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A machine learning‑based 
diagnostic model associated 
with knee osteoarthritis severity
Soon Bin Kwon1, Yunseo Ku2, Hyuk‑Soo Han3, Myung Chul Lee3, Hee Chan Kim1,4,5 & 
Du Hyun Ro3*

Knee osteoarthritis (KOA) is characterized by pain and decreased gait function. We aimed to find 
KOA-related gait features based on patient reported outcome measures (PROMs) and develop 
regression models using machine learning algorithms to estimate KOA severity. The study included 
375 volunteers with variable KOA grades. The severity of KOA was determined using the Western 
Ontario and McMaster Universities Osteoarthritis Index (WOMAC). WOMAC scores were used to 
classify disease severity into three groups. A total of 1087 features were extracted from the gait data. 
An ANOVA and student’s t-test were performed and only features that were significant were selected 
for inclusion in the machine learning algorithm. Three WOMAC subscales (physical function, pain 
and stiffness) were further divided into three classes. An ANOVA was performed to determine which 
selected features were significantly related to the subscales. Both linear regression models and a 
random forest regression was used to estimate patient the WOMAC scores. Forty-three features were 
selected based on ANOVA and student’s t-test results. The following number of features were selected 
from each joint: 12 from hip, 1 feature from pelvic, 17 features from knee, 9 features from ankle, 1 
feature from foot, and 3 features from spatiotemporal parameters. A significance level of < 0.0001 
and < 0.00003 was set for the ANOVA and t-test, respectively. The physical function, pain, and stiffness 
subscales were related to 41, 10, and 16 features, respectively. Linear regression models showed a 
correlation of 0.723 and the machine learning algorithm showed a correlation of 0.741. The severity 
of KOA was predicted by gait analysis features, which were incorporated to develop an objective 
estimation model for KOA severity. The identified features may serve as a tool to guide rehabilitation 
and progress assessments. In addition, the estimation model presented here suggests an approach for 
clinical application of gait analysis data for KOA evaluation.

Knee osteoarthritis (KOA) is a leading cause of disability among older adults, affecting more than 250 million 
patients worldwide1. The economic burden associated with osteoarthritis (OA) is high with 1–2% of the gross 
national product spent on OA-related healthcare2,3. Approximately 30% of individuals aged over 60 years suffer 
from KOA4. As the proportion of older people increases in the population, it is expected that the number of 
patients who require KOA surgery will also rise5. Typical KOA symptoms include stiffness and decreased joint 
range of motion, which can greatly impair functional independence6. KOA is also characterized by pain and gait 
dysfunction that steadily deteriorates with disease progression7.

KOA therapy is aimed at reducing pain and improving gait function. The results from pain and gait disorder 
assessments are used to develop treatment plans, determine the effectiveness of treatment, and inform disease 
prognosis. Conventionally, the pain and gait disorder assessments are dependent on patient-reported outcome 
measures (PROMs). Even though PROMs are cost and time efficient, they are prone to bias8,9. Since its publication 
in 1988, the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) has served as the gold 
standard for determining OA severity10. The WOMAC consists of three subscales: pain, stiffness and physical 
function with 5, 2 and 17 questions, respectively. The WOMAC index has been widely used in clinical studies11–13; 
however, it is not accessible to individuals with cognitive impairment, depression or those unwilling to provide 
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accurate answers8. In addition, discordance between WOMAC scores and actual physical gait improvement has 
been noted14.

Clinical gait analysis is a powerful technique that provides objective and reliable biomechanical information, 
including temporal waveforms for each of the lower body joints15. The measurement devices for gait quantifica-
tion includes 3D motion capture, force plates, instrumented mats, wearable sensors with inertial measurement 
unites and accelerometer16. Since gait dysfunction can be evaluated objectively using this method, it has been 
suggested as an alternative tool for measuring patient disabilities8,14,17. Previously18, we identified an association 
between gait analysis features and KOA radiological grade and showed successful estimation of the Kellgren-
Lawerence (KL) grade using a machine learning algorithm based on key gait features.

Information is limited regarding the relationship between PROMs and kinetic and kinematic gait features. 
These analyses can provide potentially objective measures of symptoms and provide insight regarding the rela-
tionship between symptomatic diagnosis of disease and gait quality. Current barriers to clinical application of gait 
analysis include the absence of a standard method for gait evaluation and the large volume and high complexity 
of gait analysis data19. Feature extraction is widely used method to analyze complex signal. Previous studies 
have extracted features from gait signal and analyzed the relationship between features and KOA severity7,20,21. 
However, features reported from the most previous studies were limited to traditional features and joints. In 
this study, we have extracted as many feature from gait data including both traditional and engineering methods 
from multiple joints. Also, we anticipate that WOMAC estimation model based on gait feature would explain the 
biomechanical difference between the severity of KOA and provide further understanding for the relationship 
between KOA and gait function.

