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Abstract
Precision-cut lung-slices (PCLS), in which viable airways embedded within lung
parenchyma are stretched or induced to contract, are a widely used ex vivo assay
to investigate bronchoconstriction and, more recently, mechanical activation of pro-
remodelling cytokines in asthmatic airways. We develop a nonlinear fibre-reinforced
biomechanical model accounting for smooth muscle contraction and extracellular
matrix strain-stiffening. Through numerical simulation, we describe the stresses and
contractile responses of an airway within a PCLS of finite thickness, exposing the
importance of smooth muscle contraction on the local stress state within the airway.
We then consider two simplifying limits of the model (a membrane representation
and an asymptotic reduction in the thin-PCLS-limit), that permit analytical progress.
Comparison against numerical solution of the full problem shows that the asymptotic
reduction successfully captures the key elements of the fullmodel behaviour. Themore
tractable reduced model that we develop is suitable to be employed in investigations
to elucidate the time-dependent feedback mechanisms linking airway mechanics and
cytokine activation in asthma.

Keywords Airway mechanics · Asthma · Asymptotics · Soft tissue mechanics
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1 Introduction

Around 334 million individuals worldwide suffer from asthma and it is estimated
that over 250,000 of these people die prematurely each year as a result (Forum of
International Respiratory Societies 2017). Asthma is the most prominent chronic dis-
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ease amongst youths, affecting over 14% of children globally (Pearce et al. 2007),
yet despite its rising prevalence, the cause and onset of asthma remains unknown.
Understanding asthma is of vital importance.

Asthma is characterised by inflammation, airway hyperresponsiveness and remod-
elling (Brightling et al. 2012; Berair et al. 2013). Airway hyperresponsiveness refers
to excessive bronchoconstriction (narrowing of the airway) due to rapid contraction of
airway smoothmuscle (ASM) in response to a relatively lowdose of contractile agonist
(King et al. 1999;West et al. 2013).Chronic inflammation causes swellingof the airway
tissue, narrowing the airway (León 2017), and resulting in overall restricted pulmonary
function. The persistent structural changes due to inflammatory injury repair, airway
thickening and scarring constitute airway remodelling (Bossé et al. 2008; Al Alawi
et al. 2014). Until recently, airway remodelling has been predominantly attributed
to chronic inflammation (Saglani and Lloyd 2015). Current experimental evidence,
however, suggests that bronchoconstriction induced airway narrowing may play a key
role in promoting remodelling (Grainge et al. 2011) via activation of the regulatory
cytokine, transforming growth factor β (TGF-β) (Wipff et al. 2007; Buscemi et al.
2011; Tatler et al. 2011). In addition, TGF-β has been shown to act as a contractile
agonist (Ojiaku et al. 2018). Precision-cut lung-slice (PCLS) stretching experiments
are a widely-used ex vivo assay (see, e.g., Sanderson (2011) and Tan and Sander-
son (2014)) for studying agonist-driven bronchoconstriction and more recently how
this links to mechanical activation of TGF-β. In particular, Tatler (2016) showed that
stretching of PCLS increases TGF-β activation. However, results from such studies
are difficult to interpret without knowledge of the underlying tissue deformation and
stress state.

Airwaymechanical behaviour is dominated byASMand collagen-rich extracellular
matrix (ECM). ASM is arranged in fibrous bundles that are oriented helically within
the airway wall; this arrangement is thought to enhance the bronchocontractile ability
of the smaller airways (Amrani and Panettieri 2003; Ijpma et al. 2017). The ECM is a
delicate mesh of deposited connective tissue and fibrous proteins (Hinz 2015; Cheng
et al. 2016), surrounding ASM cell bundles. In the undeformed state, collagen exhibits
a ‘crimped’ structure (Kadler et al. 1996); under strain, these structures straighten to
bear load. Varition in their natural lengthsmean that ECM is ‘recruited’ successively as
strain is increased, imparting a strain-stiffening behaviour to the airway (Wells 2013).

Early mathematical models of the intact airways, accounting for tension generated
by ASM contraction and mechanical properties of the airway wall (e.g. Latourelle
et al. (2002), Affonce and Lutchen (2006), and Ma and Lutchen (2006)), were based
on empirical stress-strain relationships for the whole airway (Lambert et al. 1982,
1993, 1994; Lambert and Wilson 2005) and the Laplace thin-airway wall approxima-
tion (Anafi andWilson 2001). With these models, it is not possible to determine tissue
stresses within the airway wall nor to separate ASM and ECM contributions to the
mechanics. Similarly, early models of airways embedded in parenchyma mimicking
PCLS experiments assumed the thin-wall Laplace approximation (Bates and Lauzon
2007; Khan et al. 2010). Brook et al. (2010) extended these early models to account
for multiple airway constituents assuming a finite airway wall thickness for both the
intact airway and PCLS models under a plane strain and plane stress approximation
respectively.While these allowed for tissue stresses to be determinedwithin the airway
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wall, the linear elastic framework used meant that predictions were only qualitatively
useful. Breen et al. (2012) considered a finite element finite-elasticity model of the
PCLS but neglected airway wall thickness and was only concerned with stresses in
the lung parenchyma. Following arterial and cardiovascular mechanics (Gasser et al.
2006; Ateshian 2007; Holzapfel and Ogden 2010; Hill et al. 2012), a nonlinear elas-
tic single-phase fibre-reinforced airway model assuming finite airway wall thickness
under a plane strain approximationwas developed byHiorns et al. (2014). Examples of
models that account for mucosal growth, buckling and folding are:Wiggs et al. (1997),
Moulton and Goriely (2011), Li et al. (2011), Eskandari et al. (2015). More generally,
the mechanics of growth in thin biological membranes is described by Kroon and
Holzapfel (2008) and Rausch and Kuhl (2014). Approximate solutions for axisym-
metric stretching of thin elastic membranes with traction-free surfaces have previously
been determined for isotropic materials (Wong and Shield 1969; Yang 1967) but do
not account for anisotropy or active contraction. Others consider finite deformations
of incompressible rubber membranes with a central solid inclusion and under uni-
form pressure (Jianbing et al. 2015). Finally, models of agonist driven feedback that
are focused on growth and remodelling are presented by Chernyavsky et al. (2014),
Aparício et al. (2016), and Hill et al. (2018). However, none of these previous mod-
els are suitable descriptions for finite deformation of a thin slice in which the tissue
stresses may be determined.

In this study we develop a nonlinear fibre-reinforced biomechanical model of
PCLS stretching experiments accounting for ASM contraction in response to ago-
nist exposure and ECM strain-stiffening. Through numerical simulation, we quantify
the mechanical stress experienced by the airway wall constituents in response to cyclic
stretching that consequently activates TGF-β. Additionally, we assess the applicabil-
ity of two simplifying limits of the model; namely, a one-dimensional membrane
representation of the PCLS and an asymptotic reduction in the thin-slice limit (that
nevertheless retains a description of axial deformation).

2 A biomechanical model of PCLS

The PCLS is a well-established experimental preparation for studying airway reac-
tivity, and corresponding biomechanical response (see, e.g., Wang et al. (2008) and
Tan and Sanderson (2014)). The key advantage of the PCLS is that vital functional
interactions between airways, arterioles, and veins are preserved within the alveolar
parenchyma (Sanderson 2011). PCLS are obtained by inflating human lung tissue with
liquid agarose, which is allowed to set and solidify before finely slicing. Stretching
of the PCLS is effected by adhering it to a deformable membrane, to which a stretch
is applied (Fig. 1). In the experiments of Tatler (2016), that form our primary moti-
vation, stretch is applied cyclically, in the form of a sine wave with a 15% amplitude
and 0.3Hz frequency, for 24 hours (Tatler 2016). Stretch is applied with a 5%, 10%
and 20% amplitude thereafter.

We represent a single airway within the PCLS as a cylinder, whose constituents
are modelled via constrained mixture theory (Truesdell and Toupin 1960; Bowen
1976; Truesdell and Noll 1992; Ateshian 2017). The formulation for obtaining the
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constitutivemechanical relation for this type ofmaterial is given in detail byHumphrey
and Rajagopal (2002), Ateshian (2007) and Ateshian and Ricken (2010). Specifically,
we consider a saturated multiphase mixture of an active contractile ASM component
and a passive ECM component, each modelled as a nonlinear, incompressible, fibre-
reinforced hyperelastic material (Holzapfel 2000), with associated volume fractions

�c = c∗

c̄∗ , �m = m∗

m̄∗ , (1)

respectively, where c∗ andm∗ are the apparent densities and c̄∗ and m̄∗ denote the true
densities of ASM and ECM, respectively. The assumption of intrinsic incompressibil-
ity and tissue saturation demands

∑

i

�i = 1, i ∈ {c,m}. (2)

ECM strain-stiffening occurs in the direction of the collagen fibre orientation and
accounts for the recruitment of collagen fibres (from a crimped to uncrimped config-
uration) when stretched (Hiorns et al. 2014). Contractile force generation is assumed
to occur in the direction of the ASM bundle orientation and occurs in response to an
exogenous agonist and/or active TGF-β signalling pathways. Since the duration of the
PCLS experiment of interest is significantly less than that of ASM growth or prolifer-
ation and ECM deposition, we assume that �c and �m are constant. In addition, for
simplicity we neglect the time-dependent feedback between tissue strain and TGF-β
activation. Furthermore, for simplicity, tissue porosity and constituent volume fraction
changes that arise through large deformations are not considered in this study.

