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ABSTRACT
◥

Focal therapy (FT) has been proposed as an approach to eradicate
clinically significant prostate cancer while preserving the normal
surrounding tissues to minimize treatment-related toxicity. Rapid
histology of core needle biopsies is essential to ensure the precise FT
for localized lesions and to determine tumor grades. However, it is
difficult to achieve both high accuracy and speed with currently
available histopathology methods. Here, we demonstrated that
stimulated Raman scattering (SRS) microscopy could reveal the
largely heterogeneous histologic features of fresh prostatic biopsy
tissues in a label-free and near real-time manner. A diagnostic
convolutional neural network (CNN) built based on images from 61
patients could classify Gleason patterns of prostate cancer with an
accuracy of 85.7%. An additional 22 independent cases introduced

as external test dataset validated the CNN performance with 84.4%
accuracy. Gleason scores of core needle biopsies from 21 cases were
calculated using the deep learning SRS system and showed a 71%
diagnostic consistency with grading from three pathologists. This
study demonstrates the potential of a deep learning–assisted SRS
platform in evaluating the tumor grade of prostate cancer, which
could help simplify the diagnostic workflow and provide timely
histopathology compatible with FT treatment.

Significance: A platform combining stimulated Raman scat-
tering microscopy and a convolutional neural network provides
rapid histopathology and automated Gleason scoring on fresh
prostate core needle biopsies without complex tissue processing.

Introduction
Prostate cancer is the second most diagnosed cancer and the fifth

leading cause of cancer-related deaths among men worldwide (1).
Over the past decades, focal therapy (FT) has been an emerging novel
option for selected patients with clinically localized cancer like prostate
cancer, aiming to eradicate the targeted lesion while preserving the
surrounding key functional structures (2–5)However,many urologists
are concerned that FT could fail in cancer control for the inability
of imaging biopsy to detect multifocal lesions in prostate cancer and
the inaccuracy of tumor location during operation (3). The main
concern was derived from the incomplete tumor ablation due to the
lack of real-time intraoperative pathologic guidance. The conventional
intraoperative frozen section–based workflow requires highly effective
cooperation during tissue transport and slide processing, which is not

only time consuming, but also lacks the diagnostic accuracy for actual
needs (6, 7). Therefore, developing a real-time solution that could
collect histologic images from fresh unprocessed tissues for grading
prostate cancer with high accuracy is critically important for FT in
oncological control.

As a novel chemical imaging technology, stimulated Raman scat-
tering (SRS) microscopy is capable of providing histologic images of
tissue specimens in a label-free manner with submicrometer spatial
resolution (8, 9). SRS images produce chemical contrast based on the
intrinsic vibrational spectroscopy of biomolecules (such as lipid and
protein). As a result, SRS could reveal essential histologic features in
near-perfect agreement with traditional hematoxylin and eosin
(H&E)-stained images (10, 11), while avoid the processes of tissue
fixation/freezing, sectioning, and staining. It has already shown success
in rapid histopathology for various types of human diseases, including
brain tumors, laryngeal squamous cell carcinoma, gastrointestinal
tumors, pancreatic cancer, and neurodegenerative diseases (12–23).
In the case of timely prostate cancer detection, SRS may provide the
foundation for intraoperative diagnosis and guided FT.

