAFs resulting in increased deposition of a cross-
linked dense and stiff collagen matrix that is impermeable 
for treatment, nutrients, and oxygen and therefore associated 
with poor outcome [24–26]. The CAF and tumor fibrosis 
biology builds on lessons learned from fibrotic disorders 
such as idiopathic pulmonary fibrosis, non-alcoholic stea-
tohepatitis, primary sclerosing cholangitis, systemic scle-
rosis as well as liver, heart, lung and kidney fibrosis [4, 5, 
27–35] and it has been shown that ECM turnover is gen-
erally higher in liver cancer versus cirrhosis, lung cancer 
versus idiopathic pulmonary fibrosis and pancreatic cancer 
versus chronic pancreatitis [36–38]. The CAFs promote 
tumorigenesis by contributing to ECM remodeling as well 
as secreting e.g. cytokines and growth factors to crosstalk 
with the immune cells and cancer cells. Among the growth 
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factors and cytokines, transforming growth factor-β (TGF-β) 
is considered as the major pro-fibrotic cytokine and inducer 
of fibrogenesis because it promotes CAF development and 
increased collagen synthesis [39, 40]. Other cytokines such 
as interleukin (IL)-4, IL-13, and platelet-derived growth 
factor (PDGF) are pro-fibrotic as well and affect collagen 
expression [41, 42]. MMPs can also activate and release 
latent TGF-β stored in the ECM and hence can drive tumor 
fibrosis indirectly [43].

Tumor fibrosis may result in reduced treatment effect by 
forming a barrier for treatment that hinders drug penetra-
tion [26]. The interaction between tumor fibrosis, CAFs 
and immune cells infiltrating the tumor microenvironment 
directly and indirectly inhibit antitumor immunity with the 
activation of fibroblasts and excessive collagen deposition 
linked to the lack of T-cell infiltration and activity in the 
tumor that is a prerequisite for efficient response to immuno-
therapies [44–50]. This fibrosis associated T-cell exclusion 
from the tumor core may be due to entrapment in the colla-
gen-rich peritumoral stroma and/or due to leukocyte-specific 
collagen receptor 1 (LAIR1) dependent T-cell exhaustion 
[48, 51, 52]. Tumor fibrosis may also limit the anti-tumor 
activity of effector T-cells by mediating the recruitment, and 
the activation of secretory programs of immunosuppressive 
cells such as tumor-associated macrophages (TAMs) and 
myeloid-derived suppressor cells (MDSCs) [47, 53, 54]. 
Higher collagen density within the tumor ECM promotes 
the polarization of TAMs to a more tumor-promoting func-
tional phenotype characterized by enhanced expression of 
immunosuppressive genes and secreted proteins [55]. Fur-
thermore, single cell sequencing studies of tumors reveal 
that similar to CAFs, TAMs are also capable of upregu-
lating the expression of ECM genes, suggesting that they 

may themselves influence the fibrotic composition of the 
tumor stroma [56]. Figure 1 illustrates this major pathologi-
cal tissue signature and associated clinical impact of tumor 
fibrosis.

Quantifying tumor fibrosis in a liquid biopsy: 
potential prognostic value of measuring 
type III collagen pro‑peptides non‑invasively 
in patients with cancer

The common standard for assessing tumor fibrosis in 
patients diagnosed with cancer is by use of Sirius red or 
trichrome staining of total collagen content in tissue biop-
sies, or by staining for type I collagen and III collagen with 
antibodies for more detailed immunohistochemical assess-
ments. The measurement of fibroblast activation markers, 
e.g. alpha smooth muscle actin (α-SMA) and fibroblast 
activation protein (FAP), and stromal gene signatures in the 
immuno-oncology setting, recently have been added to this 
portfolio [48, 51, 52, 56–58]

To describe the dynamics of tumor fibrosis, a range of 
novel technologies are emerging which quantify specific col-
lagen fragments in blood [59–61]. By targeting unique fibril-
lar collagen degradation fragments, or pro-peptides, one may 
provide a dynamic measure of tumor fibrosis with the ability 
to quantify the collagen turnover or synthesis rate (fibrotic 
activity). As collagens are degraded or built into fibers, there 
is a release of unique epitopes that may provide informa-
tion about the ongoing pathological processes of damage 
and repair with some epitopes being released during colla-
gen formation (e.g. pro-peptides) and other epitopes being 