2.1 Geometry and constitutive assumptions

Following the traditional continuummechanics approach (Truesdell and Toupin 1960;
Truesdell and Noll 1992; Holzapfel 2000) we assume that a common unstressed and
unstrained reference configuration applies to each constituent in the airway, in which
Lagrangian cylindrical coordinates (R∗,�, Z∗) describe the airway geometry:

R∗
in ≤ R∗ ≤ R∗

out, 0 ≤ � ≤ 2π, − h∗
2 ≤ Z∗ ≤ h∗

2 , (3)

and wherein asterisks denote dimensional quantities, R∗
in and R∗

out denotes the inner
and outer radius and ± h∗

2 denotes the upper and lower surfaces of the undeformed
airway, respectively (see Fig. 1 (iv)).

Imposed stretching (herein we use stretch to imply elongation) or contraction of
the ASM causes a deformation described by the deformed configuration (r∗, θ, z∗).
For simplicity, we consider an axisymmetric radial airway stretch, and further assume
there is no torsion, so that the deformation is described by

r∗ = r∗(R∗, Z∗), θ = �, z∗ = z∗(R∗, Z∗). (4)
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Fig. 1 (i) Axisymmetric cyclic stretching of PCLS via the BioFlex method (Tatler 2016). A PCLS is
adhered to a circular deformable rubber membrane and then an axisymmetric cyclic stretch is applied
to the membrane (via a vacuum) in order to stretch the attached PCLS. (ii) Representative image of a
murine PCLS adhered to the flexible membrane of a BioFlex culture well plate prior to stretching regime.
(iii) Representative image of an intact airway within lung tissue of a murine PCLS post adherence to
a BioFlex culture well (x20 magnification) showing airway and airspaces. Lung tissue was stained for
alpha-smooth muscle actin (brown stain) to highlight smooth muscle cells. (iv) Dimensional undeformed
reference configuration (left) and deformed configuration (right) to illustrate the geometry of an airway
modelled within the PCLS. Dotted lines indicate the circumferential fibres representing the active ASM
and passive ECM components
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The constituents within the tissue are constrained and therefore also deform axisymet-
rically according to (4).

The deformation gradient tensor for the tissue and each constrained constituent
within is defined by F ≡ ∇∇∇x in the reference configuration and in cylindrical polars
is given by

F =
⎛

⎝
∂r∗
∂R∗ 0 ∂r∗

∂Z∗
0 r∗

R∗ 0
∂z∗
∂R∗ 0 ∂z∗

∂Z∗

⎞

⎠ . (5)

The left and right Cauchy–Green deformation tensors are defined by B = FFT and
C = FTF, respectively. Incompressibility of the tissue is enforced by demanding
(Ogden 2003)

det[F] = 1. (6)

Mechanical anisotropy is imparted to the airway via strain-stiffening of collagen fibres
and contractile force generation of ASMbundles (Ogden 2003), as summarised above.
The ASM and ECM constituents within the tissue are associated with a set of helically
orientated fibers (see Fig. 1, Ijpma et al. (2017)). For simplicity, however, we describe
this as a single set of fibres orientated circumferentially with undeformed direction
denoted G. In the deformed configuration the fibres have direction g = FG.

Under the above assumptions, the constitutive mechanical law for the airway wall
is obtained following the additive approach of Ambrosi and Pezzuto (2012) by intro-
ducing an active component,�∗

act, to the passive isotropic,�
∗
iso, and anisotropic,�

∗
ani,

components of the strain-energy function, �∗. For each constituent within the tissue,
we follow Holzapfel et al. (2000) and define the strain-energy for the ASM and ECM
within the tissue as

�i
∗(I1, I4) = �i

∗
iso(I1) + �i

∗
ani(I4) + �i

∗
act(I4), i ∈ {c,m}, (7)

wherein (here and throughout) the subscripts i ∈ {c,m} denote variables associated
with each phase. In (7), I1 and I4 denote the first and fourth principle invariants of the
left Cauchy-Green deformation tensor, B, and are defined by

I1 = tr[BBB], I4 = g · g. (8)

We assume that the isotropic response of the tissue is described via a Neo-Hook-
ean constitutive law, with passive isotropic stiffness μ∗

c and μ∗
m for the ASM and

ECM, respectively. It is assumed that collagen fibres within the ECM do not store
strain-energy when the airway is not inflated, i.e. at low transmural pressures, hence
following Holzapfel et al. (2000) we associate an isotropic part of the ECM strain-
energy function to the mechanical response of the non-collagenous matrix material.
At high transmural pressures the resistance of the tissue to stretch is almost entirely
due to anisotropic collagen fibre recruitment within the ECM. To account for strain-
stiffening, as in Hiorns et al. (2014), we employ the anisotropic model of Holzapfel
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et al. (2000) with the addition of a Heaviside function so that the collagen fibres are
only recruited when stretched. This approach provides a convenient way of abolishing
the contribution of fibres in compression (i.e. when I4 ≤ 1) and, as discussed in
Holzapfel et al. (2004), satisfies the relevant necessary convexity constraints on such a
strain-energy function. There is no active force contribution from the ECM; however,
we include an active component in the ASM strain-energy function. The form of the
active component in the Cauchy stress tensor (denoted σσσ ∗ and defined below) follows
the general form used in Ambrosi and Pezzuto (2012),

σσσ ∗
c act = α∗(g ⊗ g), (9)

where g denotes the direction of the deformed fibres and α∗ is the active contractile
force density (force per unit area) generated by theASM. In reality the contractile force
density will vary with both time-dependent stretch and/or time-dependent changes in
exogenously applied contractile agonist. In this study, however, our focus is purely
on examining the effect of a contractile force on the approximations made in steady
state, and therefore, for simplicity we assume that α∗ is constant.

In view of the above, the strain-energy functions for theASMandECMcomponents
are given by

�∗
c (I1, I4) = μ∗

c

2
(I1 − 3) + α∗

2
I4, (10a)

�∗
m(I1, I4) = μ∗

m

2
(I1 − 3) + ω∗

2ζ
H(I4 − 1)

(
exp

(
ζ(I4 − 1)2

)
− 1

)
. (10b)

Here, ω∗ > 0 is a constant parameter defining the passive anisotropic stiffness and
accounts for the density of the fibres in the matrix and ζ > 0 is a dimensionless
constant parameter defining the nonlinear increase in stiffness of the fibres as they
deform (Hiorns et al. 2014). Differentiating (10) with respect to the invariants I1 and
I4, respectively, we have

ψc
∗
1 = μc

∗

2
, (11a)

ψc
∗
4 = α∗

2
, (11b)

ψm
∗
1 = μm

∗

2
, (11c)

ψm
∗
4 = ω∗(I4 − 1)H(I4 − 1) exp

(
ζ(I4 − 1)2

)
, (11d)

where ψi
∗
j = ∂�∗

i /∂ I j with i ∈ {c,m} and j ∈ {1, 4}.
The Cauchy stress tensor for each constituent is defined by,

σσσ ∗
i = −P∗I + 2ψi

∗
1B + 2ψi

∗
4g ⊗ g, i ∈ {c,m}. (12)
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Here, I is the identity matrix, the pressure P∗ is a Lagrange multiplier included to
enforce tissue incompressibility, and ψi

∗
j with i ∈ {c,m} and j ∈ {1, 4} denote the

derivatives of the strain-energy functions defined in (11).
Using (10), the strain-energy function for the whole tissue, �∗, is

�∗(I1, I4) = �c�c
∗(I1, I4) + �m�m

∗(I1, I4). (13)

and similarly, using (11), the strain-energy function derivatives for the whole tissue
are,

ψ∗
1 = �cψ

∗
c 1 + �mψ∗

m1, (14a)

ψ∗
4 = �cψ

∗
c 4 + �mψ∗

m4. (14b)

The Cauchy stress tensor for the whole tissue, σσσ ∗, is defined

σσσ ∗ = −P∗I + 2ψ∗
1B + 2ψ∗

4 g ⊗ g, (15)

Equivalently, (15) may be obtained via the weighted sum of the Cauchy stress com-
ponents for each constituent, (12), such that σσσ ∗ = ∑

i �iσσσ i
∗.

2.2 Governing equations and boundary conditions

In mechanical equilibrium, and assuming there are no body forces on the tissue, the
balance of linear momentum requires

∇ · σσσ ∗ = 0, (16)

subject to the following boundary conditions.
At the outer radius, we enforce a displacement boundary condition,

r∗ (
R∗
out, Z

∗) = r∗
dis, (17)

to mimic the axisymmetric stretch imposed on the PCLS via the BioFlex method
(Fig. 1). For simplicity, time-dependent loading is not considered in this study and we
assume that r∗

dis is a constant.
The upper, lower and inner surfaces of the tissue are traction-free such that

σσσ ∗ (
R∗, h∗

2

)
n∗
up = 0, (18a)

σσσ ∗ (
R∗,− h∗

2

)
n∗
low = 0, (18b)

σσσ ∗ (
R∗
in, Z

∗) n∗
in = 0, (18c)
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where the unit normals to the upper, n∗
up, lower, n

∗
low, and inner, n∗

in, surfaces in the
reference configuration are given by:

n∗
up,low =

((
− ∂z∗

∂R∗

)2

+
(

∂r∗

∂R∗

)2
)− 1

2

·
(

− ∂z∗

∂R∗ , 0,
∂r∗

∂R∗

)
, at Z∗ = ± h∗

2 ;
(19a)

n∗
in =

((
− ∂z∗

∂Z∗

)2

+
(

∂r∗

∂Z∗

)2
)− 1

2

·
(

− ∂z∗

∂Z∗ , 0,
∂r∗

∂Z∗

)
, at R∗ = R∗

in.