On the other hand, histopathologic interpretation of prostate cancer
for FT faces several challenges. First, the shortage of pathologists
remains a problem of medical system worldwide. Second, prostate
cancer tissues are highly heterogenous with diverse histologic patterns.
Recommended by the World Health Organization, Gleason score
system was widely adapted to evaluate the histopathologic stages and
determine themost suitable treatmentmodalities (24, 25). On the basis
of the histoarchitectural patterns, five Gleason patterns were assigned
from 1 to 5 with decreasing differentiation. The final Gleason score is
reported as the sum of the two patterns that represents the two
most predominant histologic patterns in the specimen. Such criteria
for multiple classifications rendered high variation in interpathologist
diagnosis due to the subjectivity (26, 27). In principle, artificial
intelligence (AI) assistance could be a possible solution to release
labor of pathologists and provide more objective diagnosis (28–33). In
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fact, leveraging the advances of deep learning–aided image identifi-
cation, histologic images obtained by SRS have been further fed to
machines to generate reliable diagnostic results on surgical speci-
mens (14, 21). However, the huge histologic heterogeneity of prostate
core needle biopsy yields significant challenges for both imaging and
diagnosis. Specifically, most previous works only focused on the binary
differentiation between cancer and benign tissues (14, 20), while
Gleason grading requires more elaborated deep learning algorithms
for the classification and segmentation of multiple tumor subtypes.

In this study, we demonstrated the capability of deep learning–
based SRS microscopy for rapid histopathology and automated diag-
nosis of prostate cancer tissues that was able to predict Gleason scores
on core needle biopsy. Label-free images containing the distribution of
lipids, protein, and collagen fibers in fresh prostate tissues were taken
to reveal the key diagnostic features of prostate cancer. In addition,
convolutional neural network (CNN) based deep learning model was
tailored to classify the images into benign and different Gleason
patterns (G3–G5) with an accuracy of 85.7%. Furthermore, semantic
segmentation was realized to visualize and quantify the intratumor
heterogeneity of prostate needle biopsy and generated the overall score
for individual specimen. Our approach provides a quantitative mea-
sure of tumor grading scores that holds potential for rapid and accurate
diagnosis on fresh prostate core needle biopsy.

Materials and Methods
Study design and tissue collection

The study was approved by the Institutional Ethics Committee of
the Ren Ji Hospital affiliated to the Shanghai Jiao Tong University,
School of Medicine with written informed consent (approval no.
KY2021-030). All tissue samples were collected from patients under-
went radical prostatectomy or prostate core needle biopsy [18 gauge
(G)]. The 18G biopsy needles were of approximately 0.8 mm core
diameter and approximately 15 mm length. Total 104 patients were
recruited and have been divided into three parts according to the
recruitment time. The first part contained 61 patients and the gen-
erated images were used to train and test the CNN network. The
second part included 22 patients and collected data were considered as
an external test dataset to verify the CNN classification performance.
The third part involved 21 patients and this part was used to simulate
the clinical scene of Gleason scoring.

For frozen sections, fresh samples were snap frozen in liquid
nitrogen and then immersed in optimal cutting temperature com-
pound and stored at �80�C. Frozen tissues were sectioned to 20-mm-
thick sections for SRS imaging and adjacent 5-mm-thick sections for
H&E staining. To prepare unprocessed tissues, the fresh samples were
collected and transferred to the imaging laboratory under 4�C within
2 hours, sealed and slightly squeezed between two coverslips with a
spacer to generate uniform thickness (�400 mm) slices for direct SRS
imaging. The thickness between two coverslips could be easily changed
with different spacers. We then trained and validated a CNNmodel to
provide rapid and automated diagnosis and grading of fresh prostatic
specimens imagedwith SRS. In a further step, the performance of CNN
was tested in an external, pilot study conducted in our medical center
with fresh needle biopsy. All patients’ information was summarized in
Supplementary Table S1.

H&E staining and histologic examination
The prepared frozen sections were stained with H&E and the

standard staining procedure was performed as described previous-
ly (34). A team of three pathologists were participated in this study and

adapted to SRS images of prostate tissue for histologic examination,
using the adjacent H&E images that served as the “ground truth.” The
pathologists diagnosed and graded prostatic specimens according to
the International Society of Urological Pathology (ISUP) grading
classification (24). The study team of pathologists reviewed all the
digital images separately and then voted to reach a consensus on final
pathologic results.