Fig. 1  Overview of the major pathological signature of tumor fibrosis 
and the associated clinical impact. Tumor fibrosis is driven by pro-
fibrotic signaling such as transforming growth factor beta (TGF-β) 
that activates quiescent fibroblasts into activated cancer associated 
fibroblasts (CAFs) that synthesize excess amounts of collagens result-
ing in a fibrotic extracellular matrix (ECM). Tumor fibrosis can be 
observed in many solid tumor types and forms a barrier for treatment, 

hindering drug penetration and T-cell recruitment to the tumor cells 
as well as directly impacts and regulates anti-tumor immunity due to 
increased recruitment of myeloid-derived suppressor cells (MDSCs) 
and changes in tumor associated macrophages (TAMs) composi-
tion from a pro-inflammatory (M1-TAM) to an anti-inflammatory 
(M2-TAM) phenotype. Fibrotic tumors are generally much less 
responsive to anti-cancer therapy than non-fibrotic tumors are
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released during collagen degradation (e.g. MMP-generated 
peptide fragments) [62]. Such epitopes/peptides can be iden-
tified by mass spectrometry, then targeted by antibodies, and 
ultimately quantified by an immunoassay or alike. As the 
bone consist primarily of type I collagen, the pro-peptide 
from type I collagen is often used as a surrogate for bone 
formation whereas the degradation fragment CTX-I, is often 
used as a surrogate for bone degradation. As type III col-
lagen is almost exclusively found in soft tissue and not in 
bone, and is derived from activated fibroblasts, it may be a 
superior fibrosis marker than the pro-peptide from type I col-
lagen. An illustration of the biology and dynamics support-
ing this non-invasive biomarker approach to quantify tumor 
fibrosis is shown in Fig. 2. The rationale for investigating the 
prognostic value of quantifying tumor fibrosis through meas-
urements of type III collagen fragments emerged through 
a hypothesis-driven approach supported by observations 
that type III collagen pro-peptides have been found sig-
nificantly increased (> fivefold) in conditioned media from 
the ‘scar-in-a-jar’ in vitro culture of highly fibrotic CAFs 
as compared to normal fibroblast [63], and highly elevated 
in fibrotic disorders [4]. The monoclonal antibody used to 
quantify the pro-peptide of type III collagen in all the studies 
presented here was originally described and developed by 
Nielsen et al., to reflect true formation of type III collagen 

[64]. As this particular monoclonal antibody was raised 
specifically against the N-protease cleavage site of the pro-
collagen (i.e. only targeting released pro-peptides) it differs 
from other available similar assays that either employs poly-
clonal antibodies or monoclonal antibodies targeting internal 
sequences of the pro-peptide and therefore cannot differen-
tiate between type III collagen formation and degradation 
as the removal of the pro-peptide is sometimes incomplete 
resulting in abnormal fibrils that are prone to rapid metabolic 
turnover [65–68].

Data from clinical studies encompassing 1692 patients 
suffering from breast cancer, pancreatic cancer, colorectal 
cancer, liver cancer and malignant melanoma are summa-
rized in the forest plot in Fig. 3. In all studies, the patients 
with high net fibrotic activity (type III collagen pro-peptides) 
at baseline had poor overall survival (OS). Approximately, 
two to threefold increased risk of death was observed in 
patients with high levels of type III collagen pro-peptides. 
An overview of the different patient cohorts are depicted in 
Table 1.