(19b)

2.2.1 Non-dimensionalisation

Wenon-dimensionalise the governing equations by introducing the following scalings

(r , R) = (r∗, R∗)
R∗
out

, (z, Z) = (z∗, Z∗)
h∗ , (P, �i ) = (P∗, �∗

i )

μ∗
c

, (20)

so that the dimensionless undeformed reference configuration is given by

Rin ≤ R ≤ 1, 0 ≤ � ≤ 2π, − 1
2 ≤ Z ≤ 1

2 , (21)

and the deformed configuration is given by

r = r(R, Z), θ = �, z = z(R, Z), (22)

wherein Rin = R∗
in

R∗
out

denotes the dimensionless inner radius. Of use in the sequel will

be the aspect ratio of the undeformed airway, defined by ε = h∗
R∗
out
.

Under the above definitions, the dimensionless strain-energy functions for each
constituent, and the whole tissue are given by

�c = (I1 − 3)

2
+ α

2
I4, (23a)

�m = μ
(I1 − 3)

2
+ ω

2
H(I4 − 1)

(
exp

(
ζ(I4 − 1)2

)
− 1

)
, (23b)

� = �c�c + �m�m, (23c)

where the dimensionless parameters μ, ω and α are defined by

μ = μ∗
m

μ∗
c
, ω = ω∗

μ∗
c
, α = α∗

μ∗
c
. (24)
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The dimensionless Cauchy stress tenors for each constituent, σσσ i , are then obtained
from the dimensionless versions of (12); the dimensionless tissue stress is obtained
from the dimensionless version of (15) or equivalently via σσσ = ∑

i �iσσσ i .
The dimensionless governing equations (6) and (16) (expressed in terms of the

reference configuration) then read

r

R

(
∂r

∂R

∂z

∂Z
− ∂r

∂Z

∂z

∂R

)
= 1, (25a)

∂r

∂R

∂σr z

∂Z
− ∂r

∂Z

∂σr z

∂R
+ ε

(
∂z

∂Z

∂σrr

∂R
− ∂z

∂R

∂σrr

∂Z

)

+ ε

(
∂r

∂R

∂z

∂Z
− ∂r

∂Z

∂z

∂R

) (
σrr − σθθ

r

)
= 0, (25b)

∂r

∂R

∂σzz

∂Z
− ∂r

∂Z

∂σzz

∂R
+ ε

(
∂z

∂Z

∂σr z

∂R
− ∂z

∂R

∂σr z

∂Z

)

+ ε

(
∂r

∂R

∂z

∂Z
− ∂r

∂Z

∂z

∂R

)
σr z

r
= 0. (25c)

The dimensionless boundary conditions (17) and (18) are given by

r(1, Z) = rdis, (26a)

σσσ
(
R, 1

2

)
nup = 0, (26b)

σσσ
(
R,− 1

2

)
nlow = 0, (26c)

σσσ (Rin, Z) nin = 0, (26d)

wherein nup, nlow and nin denote the the dimensionless unit normals to the upper,
lower and inner surfaces, respectively.

3 Numerical results

Numerical solutions to (25)–(26) are obtained via the finite element method, imple-
mented in the software FEBio (Maas et al. 2012). FEBio is a nonlinear finite element
software specialising in computational biomechanics. In our application,weuseFEBio
to numerically solve the weak form of the conservation of linear momentum (i.e., Eq.
(16)) assuming quasi-static equilibrium using linearised Newton-Raphson iterations.
We simulated the deformation of a thin hollow cylinder (representing the PCLS) dis-
cretised by standard linear hexahedral elements (see Fig. 9 in Appendix A). Radial
displacement matching experimental data was assigned to the outer radial surface
(i.e., displacement boundary condition (17) applied with outward normal r), whilst
the upper, lower and inner surfaces remain traction-free. We fixed z displacement for a
single node on the outer boundary at (R, Z) = (1, 0) to eliminate the constant velocity
solution. Figure 2 shows representative results, illustrating the mechanical response of
the airway to an imposed radial stretch in the absence (passive case) and presence of
active contraction. Details of convergence tests are given inAppendixA and parameter

123



Reduced biomechanical models for precision-cut lung-slice... Page 11 of 41 35

Fig. 2 Numerical results from the full thickness model (ε = 1) in various states of contraction (α = 0,
α = 0.1 and α = 0.2) and with a 5% fixed stretch applied at the outer boundary of the PCLS. (i)–(iii)
Radial deformation, r , and (iv)–(vi) axial deformation, z, plotted over the undeformed configuration, (R, Z).
Cauchy stress components (vii)–(ix) σrr , (x)–(xii) σθθ , (xiii)–(xv) σzz and (xvi)–(xviii) σr z plotted over
the deformed configuration, (r , z). The parameter values are provided in Table 1 in Appendix C. Note that
the colour bar scales differ between the individual plots
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values, following that of Hill et al. (2018) or estimated from the literature, are given
in the relevant figure captions (see also Table 1 in Appendix C). Although a consistent
colour scheme has been used within all figures that follow, it should be noted that the
scales differ between the individual plots (where indicated in figure captions) in order
to capture the full qualitative behaviour of all of the results displayed.

In both the passive and active contraction cases we observe that the radial defor-
mation, r , decays linearly with undeformed radius, R, but remains uniform axially
(Fig. 2 (i)–(iii)). As required by the incompressibility of the material, the airway thins
as it is stretched (Fig. 2 (iv)–(vi)).

The mechanical stress within the tissue displays significant spatial heterogeneity
(e.g. Fig. 2 (xviii)). Moreover, we observe that while the deformation of the air-
way is qualitatively similar in the passive and active contraction cases (cf. Fig. 2
(i), (iii)), there are distinct qualitative and quantitative differences in the stress state
between these regimes (cf. Fig. 2 (xvi), (xviii)). In particular, there is an increased
and exaggerated heterogeneous stress distribution in the presence of active contrac-
tion. Furthermore, the axial dependence of these heterogeneous stress distributions
increases with increased active contraction and is highlighted by the circumferential
stress distribution, σθθ (Fig. 2 (xii)).

In each case we observe increased radial stress, σrr , at the outer boundary (in the
direction of the prescribed stretch), with the stress at the inner wall remaining approx-
imately zero in each case (Fig. 2 (vii)–(ix)). Similarly, tissue contractility significantly
influences the circumferential stress, σθθ , as is to be expected, since the generated
contractile stress acts in the direction of the circumferential fibres embedded in the
airway (Fig. 2 (x)–(xii)). Moreover, we see that the circumferential stress is higher at
the inner radius than at the outer radius (Fig. 2 (x)–(xii)).

The thinning and stretching of the PCLS under the imposed stretch is reflected in
the distributions of the axial, σzz , and shear, σr z , stresses, with an order of magnitude
increase observed in the axial stress in the presence of contraction (Fig. 2 (xiii)–(xviii)).
The positive (tensile) axial stress at the outer radius and negative (compressive) axial
stress at the inner radius reflects the relative thickening at the inner radius compared
with that at the outer. The shear stress is positive at the lower surface and negative at
the upper surface reflecting the relatively increased displacement of material radially
and downward at the upper (and upward at the lower) surface.

The preceding results correspond to an airway of thickness comparable to its outer
radius (in particular, we set ε = 1). The typical thickness for a PCLS is in the range
of 100–250μm and a typical airway radius is in the range of 1–5mm, giving 0.02 <

ε < 0.25. Motivated by this, we investigate the dependence of the model behaviour
on the PCLS thickness by varying the aspect ratio ε. We consider the passive, α = 0,
and active contraction case, α = 0.2, in Figs. 3 and 4 . Here, we reduce ε from ε = 1
to ε = 0.01 in the direction of the black arrows. Note that the variables are plotted
as a function of deformed radius at the undeformed axial centre of the PCLS, i.e. at
Z = 0 (Fig. 3). This is true in all cases apart from the axial deformation, z, which
we plot as a function of radius at the undeformed upper surface of the PCLS, i.e. at
Z = 1

2 , in order to illustrate the thinning of the PCLS in response to stretch (Fig. 3
(iii), (iv)). The results illustrating axial dependence are all plotted over the thickness
of the PCLS at the undeformed radial midpoint R = Rmid (Fig. 4).
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Fig. 3 The effect of reducing the PCLS aspect ratio, ε, on the deformation and stress distributions across
the radius of the airway wall. (i)–(ii) Radial deformation, r(R, 0), and (iii)–(iv) axial deformation, z(R, 1

2 ),
plotted over the undeformed radius, R. Cauchy stress components (v)–(vi) σrr , (vii)–(viii) σθθ , (ix)–(x)
σzz and (xi)–(xii) σr z plotted over the deformed radius, r , at Z = 0. A 5% fixed stretch is applied in the
passive, α = 0, and active contraction case, α = 0.2. The aspect ratio decreases in direction of black arrows
for ε ∈ {1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01} and the remaining parameter values are provided in Table 1 in
Appendix C. Note that the scales of the y-axes differ between the individual plots
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Fig. 4 The effect of reducing the PCLS aspect ratio, ε, on the deformation and stress distributions through
the axial thickness of the PCLS. (i)–(ii) Radial deformation, r , and (iii)–(iv) axial deformation, z, plotted
over the undeformed thickness, Z . Cauchy stress components (v)–(vi) σrr , (vii)–(viii) σθθ , (ix)–(x) σzz
and (xi)–(xii) σr z plotted over the deformed thickness, z, at R = Rmid. A 5% fixed stretch is applied in the
passive, α = 0, and active contraction case, α = 0.2. The aspect ratio decreases in direction of black arrows
for ε ∈ {1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01} and the remaining parameter values are provided in Table 1 in
Appendix C. Note that the scales of the y-axes differ between the individual plots
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In both the passive and active contraction cases, the radial deformation at the axial
centre line varies linearly with R and remains approximately invariant with ε (Fig. 3
(i), (ii); insets highlighting the very slight variation with ε) and with correspondingly
little change in the radial stress (Fig. 3 (v), (vi)). Conversely, the near-uniform thinning
of the airway, observed in Fig. 3 (iii), (iv), becomes marginally more exaggerated as
ε is reduced and the PCLS thins more at the outer radius than at the inner radius.
Similarly, the circumferential stress increases at the inner radius and decreases at the
outer radius as ε reduces (Fig. 3 (vii), (viii)). On the other hand, we observe that the
heterogeneous axial and shear stress distributions decay to zero in Fig. 3 (ix)–(xii).