SRS microscopy system
In our SRS imaging apparatus, a femtosecond optical parametric

oscillator (Insight DSþ, Newport) laser with a fixed Stokes beam
(1,040 nm, �200 fs) and a tunable pump beam (680 to 1,300 nm,
�150 fs) served as the light source. Both the pump and Stokes beams
were linearly chirped to picoseconds through SF57 glass rods to provide
sufficient spectral and/or chemical resolution. The Stokes beam was
modulated by an electro-optical modulator at 20 MHz repetition rate.
After spatially and temporally overlapping, the two laser beams were
delivered into a laser scanning microscope (FV1200, Olympus) and
tightly focused onto the tissues through a water immersion objective
lens (UPLSAPO 60XWIR, NA 1.2 water, Olympus). The transmitted
stimulated Raman loss signal was optically filtered (CARS ET890/220,
Chroma) and detected by a homemade back-biased photodiode. The
electronic signal was further demodulated with a lock-in amplifier
(HF2LI, Zurich Instruments) to feed the analog input of themicroscope
to form images. The target Raman frequency was selected by adjusting
the time delay between the two pulses. For histologic imaging, we
imaged at the two delay positions corresponding to 2,845 cm�1 and
2,930 cm�1 channels. Then the raw images were decomposed into the
distributions of lipid and protein using the numerical algorithm to
yield two-color SRS images. In addition, second harmonic gener-
ation (SHG) signal was simultaneously harvested using a narrow
band pass filter (FF01-405/10, Semrock) and a photomultiplier tube
in the epi mode. All the images used the same setting of 512 � 512
pixels with a pixel dwell time of 2 ms. The spatial resolution of our
system is approximately 350 nm. To image a large area of tissue,
mosaicking and stitching were performed to merge the small fields
of view into a large flattened image. Laser powers at the sample were
kept as: pump 50 mW and Stokes 50 mW.

CNN for histopathologic diagnosis
To realize the multilevel diagnosis of pathology, we design a deep

learning algorithm based on CNN to: (i) implement multilevel clas-
sification; (ii) generate probabilities of different levels in amosaic. Both
the diagnosis algorithms and CNN named “Inception-Resnet-V2”
uses the Pytorch framework compiled by Python language. The
network “Inception-Resnet-V2” was the core of our deep learning
algorithm consists of convolution layer and full connection layerwith a
depth of 572, including an input layer of 3 � 299 � 299 units and an
output layer of five units because of image size and diagnostic
categories. There are many more substructures inside the convolution
layers, including: (i) Inception-ResNet-A; (ii) Reduction-A; (iii) Incep-
tion-ResNet-B; (iv) Reduction-B; (v) Inception-ResNet-C, and vi)
average pooling layer.

Each large SRS image was sliced to 299� 299 sized tiles to generate
dataset that matched the input layer of the CNN. Then, the dataset was
divided into five parts randomly, four of which were used for training,
and the remaining was used for validation. The CNNwas initialized in
several aspects, including the following parts: (i) Set the output units
to 5; (ii) Select Adam as the optimizer with the parameters: learning
rate ¼ 0.001, betas ¼ (0.9, 0.999), eps ¼ 1e-8, weight_decay ¼ 1e-4;
(iii) Select CrossEntropyLoss as the loss function.
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Analysis of the CNN feature space
The high-resolution probability image based on semantic segmen-

tation is generated by trained neural network and designed algorithm,
which is performed as follows:

(i) The SRS image was sliced from the upper left corner to select out
a tile with the standard size of 299 � 299 pixels.

(ii) Feed the tile to the CNN and generate a tensor with five
numbers that correspond to prediction probabilities of the
five categories.

(iii) The highest value of the five numbers was selected as the
determined classification and marked in the probability matrix.

(iv) Move the selection range to the right by 25 pixels. If it has been
moved to the endof the line,movedownby25pixels andstart from
the beginning of the line. Repeat steps 1–3 for the entire image.

(v) Normalize the probability matrix to generate probability heat-
map by color coding.