Our cross-sectional study analyzed the relationship between gait data and the WOMAC scores of KOA 
patients. The WOMAC indices of KOA patients without cognitive impairment, depression and who were willing 
to answer accurately, were included to avoid longitudinal bias and other possible inaccuracies. We hypothesized 
that the WOMAC index and its three subscales would closely relate to KOA patients’ gait function and that 
specific features would change with disease progression. Overall, our study aimed to identify the key features 
associated with the WOMAC index and its three subscales, and to apply these key features to develop estimation 
models for WOMAC to improve rehabilitation and suggest standardize application for gait analysis.

Methods
Participants.  This study was approved by our Institutional Review Board of Seoul National University Hos-
pital (IRB no. 1810-004-974) and were performed in accordance with relevant guidelines and regulations. Writ-
ten informed consent was obtained from all participants. This study was performed using our gait lab database. 
The database consists of gait reports of KOA patients with various degrees of knee pain and healthy volunteers 
without any knee pain from 2013 to 2017. We excluded subjects based on the following criteria: (1) missing some 
data for both legs; (2) aged < 20 years; (3) spine disease, hip, or ankle arthritis on x-ray; (4) inflammatory or trau-
matic arthritis of the knee; (5) any prior bone surgery in the lower extremities; and (6) cognitive impairment or 
depression. A total of 375 subjects were included in our study.

Data collection.  All gait analysis data, including kinetic, kinematic and spatial–temporal data, were col-
lected at the Human Motion Analysis Laboratory of Seoul National University Hospital following OrthoTrack 
6.6 Reference Manual 22 with daily quality check to maintain the error within 1 mm. All data collection pro-
cess was performed by an operator with 20 years of experience. The subjects has a few minutes to warm up to 
acclimate to the setting before placing reflective markers based on the Helen Hayes arrangement. After placing 
the markers, an operator asked the subjects to walk along a 9 m track. Motion data were collected using twelve 
charge-coupled device cameras with a three-dimensional optical motion capture system (Motion Analysis 
Corp., Santa Rosa, CA, USA) at a sampling frequency of 120 Hz. Two floor-embedded force plates were used to 
obtain the kinetic data. An average of five or six trials of the 9 m walk of the kinetic and kinematic data for each 
joint were used in this study.

All participants performed self-administered Korean version of WOMAC23 with three subscales; pain (5 ques-
tions), stiffness (2 questions) and physical function (17 questions). Each questions were answered in numeric 
scale ranging from 0 (no symptoms) to 4 (extreme symptom).

Feature extraction and statistical analysis.  All data analyses and classification were performed using 
MATLAB 2018b (MathWorks, Massachusetts). The gait features were extracted from the gait parameters, which 
are temporal signal of kinetic and kinematic data of hip, pelvic area, knee and ankle. These features included, 
but were not limited to, area under the curve, maximum value of swing phase, and minimum value of the 
curve. An additional 16 gait characteristics (i.e., velocity and cadence) were also selected as classification model 
features. Only the right leg was included to avoid statistical dependency from multiple observations of single 
individuals24. Detail information of extracted features were included in Supplementary Table S1.

To statically analyze the relationship between the WOMAC score and gait features, the severity of WOMAC 
was classified into three classless: mild, moderate, and severe. Each WOMAC questions are answered into 5 dif-
ferent answers: none (0), mild (1), moderate (2), severe (3) and extreme (4). To divide the WOMAC score into 
three different severities, 1.5, the midpoint between mild to moderate, and 2.5, the midpoint between moderate 
to severe, were chosen as the cut point and were multiplied by 24, which is the number of WOMAC question-
naires. Accordingly, WOMAC scores below 36 was classified as mild, scores between 36 and 60 were classified 
as moderate, and the scores above 60 were classified as severe. The WOMAC subscales were divided into three 
classes using the same procedure. A one-way analysis of variance (ANOVA) with a significance level of 0.0001 
was performed. A student t-test was used to analyze class differences between each severity groups for features 
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with significant difference as the result of ANOVA. For a multiple-comparison correction, a new alpha value 
of < 0.00003 was used as significance level according to Bonferroni correction25. Features that were significant 
for all three comparisons between each classes were selected as key features. Student’s t-test was performed 
again for selected key features between each severity group divided in accordance to each subscale of WOMAC.