The deformation and stress variation through the axial thickness is shown in Fig. 4.
Here we observe only a weak dependence of the radial deformation and stresses on Z ,
that decays to uniformitywith decreasing ε. In particular, the axial stress decays to zero
with ε (Fig. 4 (ix), (x)). In contrast, the axial deformation remains approximately linear
in Z as ε decreases (Fig. 4 (iii), (iv); insets highlighting the very slight variationwith ε).
In the active contraction case, the above described features persist, but the variations
in deformation and associated stresses are exaggerated quantitatively (cf. Figs. 3, 4).

4 Model reduction

Guided by the observations in Sect. 3, in this section we consider analytical sim-
plifications of the biomechanical model (25)–(26). Firstly, in Sect. 4.1, we adopt a
membrane model, following Wong and Shield (1969), that allows reduction to one
spatial dimension. Subsequently in Sect. 4.2, we consider an asymptotic approach
to obtain a reduced model describing the leading order PCLS deformation in the
thin-PCLS-limit. In Sect. 4.3, we address the suitability of each approximation by
comparing them to the full biomechanical model simulated in FEBio (Maas et al.
2012).

4.1 Membranemodel

In this section we simplify the biomechanical model (25)–(26) by assuming that the
PCLS behaves as an elastic membrane, in which case we neglect Z dependence and
set z = Z so that there is no change in the axial thickness of the PCLS upon defor-
mation. This membrane description has previously been used by Wong and Shield
(1969) to approximate an axisymmetric stretch of an isotropic sheet; however, Wong
and Shield (1969) find that the approximation breaks down when the sheet has an edge
which is traction-free. The determinant of the deformation gradient approaches zero
in the close vicinity of the traction-free edge and a singularity appears in the govern-
ing equations when the material is incompressible. Similarly, although we consider
an anisotropic material with active contractile force generation, we find inconsisten-
cies with the governing equations and the prescribed boundary conditions when the
thickness of the PCLS is fixed. Specifically, the traction-free boundary conditions on
the upper, lower and inner surfaces of the PCLS cannot be satisfied simultaneously,
whilst preserving incompressibility, without the PCLS changing in thickness. There-
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fore, enforcing torsion-free axisymmetry as previously, we reduce the description of
the PCLS to one spatial dimension and omit the traction-free boundary conditions on
the upper and lower surfaces. The Cauchy stress, σσσ , and pressure, P , are functions
of R only, satisfying

dr

dR
= R

r
, (27a)

dσrr
dR

= 2

R

(
ψ1 + ψ4 − ψ1R4

r4

)
, (27b)

subject to the displacement outer boundary condition (26a),

r(1) = rdis, (28)

and the free boundary condition at the inner radius (26d) (ommiting (26b)–(26c)),

σrr (Rin) = 0, (29)

and where the radial and circumferential stresses are constitutively defined as

σrr = −P + 2ψ1

(
R

r

)2

, (30a)

σθθ = −P + 2(ψ1 + ψ4)
( r

R

)2
. (30b)

Integrating (27a) with respect to R, and imposing (28), we obtain

r2 = R2 − 1 + rdis
2, Rin ≤ R ≤ 1. (31)

Subsequently, integrating (27b) with respect to R and applying the zero radial stress
condition at the inner boundary (29) gives

σrr =
∫ R

Rin

2

R′

(
ψ1 + ψ4 − ψ1R′4

r4

)
dR′. (32)

In order to obtain σθθ (30b), we require the pressure, P; combining (30) and (32)
provides

P = 2
ψ1R2

r2
−

∫ R

Rin

2

R′

(
ψ1 + ψ4 − ψ1R′4

r4

)
dR′, (33)

and the constituent and total tissue stress follow directly.
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4.2 Thin-PCLS-limit

In this section, motivated by the typical geometry of the PCLS (Sect. 3), we consider
the limit 0 < ε 	 1, so that the thickness of the PCLS is small in comparison to a
typical airway radius. Correspondingly, and in view of our numerical results in Sect. 3
(in particular, Fig. 4 where we observe r becomes independent of Z for 0 < ε 	 1),
we seek expansions of the form

r = r (0)(R) + εr (1)(R) + ε2r (2)(R) + O(ε3), (34a)

z = z(0)(R, Z) + εz(1)(R, Z) + ε2z(2)(R, Z) + O(ε3), (34b)

P = P(0)(R, Z) + εP(1)(R, Z) + ε2P(2)(R, Z) + O(ε3), (34c)

adopting corresponding notation for the strain-energy functions where necessary and
assuming that �c,�m, ω, ζ and α all remain O(1) constants. We pause to highlight
that the more general expansion, for which r = r(R, Z), and the leading term for
P is O(ε2) (to obtain the proper leading order balance in the Cauchy stress), can be
reduced to that shown in (34) (see Appendix C) and so we adopt this from the outset
for brevity.

At leading order, the governing equations (25) read

dr (0)

dR

∂z(0)

∂Z
= R

r (0)
, (35a)

2
dr (0)

dR

∂z(0)

∂Z

∂2z(0)

∂Z2 − dr (0)

dR

∂P(0)

∂Z
= 0, (35b)

subject to the displacement boundary condition at the outer radius (26a),

r (0)(1) = rdis, (36)

and the following free boundary conditions at the upper, lower and inner surfaces of
the PCLS (26b)–(26d):

dr (0)

dR

⎛

⎝
(

∂z(0)

∂Z

)2

− P(0)

2ψ1

⎞

⎠ = 0, at Z = ± 1
2 ; (37a)

∂z(0)

∂Z

⎛

⎝
(
dr (0)

dR

)2

− P(0)

2ψ1

⎞

⎠ = 0, at R = Rin. (37b)

Equation (35a) and the boundary conditions (37a) provide

z(0) = λ(0)
z (R)Z , (38)

where the arbitrary function of R arising from the integration of (35a) vanishes due
to axial symmetry in z(0) about the axial centre line, Z = 0. Furthermore, the equa-
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tion (37b) requires P(0) = P(0)(R). In view of which, together with the boundary
conditions (37), we obtain:

P(0)(R) = 2ψ1λ
(0)
z

2
(R), (39a)

λ(0)
z (Rin) =

√
Rin

r (0)(Rin)
. (39b)

At O(ε) the linear momentum equations (25b)–(25c) read

dr (0)

dR

(
∂z(0)

∂Z

∂2z(1)

∂Z2 − 1

4ψ1

∂P(1)

∂Z

)
= 0, (40)

and the boundary conditions (26) provide

r (1)(1) = 0, (41a)

dr (0)

dR

(
∂z(0)

∂Z

∂z(1)

∂Z
− P(1)

4ψ1

)
= 0, at Z = ± 1

2 , (41b)

∂z(0)

∂Z

(
dr (0)

dR

dr (1)

dR
− P(1)

4ψ1

)
= 0, at R = Rin. (41c)

Inspection of equation (41c) shows that P(1)(R). In view of which, the boundary
conditions (41b) and (41c) provide

P(1)(R) = 4ψ1
∂z(0)

∂Z

∂z(1)

∂Z
, (42a)

P(1)(Rin) = 4ψ1
dr (0)

dR

∣∣∣∣∣
R=Rin

dr (1)

dR

∣∣∣∣∣
R=Rin

. (42b)

To summarise, we have reduced the problem to two leading order variables; the radial
deformation, r (0)(R), and the axial stretch, λ(0)

z (R), and obtained the governing equa-
tion (35a) and the boundary conditions (36) and (39b). However, we require a second
governing equation to determine the two variables, r (0)(R) and λ

(0)
z (R). Therefore,

we consider the O(ε2) momentum equations; (25b) reads

(
∂2z(0)

∂R∂Z
+ R

r (0)2

)(
dr (0)

dR

)2

− 1

2ψ1

∂z(0)

∂Z

dP(0)

dR
− ψ1 + ψ

(0)
4

ψ1R
+ 2

(
∂z(0)

∂Z

)−1

(
R

r (0)2
− R2

r (0)3

dr (0)

dR
− R

r (0)

dr (0)

dR

∂2z(0)

∂R∂Z

)
= 0. (43)
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Equation (43) closes the leading order problem. Equation (25c) introduces higher
order terms which are not of interest for the leading order problem and is therefore
not needed here.