All studies, except Chen et al., applied cutoffs that were 
based on dichotomizing patients in to ´high’ and ‘low’ 
levels of type III collagen pro-peptides and the exact cut-
off value varied from study to study. In the study by Chen 
et al., the hazard ratio (HR) calculations were based on 

Fig. 2  Biology and dynamics supporting the biomarker approach to 
quantify tumor fibrosis non-invasively. Cancer associated fibroblasts 
(CAFs) synthesize excess amount of fibrillar collagens such as type 
III collagen upon activation by for example transforming growth fac-
tor beta (TGF-β). These fibrillar collagens contain pro-peptides that 

are released into circulation when the collagens are deposited as col-
lagen fibrils in the tissue. It is the excess accumulation of bundles of 
collagen fibrils that make up excess of collagens fibers that ultimately 
result in tumor fibrosis. In the blood, the pro-peptides are quantifiable 
biomarkers of tumor fibrosis
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a continuous scale and may therefore partly explain the 
relatively lower HR compared to the other study cohorts. 
Importantly, full clinical utility of type III collagen pro-
peptides as a prognostic tumor fibrosis biomarker needs 
additional exploration of a specific cut-off per indication 

and treatment modality which warrants additional pro-
spective studies. Altogether, measuring fibroblast derived 
type III collagen pro-peptides in serum seems not only to 
be a tumor agnostic, prognostic, tumor fibrosis biomarker 
(liquid biopsy) but also points to the need of focusing 

Fig. 3  Forest plot summarizing the prognostic value of high vs low 
fibrotic activity. Type III collagen pro-peptides were measured in pre-
treatment serum or plasma and were associated with overall survival 
(OS) outcomes in patients with different cancer types. All studies, 
except Chen et al., applied cutoffs that were based on dichotomizing 

patients in to ´high’ and ‘low’ levels of type III collagen pro-peptides 
and the exact cutoff value varied from study to study. In the study by 
Chen et al., the HR calculations were based on a continuous scale (*). 
See additional study details in Table 1

Table 1  Overview of clinical study cohorts evaluating pre-treatment circulating type III collagen pro-peptides as non-invasive measures of tumor 
fibrosis and their association with overall survival (OS)

ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, 5-FU 5-Fluorouracil, SoC standard of care, 
HR hazard ratio, CI confidence intervals

Study Cancer type Therapy No. of pts Sample source Cut-off HR for OS 95% CI p value

Lipton et al. [119] Breast cancer, 
metastatic, ER/
PR + 

Letrozole 148 Serum 29.5 ng/ml 1.95 1.22–3.09 0.005

Lipton et al. [119] Breast cancer, 
metastatic, 
HER2 + 

Trastuzumab 55 Serum 25.5 ng/ml 3.37 1.67–6.80 0.001

Willumsen et al. 
[120]

Pancreatic cancer, 
advanced

Chemotherapy 
(5-FU)

176 Serum 10.4 ng/ml 2.01 1.33–3.05 0.001

Chen et al. [38] Pancreatic cancer, 
all stages

Chemotherapy 
(SoC)

809 Serum 100 ng/ml 
increase

1.28 1.11–1.49  < 0.01

Jensen et al. [121] Melanoma, meta-
static

Ipilimumab 66 Serum 19.6 ng/ml 2.13 1.12–4.04 0.021

Hurkmans et al. 
[122]

Melanoma, meta-
static

Nivolumab or 
Pembrolimumab

107 Serum 12.6 ng/ml 2.41 1.26–4.60 0.008

Jensen et al. [36] Liver cancer, all 
stages

Various 79 EDTA plasma 23.9 ng/ml 2.12 1.10–4.05 0.024

Nissen et al. [123] Colorectal cancer, 
metastatic

Chemother-
apy + Bevaci-
zumab

252 Serum 13.2 ng/ml 2.01 1.54–2.64  < 0.0001
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particularly on the fibroblast-derived interstitial matrix in 
the context of cancer [61, 63, 69, 70].

It is worth emphasizing that most of the studies listed here 
included patients with advanced/metastatic disease which 
mostly carries a very poor prognosis. Nonetheless, based 
on the data published from the study by Chen et al., includ-
ing approximately 800 patients with pancreatic cancer this 
tumor fibrosis prognostic signature seems independent of 
stage of disease and tumor burden [38]. In addition, prelimi-
nary results of type III collagen pro-peptides measured in 
the early colorectal cancer setting showed associations with 
disease-free survival (DFS) as defined by the time interval 
between surgery and recurrence and is aligned with the fact 
that ECM composition and quality impacts and modulates 
the metastatic potential and hence risk of relapse (prognosis) 
[7]. This suggest that fibrotic activity in patients with cancer 
should be considered alongside more commonly assessed 
risk factors when attempting to provide the best possible 
prognosis for patients. Of interest, measuring type III colla-
gen pro-peptides in serum was recently reported to be stable 
under conditions conforming with hospital sample-handling 
requirements and with levels not associated with sex, age, 
body mass index (BMI), or ethnicity [71]. In addition to the 
solid tumor types addressed here, elevated serum levels of 
collagen fragments have been found in patients with head 
and neck cancer, non-small cell lung cancer, gastric cancer 
and ovarian cancer supporting the tumor agnostic nature of 
altered collagen turnover and tumor fibrosis [37, 72–76].