A multiple linear regression was performed to estimate the WOMAC index and to examine its relationship 
with WOMAC key features and observe feasibility of the estimation model. To resolve dataset imbalances, we 
down-sampled the sample size to 231. A random forest algorithm26, an ensemble learning method constructed 
with multiple decision trees, was used to build the regression model for WOMAC index estimation. ‘Statistic 
and Machine Learning Toolbox’ from Matlab was used for the machine learning analysis.

The hold-out method was used for model validation only for random forest model. Seventy percent of the 
data were randomly selected to train the model and the other thirty percent of data were used for validation. 
The model was analyzed by observing the root mean square error (RMSE) and correlation between actual and 
estimated WOMAC score.

Clinical implication.  Gait function of KOA patients decreases due to typical symptoms of KOA patients 
such as tenderness, loss of flexibility, and swelling. This study statistically analyzed the relationship between gait 
data and symptomatic severity of KOA and applied machine learning algorithm for WOMAC estimation. The 
implication of this study were followings:

1)	 Provides further understanding between KOA symptoms and gait data
2)	 Estimation model can be applied to patients who cannot properly perform WOMAC evaluation due to 

cognitive impairment or other clinical problem
3)	 If gait analysis can be performed with more accessible technology, such as wearable sensor and pose-esti-

mation using camera, this study can serve as foundation research for patient independent diagnosis.

Results
Table 1 summarizes the participants’ demographic characteristics and symptomatic severity. A total of 1083 
features (of 23 gait parameters) were extracted from the gait analysis dataset and 42 features (12 hip, 1 pelvic, 
17 knee, 8 ankle, 1 foot, and 3 spatiotemporal) were selected according to ANOVA and t-test results. The gait 
parameter features included hip rotation moment, hip flexion angle, hip adduction angle, hip power, pelvic 
obliquity angle, knee extension moment, knee flexion angle, knee power, knee varus angle, ankle plantarflexion 
moment, ankle power, foot progression angle, total speed, duration of single limb support phase (% of gait cycle), 
timing of initial double limb support (% of gait cycle), and timing of weight acceptance (% of gait cycle). Physi-
cal function was significantly related to all features, with the exception of hip power. Pain differed significantly 
in relation to hip adduction angle, hip power, knee power, knee varus angle, ankle plantarflexion moment, and 
ankle power. Stiffness was significantly different in relation to hip rotation moment, hip adduction angle, knee 
flexion angle, and knee varus angle.

The representative mean values of parameters for each group were divided according to WOMAC score 
(Fig. 1). Table 2 summarizes the key WOMAC features with mean and standard deviation. All features listed in 
Table 2 showed significant difference among all severity groups according to student’s t-test. Area under the curve 
during stance phase of hip adduction angle, variance of knee flexion angle, area under the curve of stance phase 
and mid-reference level of knee varus angle, and peak-to-RMS of ankle power showed most significant difference 
among the three groups. The RMSE for linear regression was 16.10, and RMSE for random forest regression was 
17.38. The correlation between actual and estimated WOMAC score was 0.722 and 0.741, respectively for linear 
regression and random forest regression (Fig. 2).

Discussion
While previous studies14,27,28 have reported the relationship between spatiotemporal gait features, such as speed 
and stride length, and WOMAC indices of KOA or hip OA patients, this is the first study to analyze the rela-
tionship between kinetic and kinematic gait parameters and the WOMAC indices. Biomechanical intervention 
is recognized an alternative method to control pain and improve physical function29. Gait analysis provides 
meaningful KOA biomechanical information, but its complexity has limited its clinical applicability19,30. Here, we 
statistically analyzed key gait cycle features and identified critical KOA biomechanical information. In addition, 
we built linear and machine learning estimation models for the WOMAC index based on the identified features. 
While PROM methods are cheap, easy and quick, they are not applicable to patients who are unable or unwilling 

Table 1.   Subject characteristics.