Substituting (38) and (39a) into (43) provides an equation for λ
(0)
z and hence,

together with (35a), we obtain the following pair of coupled ODEs:

dr (0)

dR
= R

r (0)λz
(0)

, (44a)

dλz
(0)

dR
= R

R2 + 2r (0)2λ
(0)
z

4

(
2λz

(0) − R2

r (0)2

−
(
1 + ψ

(0)
4

ψ1

)
r (0)2λ

(0)
z

2

R2

⎞

⎠ .

(44b)

Together with the boundary condition (36) and the relation (39b), this provides a
boundary value problem that describes the leading order radial and axial deformation.
From this the leading order Cauchy stress components for the whole tissue and each
of the constituents follow directly. We note that the boundary condition (39b) on λ

(0)
z

is posed at the (unknown) deformed inner radius. We therefore solve (44) numerically
by treating r (0)(Rin) as a shooting parameter and seek the solution set (r (0), λ

(0)
z ) at

Rin that satisfies (36), (39b) and (44).

4.3 Suitability of approximations

In this section we compare numerical simulations of the full model (Eq. (25) with
boundary conditions (26)), with those of themembranemodel (Eq. (27) with boundary
conditions (28)–(29)), and the thin-PCLS-limit (Eq. (44) with boundary conditions
(36) and (39b)) to demonstrate their validity.

We plot the radial deformation, r , axial deformation, z, and the corresponding
stresses, σσσ , obtained in all three models, both in the presence and absence of active
contractile force in Fig. 5. Results from the full and thin-PCLS models in Fig. 5 are
plotted as functions of radius at the undeformed axial centre line (Z = 0), apart from
the axial deformation, z, which we plot as a function of radius at the undeformed
upper surface of the PCLS (Z = 1

2 ), in order to illustrate the thinning of the PCLS
in response to stretch. Those from the membrane case, however, do not depend on Z ;
for illustrative purposes, we plot z fixed at Z = 1

2 in order to emphasise the thinning
of the PCLS (relative to the reference configuration) that is displayed by the full and
thin-PCLS models.

We find that, despite its relative mathematical and computational simplicity, the
thin-PCLS-limit provides a suitable approximation to the full model, showing good
quantitative agreement and excellent qualitative agreement in all variables. In con-
trast, the membrane model is unable to replicate the full model behaviour. The
one-dimensional geometry of themembrane approximation constrains the inner radius
of the membrane to deform corresponding to the displaced outer boundary in order to
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Fig. 5 Comparisonof the numerical simulations of the fullmodel,with those of themembranemodel, and the
thin-PCLS-limit to demonstrate their validity. (i)–(ii) Radial displacement, r , (iii)–(iv) axial displacement,
z, and (v)–(xii) Cauchy stress components, σσσ , plotted as functions of undeformed radius, R, and deformed
radius, r , at the undeformed centre of the PCLS (Z = 0), respectively. A 5% fixed stretch is applied to
the PCLS in the passive, α = 0, (1st column) and active, α = 0.2, (2nd column) case. The aspect ratio
ε = 0.01 throughout and the remaining parameter values are provided in Table 1 in Appendix C. Note that
the scales of the y-axes differ between the individual plots
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preserve incompressibility. As a result, we observe an increased radial deformation and
elevated radial and circumferential stress in the membrane approximation compared
to the thin-PCLS-limit approximation and the full model (Fig. 5 (i)–(ii), (v)–(viii),
respectively). In contrast, the thickness of the PCLS in both the full model and the
thin-PCLS-limit allows the generated stresses to be absorbed by the axial deformation
(Fig. 5 (iii), (iv)). Hence, the thin-PCLS-limit provides a more realistic representation
of the full problem (for small ε) than the membrane.

Active contraction accentuates the radial deformation of the PCLS and the thick-
ness of the PCLS decreases accordingly in order to maintain tissue incompressibility
(cf. Fig. 5 (iii), (iv)). This feature is only observed in the full model and the thin-PCLS-
limit. Further contraction-induced deformation is not permitted in the membrane
approximation due to the one-dimensional geometry and incompressibility constraint,
and as a result, active contraction simply increases the stress generated in the mem-
brane. Hence, there are significant qualitative and quantitative differences observed
in the stress distributions of the two approximations and only the thin-PCLS-limit
provides a suitable approximation to the full model.

The full model exhibits rapid variation in the axial and shear stress components near
the inner and outer airway radii (Fig. 5 (ix)–(xii)). However, this (small-amplitude)
boundary layer behaviour in the axial and shear stress components near the airway
boundaries (that is evident in the full model) is not captured by either of the simple
models. Although the amplitude of these effects is very small, we believe that these are
not numerical artefacts as they span multiple elements. Therefore, a boundary layer
analysis of these features forms a natural future extension of this work.

5 Thin-PCLS-limit parameter exploration

In the preceding numerical experiments, our parameter choices follow that of Hill et al.
(2018) or are estimated from the literature. The parameter values are provided in Table
2 in Appendix C. In this section we take advantage of the computational tractability
of our reduced model ((36), (39b) and (44)) to explore the influence of the airway’s
mechanical properties on the model behaviour, and in particular, examine differences
in the constituents’ stresses that cause TGF-β activation. Such parameter exploration
is computationally prohibitive in the full model.

The effect of the imposed radial displacement on the constituent stress, in the
absence of contraction, is illustrated in Fig. 6. Here, we increase the fixed stretch
applied from 0% (unstretched) to 20% (the maximum imposed in the experiments that
are our primary motivation (Tatler 2016)). Over this range, we observe a significant
increase in stress heterogeneity, with high radial (circumferential) stresses evident at
the outer (inner) airway wall (Fig. 6). For both the ASM and ECM components, we see
that the circumferential stress dominates over the radial stress (e.g., cf. Fig. 6 (i), (iv)
and (vii), (x)). This is to be expected in the passive case due to the strain-stiffening of
theECMthat occurs in direction of the circumferential fibreswhen stretched.However,
we see that increasing the stiffness of ECM relative to that of ASM (μ) dramatically
alters the distribution of the constituent radial stress (cf. Fig. 6 (i), (iii) and (vii), (ix)).
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Fig. 6 The effect of stretch (applied at the outer boundary of the PCLS) on the constituent Cauchy stress
components, σσσ c and σσσm , and the axial deformation at the upper surface, z(0)(R, 1

2 ), as a function of

deformed radius, r (0), for different stiffnesses of ECM relative to that of ASM, μ. Simulation parameter
values are provided in Table 2 in Appendix C. Note that the colour bar scales differ between the individual
plots

As the imposed radial stretch is increased from zero, the axial deformation becomes
less uniform across the airway thickness (Fig. 6 (xiii)–(xv)). Moreover, we observe
that the heterogeneity of the axial thinning with increasing stretch is exaggerated with
ECM compliance (cf. Fig. 6 (xiii), (xv)). This suggests that the stiffness of the ECM
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provides resistance to the imposed stretch across the airway wall, in addition to the
associated strain-stiffening. As a result, the profile of the PCLS is more uniform for
stiff ECM and thicker (thinner) at the inner (outer) radius for compliant ECM. When
the ECM is relatively compliant, the stress state of the ASM is higher than that of the
ECM for small stretches (due to the passive isotropic material properties, rm i.e. μ)
(cf. Fig. 6 (i), (vii)). However, strain-stiffening of the ECM increases exponentially
with stretch and as a result, the stress state of the ECM increases more significantly
with stretch than that of the ASM (cf. Fig. 6 (iii), (ix)).

The influenceofASMcontractility on the airwayconstituent stress anddeformation,
at fixed imposed stretch, is illustrated in Fig. 7. As expected, increasing the contractile
force generated by the ASM leads to significant radial contraction of the airway,
and associated resistance to axial thinning at the inner radius (Fig. 7 (xiii)–(xv)).
Correspondingly, we observe elevated and increasingly non-uniform radial stress of
the ASM and ECM constituents in Fig. 7 (i)–(iii) and (vii)–(ix), respectively.

In general, the stress distributions are qualitatively similar at each amplitude of
fixed stretch, with a small stress increase at a larger fixed stretch. The circumferential
stress of the ECM is an exception to this general observation and displays significantly
different heterogeneous distributions for each imposed fixed stretch (cf. Fig. 7 (x), (xi)
and (xii)). More specifically, in the absence of stretch, the circumferential stress of
the ECM is maximal at the outer radius when the contractile force is high (Fig. 7 (x)).
In contrast, in the presence of a 15% stretch, the circumferential stress of the ECM is
maximal at the inner radius and when there is no contractile force (Fig. 7 (xii)). The
transition between these two modes is evident in Fig. 7 (xi).

In contrast to our previous observations for increasing stretch in Fig. 6, we see that
increasing the contractile force generated by the ASM leads to comparable radial and
circumferential stress components of the ECM(Fig. 7). Here, the increasing contractile
force and the strain-stiffenedECM leads to the constituents being comparably stressed.

The influence of constituent stiffness on the airway wall stress and deformation, at
fixed imposed stretch, is illustrated in Fig. 8. The ratio of the passive isotropic stiffness
of ECM to that of the ASM is given by μ. The ECM is more compliant than the ASM
for μ < 1, stiffer than the ASM for μ > 1, and has the same stiffness as the ASM for
μ = 1. Here, we increase μ in the presence of a constant contractile force generated
by the ASM, α.