Gleason scoring criteria
Generally, the Gleason score is reported as the sum of the primary

and secondary patterns of tumor. Specifically, if there is no secondary
component or the secondary component has a lower pattern with the
proportion less than 5%, then theGleason score¼primary component
patternþ primary component pattern, such as 3þ 3¼ 6; otherwise, if
the secondary component’s pattern is higher than 5%, then Gleason
score¼ primary component patternþ secondary component pattern,
as usual; if the tumor component hasmore than two hierarchical forms
and the component of the highest level pattern is >5%, then Gleason
score¼ primary component patternþ highest level pattern, nomatter
what the secondary component pattern is.

On basis of above criteria, algorithm for Gleason scoring was devel-
oped.The area of each categorywasfirst calculated and input to logic code
as parameter. The diagnosis process goes through the following steps:

(i) Determinewhether the benign tissue area ismuch larger than the
cancer area. Considering the potential misjudgment of grading,
we set the boundary as 95%, that is, if the area of benign accounts
for more than 95% of total tissue, then the biopsy would be
diagnosed as benign. Otherwise go to the next step.

(ii) Determine the primary and secondary patterns based on the area
proportions. If the secondary pattern is less than 5% of total
tumor area, then the scoring of the biopsy would be twice the
primary pattern. Otherwise go to the next step.

(iii) Determine whether the least pattern is G5 and its area accounts
for more than 5% of total tumor tissue. If it is, the scoring of the
biopsy would be the primary patternþG5. If it is not, the scoring
of the biopsy would be the primary patternþ secondary pattern.

Statistical analysis
On the basis of the prediction and labeling of the trained network for

the test set, we draw the ROC for four effective classification groups.
When drawing the ROCof each classification, the corresponding value
of the output five values is used to calculate specificity and sensitivity,
respectively. The analyses were run on Matlab for MacOS (https://
www.mathworks.com/products/matlab.html).

Data availability
The data that support the findings of this study are available

online at Zenodo (https://github.com/Zhijie-Liu/Gleason-scoring-
of-prostate). Raw image data are available from the corresponding
author upon request.

Code availability
The codes for CNN-based results presented in this article can be

found at (https://github.com/Zhijie-Liu/Gleason-scoring-of-prostate).

Results
Validation of SRS histology on thin frozen sections

To correctly define the ablative region during FT for localized
prostate cancer, it is crucial to develop an image-guided method with
high speed and accuracy. SRS microscopy provides promise to achieve
this goal with the unique capability of chemical-specific imaging on
specimens without complex tissue preparations. As illustrated in
Fig. 1A, after tissue collection via either surgical dissection or core
needle biopsy, multicolor SRS images with lipid and protein channels
were decomposed from the raw images of CH2 (2,845 cm

�1) and CH3

(2,930 cm�1) vibrations, via the linear decomposition method devel-
oped previously (10, 35, 36). Themain contrast of cellular morphology
was resolved on the basis of that cell nucleus contained less lipids than
the surrounding tissues. An additional channel of SHG was detected
to image collagen fibers in extracellular matrix, which were often
seen surrounding the prostatic glands to form the prostatic stroma
(Supplementary Fig. S1). Although collagen fibers are not considered
as the key histologic feature for direct cancer diagnosis in conditional
H&E interpretation, they are closely related to tumor genesis and
metastasis (37–40), and contribute to a more complete view of tissue
histology.