Feature Mild (n = 140) Moderate (n = 182) Severe (n = 53) p-value

Age 62.6 (9.1) 63.7 (10.2) 63.3 (10.2) 0.101

WOMAC 18.9 (11.9) 48.5 (6.8) 71.7 (10.3)  < 0.001

Physical Function 13.8 (8.9) 35.4 (5.6) 52.8 (7.8)  < 0.001

Pain 3.4 (3.2) 9.1 (2.3) 13.2 (3.7)  < 0.001

Stiffness 1.7 (1.5) 4 (1.7) 5.7 (1.7)  < 0.001
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to perform the task. Despite the ability of gait analysis to provide valuable information about KOA biomechanical 
properties, a standardized method is not available for clinical use. Our estimation model provides objective and 
reliable symptomatic results and suggests utility as a consistent method for evaluating gait analysis data. Finally, 
we have extracted key features based on both conventional methods, such as mean value of the curve, and novel 
engineering methods, such as occupied bandwidth of the curve in frequency domain. Conventional features, 
such as peak and minimum gait data values, are limited to load or motion at a single time point during the gait 
cycle and do not contain information over the gait cycle31. We have developed methods that include information 
over the entire gait cycle, such as area under the curve, root mean square (RMS) and power spectrum. We also 
conducted detailed feature analysis during gait cycle sub-phases: loading response, mid-stance, terminal-stance 
and pre-swing of stance phase, and initial swing mid-swing and terminal swing of swing phase.

We identified well-known joint parameters that are specific to KOA patients and function in gait performance 
(listed in Table 2). Ankle dorsiflexion moment, for example, is an ankle joint movement involved in supination 
and pronation and three-dimensional ankle joint motions32. Previous studies have shown that knee varus angle 
changes are closely related to KOA33,34. Lo and colleagues reported an association between knee varus angle and 
knee pain during weight bearing activities, most likely due to narrowing of the medial joint space, opening of 
the lateral space or increased lateral soft tissue pretension. We found that hip, knee and ankle joint power, the 
product of torque and angular velocity, differed significantly according to WOMAC severity. Similarly, Segal 
et al.35 reported joint power differences between symptomatic KOA patients and high-functioning controls. In 
one of our previous studies, we have reported that difference between maximum and minimum value of both 
hip flexion angle and hip adduction angle were smaller in KOA patients compared with control group36. Weidow 
et al. have reported that37 the maximum value of hip rotation moment significantly differed between symptomatic 
and asymptomatic group. KOA patients was reported to have significantly lower knee flexion range of motion in 
swing and stance phase during gait cycle, which is in agreement with our findings38. McCarthy et al.39 claimed 
that knee extension moment is also an important gait characteristic to analyze the relationship between KOA 

Figure 1.   Mean values of representative gait parameters for each symptomatic severity of KOA where features 
were extracted from the (a) ankle power, (b) hip adduction angle, (c) knee flexion angle, and (d) knee varus 
angle. The shaded area represents standard deviation.
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Table 2.   Mean and standard deviation of selected features significantly different for WOMAC severity groups. 
The bolded rows are four features that showed most significant difference among each groups.

Joint Parameter Feature Mild Moderate Severe

Hip

Rotation moment Standard deviation 2.67 (0.63) 2.39 (0.52) 2.36 (0.58)

Flexion angle
Lower bound of Autocorrelation − 0.44  (0.0013) − 0.43 (0.0019) − 0.43 (0.0022)

Bandwidth frequency bounds 0.0025 (0.00016) 0.0024 (0.00022) 0.024 (0.00021)

Adduction angle

Area under the curve during 
stance phase − 1.4 (4.07) − 4.11 (4.99) − 5.23 (5.21)

Standard deviation of absolute 
value 298.18 (262.45) 425.53 (321.97) 501.01 (315.01)

Power

Minimum value during mid-stance − 1.36 (2.06) − 0.91 (1.89) 0.02 (2.01)

Maximum value during terminal 
stance 4.72 (3.86) 3.13 (3.51) 3.37 (2.84)

Area under the curve 121.33 (107.22) 104.2 (106.16) 179.68 (115.38)

Maximum − minimum 11.56 (4.92) 9.32 (4.97) 10.68 (4.16)

Distance between stance and 
swing phase using dynamic time 
wrapping

125.88 (64.02) 96.33 (62.12) 88.94 (49.67)

Maximum value during mid-swing 6.74 (3.16) 5.19 (3.28) 5.99 (2.7)

Minimum value during terminal 
swing − 0.37 (0.5) − 0.45 (0.55) − 0.78 (0.81)

Pelvic Obliquity angle Minimum value during terminal 
stance to pre-swing 3.65 (0.83) 3.19 (0.9) 3.32 (0.79)

Knee

Extension moment
Kurtosis 2.23 (0.52) 1.97 (0.45) 2.11 (0.48)

Peak2RMS 2.14 (0.3) 1.98 (0.28) 2.02 (0.28)

Flexion angle

Variance 279.1 (109.53) 227.72 (110.94) 216.22 (116.47)

Standard deviation 16.37 (3.27) 14.53 (4.06) 13.93 (4.72)

Maximum − minimum 51.4 (8.82) 46.29 (11.48) 44.3 (13.34)