When the ECM is more compliant than the ASM (μ < 1) we observe a slight
reduction in radial contraction compared to the case for which the ECM stiffness
exceeds that of the ASM (μ > 1). Correspondingly, there is an increased resistance to
axial thinning with increasing μ observed in Fig. 8 (xiii)–(xv). As a result, we see that
themagnitude of the stress components of the ASMdecrease with increasingμ (due to
the decreased radial contraction), whilst the magnitude of the stress components of the
ECM increasewith increasingμ (cf. Fig. 8 (v), (xi)). These observations persist and are
emphasised under the application of fixed stretch (due to additional strain-stiffening
of the ECM when stretched).

In general, we see that the stress distributions of the ASM display greater non-
uniformity across the airway radius than that of the ECM, particularly when stretched.
For example, the circumferential stress of the ASM and ECM differ significantly
(cf. Fig. 8 (vi), (xii)). As the stiffness of the ECM increases, the circumferential stress
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Fig. 7 The effect of constant contractile force, α, on the constituent Cauchy stress components, σσσ c and
σσσm , and the axial deformation at the upper surface, z(0)(R, 1

2 ), as a function of deformed radius, r (0), in
the presence and absence of fixed stretch applied at the outer boundary of the PCLS with amplitude 0%,
5% and 15%. Simulation parameter values are provided in Table 2 in Appendix C. Note that the colour bar
scales differ between the individual plots

of the ASM remains higher at the outer radius than at the inner radius in the absence
of stretch (Fig. 8 (iv)). However, in the presence of a 15% stretch, the circumferential
stress of the ASM varies significantly across the airway wall and is higher at the inner
radius and lower at the outer radius (Fig. 8 (vi)). Therefore, imposed stretch induces
a dramatic change in the distribution of the circumferential stress of the ASM and
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Fig. 8 The effect of the stiffness of ECM relative to that of ASM, μ, on the constituent Cauchy stress
components, σσσ c and σσσm , and the axial deformation at the upper surface, z(0)(R, 1

2 ), as a function of

deformed radius, r (0), in the presence and absence of a fixed stretch applied at the outer boundary of the
PCLS with amplitude 0%, 5% and 15%. Simulation parameter values are provided in Table 2 in Appendix
C. Note that the colour bar scales differ between the individual plots

the apparent transition between these two extremes is observed in Fig. 8 (v). This
behaviour is similar to that exhibited by the ECM when increasing the contractile
force generated by the ASM in Fig. 7 (x)–(xii).
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6 Discussion

Despite its prevalence in the population, the causes of asthma remain poorly
understood; in particular, the feedback mechanisms linking inflammation, bron-
choconstriction and cytokine activation are yet to be elucidated. To help address
this, we develop a nonlinear fibre-reinforced biomechanical model of an airway in
PCLS, an ex vivo assay widely used for studying asthmatic airway biomechanics. Our
model accommodates agonist-induced ASM contractility and ECM strain-stiffening
and allows us to examine the stress distributions of these individual constituents within
the airway wall.

Direct numerical simulation of the model by means of the FEBio software (Maas
et al. 2012) reveals the internal stress state of an axisymmetric airway within a PCLS
under imposed deformation, and highlights the distinct qualitative and quantitative
differences induced by ASM contraction. Such information is of key importance in
interpreting PCLS experiments, and in particular those that seek to understand the
above described feedback mechanisms. However, the computational complexity of
this model precludes thorough investigation of the parameter space, mathematical
analysis or coupling to time-dependence. To address this, we consider two reductions
of the full model. First, we adopt a membrane representation, where axial variation
is neglected a priori, and the PCLS thickness remains unchanged upon deformation.
Secondly, and in view of the typical dimensions of the PCLS and numerical evidence,
we consider an asymptotic reduction, appropriate for the limit in which the PCLS
thickness is much smaller than the typical airway radius, and in which we are able
to retain a description of the radial and axial airway deformation and the associated
stresses. In each case, we reduce the model to one spatial dimension; the membrane
model admits analytical solutions, while in the thin-PCLS-limit the model reduces
to a pair of coupled nonlinear ODEs describing the deformation, numerical solutions
to which are obtained via a shooting method. We find that the membrane model is
unable to capture the full model behaviour, but that the asymptotically-reduced model
provides a suitable approximation to the full model, at reduced computational cost.

Crucially, this computationally tractable model that we have developed allows for
comprehensive investigation of the mechanisms underpinning pro-remodelling and
contractile cytokine activation in asthmatic airways, a key aspect of the pathogenesis
and presentation of asthma, that has only recently received attention. In particu-
lar, our future work will consider the positive mechanotransductive feedback loop
between airway contraction and the activationofTGF-β, that is implicated in long-term
remodelling. Furthermore, we will include time-dependent loading of cyclic stretch
to more faithfully represent the experimental protocol. Other important future consid-
erations include developing our asymptotic reduction to accommodate, for example,
spatially-dependent airway composition data (Brook et al. 2019) and undertaking
parameterisation and model validation. In addition, as the PCLS thickness is reduced,
we observe rapid variations in the axial and shear stress components near the inner
and outer airway radii that are not captured by the asymptotic (or membrane) model; a
boundary layer analysis of these features forms a natural extension of this work. More
advanced theoretical considerations include development of a model accommodating
unconstrainedmultiphase solidmechanics. This will allow for the differing strain rates
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Fig. 9 Example of the meshed geometry of an airway in the PCLS with aspect ratio ε = 1. Mesh produced
in the software suite PreView (complementary to FEBio (Maas et al. 2012))

of the two constituents to be examined, which may be important in understanding the
cell-mediated activation of cyotkines in the PCLS.
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copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Numerics

Numerical solutions to the full biomechanical model (Eqs. (25) and (26)) are obtained
via a finite element method, implemented in the software FEBio (Maas et al. 2012).
To confirm accuracy of our results, we carry out suitable mesh convergence tests by
uniformly refining the mesh. An example of the meshed geometry is illustrated in
Fig. 9. We demonstrate that our results converge to a solution with increasing number
of elements in Fig. 10.
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Fig. 10 Mesh convergence tests. (i)–(iii) The L2 norm (45) and (iv)–(vi) the L2 norm error between
iterations of mesh refinement (47) of the radial deformation, r , axial deformation, z, and Von Mises stress,
σVM, in the passive, α = 0, case, plotted against the number of elements in the mesh. (vii)–(ix) The L2

norm (45) and (x)–(xii) the L2 norm error (47) of r , z and σVM in the active, α = 0.2, case, plotted against
the number of elements in the mesh. A fixed 5% stretch is applied with ε = 1 throughout and the remaining
parameter values are provided in Table 1 in Appendix C. Note that the scales of the y-axes differ between
the individual plots

The L2 norm of a q × s matrix A is defined as

‖A‖L2 =
⎛

⎝
q∑

j=1

s∑

k=1

|A j,k |
⎞

⎠

1
2

. (45)

We use the L2 norm (45) as a metric in our mesh convergence tests in order to
provide a global representation of the change in solution. In addition to the radial and

123



Reduced biomechanical models for precision-cut lung-slice... Page 29 of 41 35

axial deformation variables, r and z, we consider the Von Mises stress, σVM, given by

σVM = 1√
2

(
(σrr − σθθ )

2 + (σθθ − σzz)
2

+ (σzz − σrr )
2 + 6

(
σrθ

2 + σθ z
2 + σzr

2
))2

, (46)

in order to provide an overall representation of the Cauchy stress components. For
consistency, ‖r(R, Z)‖L2 , ‖z(R, Z)‖L2 and ‖σVM(R, Z)‖L2 are evaluated at the nodal
positions of the coarse mesh at each iteration and are plotted against the number of
elements in the mesh to show that the solutions converge appropriately both in the
passive and active contraction case (Fig. 10 (i)–(iii) and (vii)–(ix), respectively).

Using (45), we define the L2 norm error between iterations, n, as

∣∣∣‖An‖L2 − ‖An+1‖L2

∣∣∣. (47)

We show that the errors between iterations decay to zero in Fig. 10 (iv)–(vi) and (x)–
(xii), again in both the passive and active contraction case, respectively. Note that we
have carried out mesh convergence tests for ε ∈ {0.01, 0.1, 1}, with and without a
prescribed stretch, but limit the results displayed in Fig. 10 to ε = 1 with a 5% fixed
stretch applied for concision.

B Thin-PCLS-limit model reduction

Guided by the numerical evidence (provided in Sect. 3 and below), in this section we
demonstrate that the general expansions, for which r = r(R, Z) and the leading order
term forP is O(ε−2) (to obtain a proper leading order balance in the Cauchy stress)
can be reduced to that shown in (34).