For the standard-of-care histologic evaluation of SRS by direct
comparison with traditional H&E, we prepared 27 pairs of adjacent
frozen sections. In each pair of the tissue sections, one was imaged
under SRS microscope without further processing, whereas the other
was sent for H&E staining, detailed procedures could be found in
Materials and Methods. As shown in Supplementary Figs. S1 and S2,
SRS images demonstrated near-perfect agreement with adjacent H&E
in revealing key histologic features among benign and various patterns
of prostate cancer. For benign prostatic tissues (benign), each prostatic
gland unit presented large, plum-like acinar structure, occasionally
accompanied with secretions inside the cavity (Supplementary
Fig. S1A, stars). Zoom-in SRS images visualized papillary glandular
cavity and glandular tube, and the surrounding basal cells were also
clearly identifiable (Supplementary Fig. S1B; Fig. 1B, arrows). For
neoplastic tissues ofGleason pattern 3 (G3), the gland units shrank and
degenerated as small and discrete glandular structure with only single
layer of epithelial cells (Supplementary Fig. S2A; Fig. 1C, arrows). As
the degree of malignancy increased, fused, irregular cribriform and ill-
defined glands with poorly formed glandular lumen were shown in
Gleason pattern 4 (G4; Supplementary Fig. S2B). Eventually, tumor
nests or solid sheets composed by numerous cancer cells, formed
patterns of Gleason pattern 5 (G5; Supplementary Fig. S2C). It is also
noteworthy that Gleason pattern 1 and pattern 2 were not considered
in our work because those two types were not used in contemporary
Gleason grading system on the basis of that G1 and G2 tumors have
very low malignancy and have negligible impact to prognosis (24).

We also noticed that the high-resolution SRS images displayed near
perfect cell-to-cell correlation with H&E (Fig. 1B and C). To further
characterize this relationship, quantitative cell counting was performed
and showed high linearity (R2 ¼ 0.99) between the cell densities
extracted from the twomodalities (Fig. 1D). The linearity of cell density
shows the consistency between SRS andH&E, and validates the ability of
SRS to provide similar histologic information of prostate cancer tissues
to conventional H&E. Furthermore, the above 27 pairs of large adjacent
frozen sections were segmented into 450 pairs of images with specific
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Gleasonpatterns for threeprofessional pathologists to performdiagnostic
rating based on their own clinical professions. Responses were collected
regarding the classification of Gleason patterns based on cytology and
histoarchitecture, and rated results by comparingwith standard histology
are shown in Table 1. Statistical analysis of the pathologists’ diagnostic
results onSRSandH&E images yieldedhigh concordance (Cohenkappa)
between them (k ¼ 0.944–0.967). Pathologists were highly accurate in

distinguishing the prostatic Gleason patterns based on SRS images (G4 is
the lowest with 88.6%; Table 1).

SRS reveals key diagnostic features in fresh prostate tissues
We then demonstrated the unique advantage of our label-free

imaging system to produce histopathologic images on fresh prostate
tissue specimens without thin sectioning. The fresh specimens of

Figure 1.

Experimental design and workflow.A, Illustration of prostate FT and taking fresh biopsy for SRS imaging and CNN-based Gleason grading and scoring. B and C, SRS
(left) andH&E (right) images of adjacent frozen sections fromprostate tissues.D, Linear correlation plot of cell counting fromSRS andH&E images (correlation factor
R2 ¼ 0.997). SRS images are color coded. Green, lipid; blue, protein; red, collagen (SHG @ 405 nm). Scale bars, 25 mm.

Table 1. Diagnostic comparison of three pathologists based on SRS and H&E images of adjacent frozen sections. A total of 450 pairs of
images with specific Gleason patterns (benign, G3, G4, and G5) were segmented from 27 pairs of sections.

P1 P2 P3 Accuracy
%Diagnosis Correct Incorrect Correct Incorrect Correct Incorrect

Benign H&E 202 6 208 0 208 0 99.0
SRS 198 10 203 5 205 3 97.1

G3 H&E 174 7 177 4 181 0 98.0
SRS 165 16 173 8 172 9 93.9

G4 H&E 34 4 30 8 38 0 89.5
SRS 34 4 32 6 35 3 88.6

G5 H&E 20 3 21 2 23 0 92.8
SRS 22 1 23 0 23 0 98.6

Total H&E 430 20 436 14 450 0 97.5
SRS 419 31 431 19 435 15 95.2

Accuracy % 94.3 96.3 98.3
Concordance 0.956 0.944 0.967
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approximately 400 mm thickness were imaged with SRS directly
without any further processing. The results of typical SRS images of
fresh prostate tissues were classified into the same categories as in
frozen sections: benign, G3, G4, and G5, according to the ISUP 2014
Gleason grading definition (24).