There is a major medical need for defining this ‘fibrotic’ 
group of cancer patients. The first step is to differentiate 
those with ongoing tumor fibrosis from those without. A 
liquid biopsy approach as presented here for evaluating col-
lagen peptides associated with tumor fibrosis may provide 
a novel and clinically applicable tool for patient stratifica-
tion according to their fibrotic activity. As with any liquid 
biopsy, given its systemic nature there is a potential need 
of a concurrent (or upfront) tissue-based assessment for 
full histological diagnosis. However, a liquid biopsy-based 
approach is less invasive, quicker, and generally more fre-
quently accessible than the gold standard tumor biopsy-
based approach (which is further limited by tumor hetero-
geneity and is challenging, or impossible, to obtain) [77].

Future perspectives

As highlighted above, the prognostic value of quantifying 
tumor fibrosis non-invasively can be obtained by measur-
ing the pro-peptide of type III collagen in serum/plasma. 
The prognostic value was demonstrated across various 
solid tumor types including notoriously hard to treat can-
cers such as pancreatic cancer, and prevalent cancer types 
such as breast cancer, colorectal cancer, liver cancer and 

malignant melanoma, and for multiple treatment modalities. 
This supports the importance of fibrosis as a tumor agnostic 
process and points toward a broadly applicable biomarker 
approach for future clinical cancer research. While type III 
collagen pro-peptides is reflective of tumor fibrosis and CAF 
activity, type III collagen has also been shown to maintain 
tumor dormancy depending on context and composition 
[69]. Similarly, type VI collagen, another fibroblast derived 
collagen, can be both pro- and anti-tumorigenic, depending 
on context [69, 78]. In fact, there are emerging subtypes of 
CAFs, fibrosis types, and collagen profiles, which may have 
a unique function in either supporting or inhibiting cancer 
growth depending on context. Fibroblasts heterogeneity and 
the existence of different fibroblast subsets, their transcrip-
tional profiles, and lineages are being extensively studied 
and where in particular iCAFs and myCAFs has been intro-
duced as two subtypes of CAFs that play an inflammatory 
and myofibroblast like role, respectively, and differ in their 
functionality and localization within the TME [79–91]. 
Moreover, in several mouse models, in particular PDAC 
models, it has been shown that attenuating collagen synthe-
sis in cancer associated fibroblasts increases tumor growth 
and spread, but at the same time may also leave tumors more 
prone to therapeutic intervention [92–95]. Altogether indica-
tion that there are not only good and bad fibroblast subtypes 
but also good and bad collagens [4].

The impact that tumor fibrosis may have on clinical out-
come and in shaping the future of clinical cancer research 
needs to be considered. A significant percentage of patients 
with cancer that are included in clinical trials do not ben-
efit from treatment, and consequently, there is a need for 
predictive biomarkers to treat the right patients with the 
right drugs at the right time [50, 96]. Intriguingly, type III 
collagen turnover, measured retrospectively at baseline in 
plasma from a discovery and validation cohort of patients 
with metastatic pancreatic cancer has been shown to have 
the capacity to also predict treatment benefit of a stromal 
modifier (PEGPH20) when used in combination with chem-
otherapy hereby providing evidence for potential predictive 
value [97]. In detail, both the objective response rate and 
survival outcomes improved significantly with PEGPH20 as 
an add-on to chemotherapy compared to chemotherapy alone 
in the patients with a high ratio of type III collagen degrada-
tion to formation, whereas in the remaining patients with a 
low ratio, there was no effect of adding PEGPH20 to chemo-
therapy. Hence, a tumor fibrosis liquid biopsy may not only 
be used prognostically but may also predict response to anti-
fibrotic treatments. Another clinical utility may be to identify 
high risk patients in earlier stages of disease that may need 
more aggressive treatments and frequent monitoring.