The general asymptotic expansions for each of the deformation variables are as
follows,

r = r (0)(R, Z) + εr (1)(R, Z) + ε2r (2)(R, Z) + O(ε3), (48a)

z = z(0)(R, Z) + εz(1)(R, Z) + ε2z(2)(R, Z) + O(ε3), (48b)

P = ε−2P(−2)(R, Z) + ε−1P(−1)(R, Z) + P(0)(R, Z)

+ εP(1)(R, Z) + ε2P(2)(R, Z) + O(ε3). (48c)

As outlined in Sect. 4.2, we assume that �c, �m , μ, ω, ζ and α are allO(1) constants
in the strain-energy function for the whole tissue, � (23c). Therefore, the following
derivatives of the strain-energy functions are O(1) constants: ψc1, ψm1 and ψ1. The
derivative of the strain-energy function with respect to the fourth invariant, ψ4, is a
function of radius, r . Therefore, using the asymptotic expansions (48) and expanding
for small ε in ψm4, we obtain the leading order terms in the derivative of the strain-
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energy function, with respect to the fourth invariant, for each constituent

ψc
(0)
4 = α

2
, (49a)

ψm
(0)
4 = ω

⎛

⎝
(
r (0)

R

)2

− 1

⎞

⎠H
(
r (0)2 − R2

)

× exp

⎛

⎜⎝ζ

⎛

⎝
(
r (0)

R

)2

− 1

⎞

⎠
2
⎞

⎟⎠ , (49b)

and correspondingly for the whole tissue

ψ
(0)
4 = �cψc

(0)
4 + �mψm

(0)
4 . (50)

At the next order, O(ε), we obtain

ψc
(1)
4 = 0, (51a)

ψm
(1)
4 = ω exp

⎛

⎜⎝ζ

⎛

⎝
(
r (0)

R

)2

− 1

⎞

⎠
2
⎞

⎟⎠

×
⎛

⎝2r (0)r (1)

R2 H
(
r (0)2 − R2

)
+

⎛

⎝
(
r (0)

R

)2

− 1

⎞

⎠H

(
2r (0)r (1)

R2

)⎞

⎠

+ ω exp

⎛

⎜⎝ζ

⎛

⎝
(
r (0)

R

)2

− 1

⎞

⎠
2
⎞

⎟⎠

× 4ζ

(
r (0)3r (1)

R4 − r (0)r (1)

R2

) ⎛

⎝
(
r (0)

R

)2

− 1

⎞

⎠H
(
r (0)2 − R2

)
, (51b)

and correspondingly for the whole tissue

ψ
(1)
4 = �cψc

(1)
4 + �mψm

(1)
4 , (52)

where, as previously, the notation ψi
(k)
4 for i ∈ {c,m} refers to theO(εk) term in ψc4

and ψm4.
Using the expansions (48) and expanding for small ε in (25b)–(25c)), at the leading

order, O(ε−2), the governing equations (25b)–(25c) read

∂r (0)

∂Z

∂P(−2)

∂R
− ∂r (0)

∂R

∂P(−2)

∂Z
= 0, (53)
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subject to the following free boundary conditions at the upper, lower and inner surfaces
of the PCLS (26b):

∂r (0)

∂R
P(−2) = 0, at Z = ± 1

2 ; (54a)

∂z(0)

∂Z
P(−2) = 0, at R = Rin; (54b)

∂r (0)

∂Z
P(−2) = 0, at R = Rin. (54c)

At the next order, O(ε−1), the governing equations (25b)–(25c) read

∂r (1)

∂Z

∂P(−2)

∂R
+ ∂r (0)

∂Z

∂P(−1)

∂R
− ∂r (1)

∂R

∂P(−2)

∂Z
− ∂r (0)

∂R

∂P(−1)

∂Z
= 0, (55)

subject to the free boundary conditions (26b)–(26d):

∂r (1)

∂R
P(−2) + ∂r (0)

∂R
P(−1) = 0, at Z = ± 1

2 ; (56a)

∂z(1)

∂Z
P(−2) + ∂z(0)

∂Z
P(−1) = 0, at R = Rin; (56b)

∂r (1)

∂Z
P(−2) + ∂r (0)

∂Z
P(−1) = 0, at R = Rin. (56c)

A solution to (53) that satisfies the free boundary conditions (54) is P(−2) = 0,
and thus, a solution to (55) that satisfies the boundary conditions (56) is P(−1) = 0.
This solution is consistent with our numerical solution obtained in FEBio in Sect. 3
(e.g. Fig. 2), where the pressure is an O(1) quantity, i.e. where P(0) is the leading
order term. Subsequently, at O(1), the governing equations (25) read

∂r (0)

∂R

∂z(0)

∂Z
− ∂r (0)

∂Z

∂z(0)

∂R
− R

r (0)
= 0, (57a)

R

r (0)

∂2r (0)

∂Z2 + ∂r (0)

∂Z

(
∂r (0)

∂R

∂2z(0)

∂Z2 − ∂z(0)

∂R

∂2r (0)

∂Z2

− ∂r (0)

∂Z

∂2z(0)

∂R∂Z
+ ∂z(0)

∂Z

∂2r (0)

∂R∂Z
+ ∂r (0)

∂Z

R

r (0)2

)
= 0, (57b)

2R

r (0)

∂2z(0)

∂Z2 +
(

∂z(0)

∂Z

)2
∂2r (0)

∂R∂Z
− ∂z(0)

∂R

∂z(0)

∂Z

∂2r (0)

∂Z2

− 1

2ψ1

∂r (0)

∂R

∂P(0)

∂Z
+ ∂r (0)

∂Z

(
∂z(0)

∂R

∂2z(0)

∂Z2
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− ∂z(0)

∂Z

∂2z(0)

∂R∂Z
+ R

r (0)2

∂z(0)

∂Z
+ 1

2ψ1

∂P(0)

∂R

)
= 0, (57c)

subject to the displacement boundary condition at the outer radius (26a),

r (0)(1, Z) = rdis, (58)

and the free boundary conditions (26b)–(26d):

∂r (0)

∂R

∂r (0)

∂Z

∂z(0)

∂Z
− ∂z(0)

∂R

(
∂r (0)

∂Z

)2

= 0, at Z = ± 1
2 ;
(59a)

∂r (0)

∂R

(
∂z(0)

∂Z

)2

− ∂z(0)

∂R

∂r (0)

∂Z

∂z(0)

∂Z
− P(0)(R, 1

2 )

2ψ1

∂r (0)

∂R
= 0, at Z = ± 1

2 ;
(59b)

∂r (0)

∂R

∂r (0)

∂Z

∂z(0)

∂R
− ∂z(0)

∂Z

(
∂r (0)

∂R

)2

+ P(0)

2ψ1

∂z(0)

∂Z
= 0, at R = Rin;

(59c)

P(0)

2ψ1

∂r (0)

∂Z
= 0, at R = Rin.

(59d)

We seek to obtain (35) which requires r (0)(R). We note that r (0)(R) is a solution
to (57) that satisfies the displacement boundary condition (58) and the free boundary
conditions (59). Moreover, numerical evidence provided in Fig. 11, 1st column (illus-
trating the effect of reducing the aspect ratio, ε, on the first derivative of the radial
deformation, r , with respect to Z ) shows that the dependence of r on Z is very weak. In
view of this, we relegate Z dependence to the next order, and the governing equations
(57) reduce to

dr (0)

dR

∂z(0)

∂Z
= R

r (0)
, (60a)

2
dr (0)

dR

∂z(0)

∂Z

∂2z(0)

∂Z2 − 1

2ψ1

dr (0)

∂R

∂P(0)

∂Z
= 0, (60b)

and the free boundary conditions (59) reduce to:

dr (0)

dR

(
∂z(0)

∂Z

)2

− P(0)

2ψ1

dr (0)

dR
= 0, at Z = ± 1

2 ; (61a)

−
(
dr (0)

dR

)2
∂z(0)

∂Z
+ P(0)

2ψ1

∂z(0)

∂Z
= 0, at R = Rin. (61b)

123



Reduced biomechanical models for precision-cut lung-slice... Page 33 of 41 35

as previously in Sect. 4.2.
From (60a), we note that

dr (0)

dR
�= 0,

∂z(0)

∂Z
�= 0, (62)

and rearrange the reduced boundary conditions (61) to obtain

P(0)(R, 1
2 ) = 2ψ1

⎛

⎝ ∂z(0)

∂Z

∣∣∣∣∣
Z= 1

2

⎞

⎠
2

, (63a)

P(0)(R,− 1
2 ) = 2ψ1

⎛

⎝ ∂z(0)

∂Z

∣∣∣∣∣
Z=− 1

2

⎞

⎠
2

, (63b)

P(0)(Rin, Z) = 2ψ1

(
dr (0)

dR

∣∣∣∣∣
R=Rin

)2

. (63c)

The boundary condition (63c) holds for all Z ; however, r (0) is independent of Z ,
and therefore P(0)(R). Subsequently, the O(1) governing equations (60) reduce to

dr (0)

dR

∂z(0)

∂Z
= R

r (0)
, (64a)

∂2z(0)

∂Z2 = 0, (64b)

and provide

z(0) = λ(0)
z (R)Z , (65)

where the arbitrary function of R arising from the integration of (64b) vanishes due
to axial symmetry in z(0) about the axial centre line, Z = 0, as previously in (38).
Substituting (65) into (63) and (64) we obtain

P(0)(R) = 2ψ1λ
(0)
z (R)

2
, (66a)

λ(0)
z (Rin)

2 = Rin

r (0)(Rin)
, (66b)

as previously in (39).
So far we have demonstrated that r (0)(R) and P(0) are appropriate leading order

approximations in (34); we now show that r (1)(R) and P(1)(R) follow.
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Using the preceding information, and in particular (62), at O(ε) the governing
equations read

r (1)

r (0)
+ r (0)

R

(
∂r (1)

∂R

∂z(0)

∂Z
+ dr (0)

dR

∂z(1)

∂Z
− ∂r (1)

∂Z

∂z(0)

∂R

)
= 0, (67a)

∂2r (1)

∂Z2 = 0, (67b)

2
dr (0)

dR

∂z(0)

∂Z

∂2z(1)

∂Z2 − ∂r (1)

∂Z

∂z(0)

∂Z

∂2z(0)

∂R∂Z

+
(

∂z(0)

∂Z

)2
∂2r (1)

∂R∂Z
+ 1

r (0)

(
∂z(0)

∂Z

)2
∂r (1)

∂Z

dr (0)

dR

+ 1

2ψ1

(
∂r (1)

∂Z

dP(0)

dR
− dr (0)

dR

∂P(1)

∂Z

)
= 0, (67c)

subject to the displacement boundary condition at the outer radius (26a),

r (1)(1, Z) = 0, (68)

and the free boundary conditions (26b)–(26d):
∂r (1)

∂Z
= 0, at Z = ± 1

2 ;
(69a)

(
∂z(0)

∂Z

)2
∂r (1)

∂R
+ 2

dr (0)

dR

∂z(0)

∂Z

∂z(1)

∂Z
− ∂z(0)

∂Z

∂z(0)

∂R

∂r (1)

∂Z

−P(0)

2ψ1

∂r (1)

∂R
− P(1)

2ψ1

dr (0)

dR
= 0, at Z = ± 1

2 ;
(69b)

dr (0)

dR

∂r (1)

∂Z

∂z(0)

∂R
−

(
dr (0)

dR

)2
∂z(1)

∂Z

−2
dr (0)

dR

∂r (1)

∂R

∂z(0)

∂Z
+ P(0)(Rin)

2ψ1

∂z(1)

∂Z
+ P(1)

2ψ1

∂z(0)

∂Z
= 0, at R = Rin.