Area under the curve of power 
spectral density 276.99 (108.54) 225.94 (110) 214.6 (115.55)

Power Maximum value during terminal 
swing − 7.47 (3.65) − 5.8 (3.36) − 6.25 (3.58)

Varus Angle

Maximum value during mid-
stance 5.36 (4.55) 8.81 (6.06) 9.34 (6.35)

Maximum Value during Terminal 
Stance 5.09 (4.4) 8.46 (6.01) 8.95 (6.53)

Area under the curve of stance 
phase 274.47 (277.05) 490.8 (377.33) 517.3 (401.42)

Area under the curve 334.36 (420.53) 641.28 (530.54) 710.69 (595.35)

Root mean square (RMS) 5.18 (3.03) 7.77 (3.9) 8.64 (4.28)

Peak2RMS 1.73 (0.49) 1.42 (0.34) 1.45 (0.39)

Mid-reference level 308.36 (239.71) 534.6 (295.59) 573.58 (319.35)

Area under the curve of power 
spectrum 0.94 (1.26) 2.19 (2.31) 2.65 (2.38)

Maximum Value during Terminal 
swing 5.39 (4.29) 7.88 (5.03) 8.5 (5.47)

Minimum value during loading 
response 3.12 (4.14) 6.18 (5.52) 6.4 (5.71)

Ankle

Plantarflexion moment

Minimum value during loading 
response − 0.61 (0.56) − 0.34 (0.44) − 0.31 (0.48)

Maximum value during initial 
Swing − 0.3 (0.11) − 0.23 (0.14) − 0.26 (0.11)

Maximum − minimum 11.38 (3.68) 9.76 (3.36) 10.28 (2.81)

Power

Kurtosis 6.73 (1.14) 6.01 (1.48) 6.12 (1.27)

Peak2RMS 3.44 (0.32) 3.24 (0.43) 3.28 (0.34)

Maximum − minimum 20.98 (9.02) 16.62 (8.73) 19.15 (6.99)

Lower bound of autocorrelation − 0.43 (0.0031) − 0.43 (0.0030) − 0.43 (0.0032)

Occupied bandwidth 0.89 (0.25) 1.09 (0.35) 0.98 (0.27)

Foot Progression angle Average of absolute value − 0.44 (0.0013) − 0.44 (0.0020) − 0.44 (0.0018)

Spatiotemporal

Total speed 85.41 (18.25) 75.43 (21.82) 81.87 (17.44)

Duration of single limb support 
phase 35.5 (2.72) 33.58 (4.38) 35.34 (3.14)

Timing of initial double limb 
support 14.61 (3.05) 16.37 (4.38) 14.42 (2.96)
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and gait data. Bechard et al.40 reported that toe-out angle of foot progression angle was significantly smaller in 
patients with KOA and pelvic obliquity angle was reported to be correlated with symptoms of KOA.

In our study18, physical function was influenced by the greatest number of features (42 from 13 parameters), 
indicating that WOMAC is a comprehensive score that incorporates the movement of many joints. This is reason-
able given that KOA also effects the kinetic and kinematics of hip and ankle joints. Thus, to improve the physical 
function of patients, it is important to train not just the knee joint but also other KOA-affected joints41. The results 
of our study provide guidelines for KOA exercise and rehabilitation (Table 2). Pain and stiffness were most related 
to knee-specific parameters. This pattern is demonstrated by tibiofemoral OA, which is a fairly common form 
of OA related to varus alignment. Tibiofemoral OA patients report higher pain levels than patellofemoral OA 
patients. Knee extension moment was not significantly related to pain. However, the WOMAC pain questionnaire 
only included one stair-related question, which may have influenced this result. In addition, the questionnaire 
also lacked questions related to knee adduction moment. Stiffness showed a significant relationship with knee 
flexion angle, a sagittal plane parameter. This is notable because the main movement of the knee, extension and 
flexion, is included in the sagittal plane.

A limitation of our study was that it was validated internally; to validate the model for overfitting it should 
be subjected to external validation. In addition, the features identified in this study were not applied to actual 
rehabilitation. Future studies should apply the key features to patient rehabilitation and determine the thera-
peutic effects.

In conclusion, we have built estimation models for the WOMAC index and have identified features associated 
with the WOMAC and its subscales. The features have been extracted using a feature engineering technique 
and statistically selected and validated. The estimation models were generated by traditional linear regression 
and random forest regression models. Our estimation model and list of key features represents an objective and 
alternative option for KOA symptom diagnosis and rehabilitation.

Code availability
The codes of this study for statistic process and estimation model are available at https://​github.​com/​SBEKw​on/​
SCI_​Report
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