In recent years, 85% of US Food and Drug Administration 
(FDA) approved cancer treatments have been related to the 
cancer-immunity cycle [98]. And while immune checkpoint 
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inhibitors have been proven to be efficacious, underpinning 
the importance of the immune cells in the TME, significant 
differences in how inflammation is present in tumors, from 
complete absence to active inflammation that overlaps with 
the fibrotic component, have been associated with large dif-
ferences in efficacy of intervention [45, 47, 56, 99–102]. 
Consequently, there has been much work in the immuno-
oncology field to identify predictive biomarkers includ-
ing measurement of programmed death-ligand 1 (PD-L1) 
expression, tumor mutational burden (TMB) and inflamma-
tory gene expression profiles in the TME [99, 101–106]. 
While there is a common thread that such measurements are 
in many cases predictive of cancer immunotherapeutic effi-
cacy, the immune responses within these microenvironments 
are likely to be highly complex and there is sufficient reason 
to believe that fibrotic activity is playing a role in estab-
lishing an immune excluded and immune suppressed TME. 
This may provide an opportunity for approaches to patient 
management that could complement current patient selection 
methods for improved outcomes. As measurement methods 
for fibrosis could potentially be deployed using conventional 
immunoassays and serum/plasma specimens as exemplified 
here, there would be significant cost and logistical advan-
tages over current patient selection methods.

Importantly, future research is warranted to determine if 
altering the fibrotic status of the TME could lead to thera-
peutics with either monotherapy effect, enabling the host’s 
immune system, or in combination to enhance efficacy of 
anti-cancer- and immuno-therapeutics. Numerous therapeu-
tic strategies that target aspects of tumor fibrosis to unleash 
the immune system against the tumor are currently under 
investigation [107]. For example, Jiang et al. have shown that 
modulating the fibroblast-derived collagen expression and 
deposition in the TME renders pancreatic cancers respon-
sive to checkpoint inhibitor immunotherapy [108]. In other 
approaches, collagen-binding domains (CBDs) are being 
used as drug conjugates for more efficient drug delivery and 
reduced toxicity [109–111]. The anti-TGF-β compounds cur-
rently in clinical testing may also prove to be anti-fibrotic 
as part of the mode-of-action and are often tested in com-
bination with immunotherapies [112]. As another exam-
ple, losartan (an angiotensin II receptor antagonist) has 
been shown to inhibit type I collagen formation and reduce 
the desmoplastic reaction in mice with breast, pancreatic, 
and skin cancers and thereby enhance the efficacy of dif-
ferent compounds [113]. Losartan has also shown promis-
ing results in the clinic in combination with chemotherapy 
[114]. Likewise, metformin-induced depletion of collagen 
has been shown to enhance penetration of gemcitabine-
loaded nanoparticles in pancreatic cancer [115]. Thus, 
modulating collagens and tumor fibrosis may also affect 
conventional treatment approaches such as chemotherapies. 
As the depletion of specific collagens or fibroblasts/CAFs 

may influence other TME components and lead to immune 
suppression, tumor progression and other inadvertent effects, 
a homeostatic restoration of the fibrotic stroma rather than 
its ablation may be the best approach for eliminating tumor 
progression [92, 95, 116–118]. Perhaps lessons learned from 
the organ fibrosis field can be leveraged to overcome chal-
lenges in drug development associated with tumor fibrosis.

Conclusion

High baseline levels of type III collagen pro-peptides in 
serum/plasma from patients with solid tumors treated 
with chemotherapy, targeted therapy, or immunotherapy 
is a promising prognostic tumor fibrosis biomarker. These 
results underline the impact that tumor fibrosis may have on 
clinical outcome and for shaping the future of clinical cancer 
research towards anti-fibrotic modalities in where the type 
III collagen pro-peptides measured in serum/plasma could 
provide a new potential strategy for stratifying patients.
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