(69c)

The O(ε) governing equation (67b) together with the boundary condition (69a)
provides r (1)(R), and hence, the O(ε) governing equations (67) reduce to

r (1)

r (0)
+ r (0)

R

(
∂r (1)

∂R

∂z(0)

∂Z
+ dr (0)

dR

∂z(1)

∂Z
− ∂r (1)

∂Z

∂z(0)

∂R

)
= 0, (70a)

2
∂z(0)

∂Z

∂2z(1)

∂Z2 − 1

2ψ1

∂P(1)

∂Z
= 0, (70b)
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and, using (66), reduces the O(ε) free boundary conditions (69) to

(
∂z(0)

∂Z

)2
dr (1)

dR
− P(0)

2ψ1

dr (1)

dR
− P(1)

2ψ1

dr (0)

dR
= 0, at Z = ± 1

2 ; (71a)

−2
dr (0)

dR

dr (1)

dR

∂z(0)

∂Z
+ P(1)

2ψ1

∂z(0)

∂Z
= 0, at R = Rin. (71b)

The free boundary condition (71b) holds for all Z ; however, all terms exceptP(1)

are independent of Z . Therefore, we conclude, P(1)(R). Subsequently, the O(ε)

governing equations (70) reduce to

r (1)

r (0)
+ r (0)

R

(
∂r (1)

∂R

∂z(0)

∂Z
+ dr (0)

dR

∂z(1)

∂Z
− ∂r (1)

∂Z

∂z(0)

∂R

)
= 0, (72a)

∂2z(1)

∂Z2 = 0, (72b)

and provide

z(1) = λ(1)
z (R)Z , (73)

where, again, the arbitrary function of R arising from the integration of (72b) vanishes
due to the symmetry in z(0) about the axial centre line, Z = 0. Substituting (65) and
(73) into the free boundary conditions (71) we obtain

P(1) = 4ψ1λ
(0)
z (R)λ(1)

z (R), (74a)

λ(0)
z

3
(Rin)λ

(1)
z (Rin) = − 4ψ1R2

in

r (0)2(Rin)

⎛

⎝r (1)2(Rin)

r (0)2(Rin)
− λ

(1)
z

2
(Rin)

λ
(0)
z

2
(Rin)

⎞

⎠ . (74b)

To summarise, we have reduced the problem to two leading order variables; the
radial deformation, r (0)(R), and the axial stretch, λ

(0)
z (R). The governing equations

together with the free surface boundary conditions up to O(1) provide the pressure
P(0)(R) in terms of r (0)(R) and λ

(0)
z (R). The leading order governing equations

enforce incompressibility (64a) subject to the displacement boundary condition at
the outer radius (58) and the free surface boundary conditions via a relation at the
inner radius in (66b). The governing equations together with the free surface boundary
conditions up toO(ε) provide z(1) = λ

(1)
z (R)Z in (73) andP(1)(R) in (74a); however,

we require a leading order equation that governs the balance of linear momentum
to determine the two variables, r (0)(R) and λ

(0)
z (R). Therefore, at O(ε2) the linear

momentum equations read

R

r (0)

∂2r (2)

∂Z2 +
(

∂2z(0)

∂R∂Z
+ R

r (0)2

)(
dr (0)

dR

)2
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Fig. 11 The effect of reducing the aspect ratio, ε, on the first derivative (1st column) and second derivative
(2nd column) of the radial deformation r with respect to Z , in the passive case, α = 0, and under the
application of a 5% fixed stretch. Results plotted in the undeformed reference configuration (R, Z). ε

decreases in the direction of the arrow for ε ∈ {1, 0.5, 0.25, 0.1, 0.025, 0.01}. The remaining parameter
values are provided in Table 1 in Appendix C. Note that the colour bar scales differ between the individual
plots
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− 1

2ψ1

∂z(0)

∂Z

dP(0)

dR
− ψ1 + ψ

(0)
4

ψ1R

+ 2

(
∂z(0)

∂Z

)−1 (
R

r (0)2
− R2

r (0)3

dr (0)

dR
− R

r (0)

dr (0)

dR

∂2z(0)

∂R∂Z

)
= 0, (75a)

1

2ψ1

(
∂r (2)

∂Z

dP(0)

dR
− ∂P(2)

dZ

dr (0)

dR

)

+ 2
dr (0)

dR

∂z(0)

∂Z

∂2z(2)

∂Z2 − ∂z(0)

∂R

∂z(0)

∂Z

∂2r (2)

∂Z2

+ dr (0)

dR

∂z(0)

∂R

∂2z(0)

∂R2 − ∂r (2)

∂Z

∂z(0)

∂Z

∂2z(0)

∂R∂Z

+
(

∂z(0)

∂Z

)2
∂2r (2)

∂R∂Z
+ ∂z(0)

∂Z

∂z(0)

∂R

d2r (0)

dR2 + dr (0)

dR

∂z(0)

∂R

∂2z(0)

∂R∂Z

+ 1

r (0)

(
dr (0)

dR

)2
∂z(0)

∂Z

∂z(0)

∂R
+ 1

r (0)

(
∂z(0)

∂Z

)2
dr (0)

dR

∂r (2)

∂Z
= 0. (75b)

Using (75a), we seek to obtain (43) in order to close the leading order problem. As
previously, equation (75b) introduces higher order terms (i.e. z(2) and P(2)) which
are not of interest for the leading order problem and is therefore not needed here.

Numerical evidence provided in Fig. 11, 2nd column shows that the dependence of
r on Z is weak and importantly, that ∂2r

∂Z2 is much smaller than the other leading order
quantities in (75a). As a result, the remaining O(1) terms in (75a) dominate to reveal
(43). Moreover, for ε = 0.01, Fig. 11 (xi) and (xii) suggest that r (2) = r (2)(R) and
support our expansions in (34). Subsequently, substituting (65) and (66a) into (75a)
provides an equation for λ

(0)
z and hence, together with (64a), we obtain the pair of

coupled ODEs (44). As outlined in Sect. 4.2, the coupled ODEs (44) together with the
boundary condition (58) and the relation (66b) provides a boundary value problem that
describes the leading order radial and axial deformation, and from which the leading
order Cauchy stress components for the whole tissue and each of the constituents
follow directly. We note that the boundary condition (66b) on λ

(0)
z is posed at the

(unknown) deformed inner radius. We therefore solve (44) numerically by treating
r (0)(Rin) as a shooting parameter and seek the solution set (r (0), λ

(0)
z ) at Rin that

satisfies (44), (58) and (66b).
In summary, we have demonstrated that the full biomechanical model of the PCLS

may be suitably reduced in the thin-PCLS-limit (Sect. 4.2) via the asymptotic expan-
sions (34) to obtain a leading order boundary value problem.

C Parameter values

See Tables 1 and 2.
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Table 1 Table of dimensionless parameter values used in Sects. 3 and 4.3, and appendices A and B

Parameter Baseline Figures
2 3 and 4 5 10 11

Rin 0.7692 – – – –

Rout 1 – – – – –

rdis 1.05 – – – – –

ε 1 – 0.01 ≤ ε ≤ 1 0.01 – 0.01 ≤ ε ≤ 1

�c 0.5 – – – – –

�m 0.5 – – – – –

ω 0.3492 – – – – –

ζ 1.48 – – – – –

μ 1 – – – – –

α {0, 0.2} {0, 0.1, 0.2} – – – 0

Dashes denote the given baseline value. Where multiple values are given, the value used for each plot in
the figure is specified in the figure’s legend. Where ranges of parameter values are given, the parameter is
varied and takes values in the range that are specified in the figure’s legend

Table 2 Table of dimensionless parameter values used in the thin-PCLS-limit model in Sect. 5

Parameter Baseline Figures
6 7 8

Rin 0.7692 – – –

Rout 1 – – –

rdis {1, 1.05, 1.15} 1 ≤ rdis ≤ 1.2 – –

�c 0.2 – – –

�m 0.1 – – –

ω 0.3492 – – –

ζ 1.48 – – –

μ { 13 , 1, 3} – 3 0 ≤ μ ≤ 4

α 0 – 0 ≤ α ≤ 4 1

Dashes denote the given baseline value. Where multiple values are given, the value used for each plot in
the figure is specified in the figure’s legend. Where ranges of parameter values are given, the parameter is
varied and takes all values in the range
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