Representative images of the four categories are shown in Fig. 2A–I
to demonstrated the well-preserved histologic features without freez-
ing or sectioning artefacts. In the benign group, normal prostate tissues
with regular glands and fibromuscular stroma were well resolved. As
shown inFig. 2A, the papillary infoldings and the formation of corpora

Figure 2.

SRS reveals diagnostic features of fresh prostate tissues.A–I, Key histologic hallmarks of different Gleason patterns, including: amylacea (A) and the double-layered
cellular structure of normal prostatic ducts of the benign group (B), zoomed image from the yellow rectangle in A; small glands (C), large glands (D) and branched
ducts of G3 (E); fused pattern of cords or chains (F), the glomeruloid pattern (G), and the cribriform pattern of G4 (H); and the central necrosis within papillary
and cribriform spaces for G5 (I). J, Quantification of lipid contents in different patterns. �, P <0.05, ��� , P <0.001; ns, not significant (P >0.05) from two-tail
unpaired t tests. Green, lipid; blue, protein; red, collagen. Scale bars, 50 mm.
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amylacea (stars) in normal gland lumen could be visualized.Magnified
images also clearly revealed the double-layered cellular structure of the
normal prostatic ducts: a basal cell layer and a secretory cell layer
(Fig. 2B, arrows). In prostate cancer tissues, SRS revealed the typical
histoarchitectures of the cancerous tissues graded as G3–G5. As shown
in Fig. 2C–E, the G3 featured the individual, discrete glands with
complete circumference of cells forming lumia. The G3 glands mainly
appeared two typical patterns with different shapes and sizes, includ-
ing the small glands (microacinar glands in Fig. 2C), the large gland
with a microcystic appearance (Fig. 2D) and the branched ducts
(Fig. 2E). For G4, SRS clearly depicted the key features of fused glands
and invasionof intervening stromabetween adjacent glands. Specifically,
the detailed structures of the G4 glands were shown in Fig. 2F–H,
including the fused pattern of cords or chains (Fig. 2F), the glomeruloid
pattern (Fig. 2G), and the cribriform pattern (Fig. 2H). In Fig. 2I, the
major patterns of G5 could be readily seen: the central necrosis within
papillary and cribriform spaces.

In addition to tissue histopathology, SRS is also advantageous in
providing quantitative information of biochemical compositions such
as lipids. Lipid content in tissue is known to strongly correlate with
tumor metabolism and malignancy, but is inaccessible with H&E
because of the loss of lipids during tissue deparaffination process.
It can be seen that tumorous glands tend to contain more lipid
droplets (LD) than the benign ones (Supplementary Fig. S3). To be
quantitative, we have calculated the total lipid contents of benign and
G3–G5 grade prostate tissues based on the integrated SRS image
intensity at 2,845 cm�1, because proteins contribute little to this
spectral channel (35). Our results indicated that lipid content increases
with tumor malignancy from benign to G3 and to G4, but kept similar
between G4 and G5 (Fig. 2J). This finding is consistent with previous
works on lipid metabolism in the development and progression of
prostate cancer, which is featured by increased abundance of lipids in
prostate cancer tissues (41–43). And from the extracted 20 spectra of
LDs (Supplementary Fig. S4A), we also noticed that the intensity ratio
of 2,870 cm�1 to 2,850 cm�1 was higher in the malignant specimens
(Supplementary Fig. S4B), revealing an aberrant cholesteryl ester (CE)
accumulation in tumorous tissues (44).

Deep learning–based classification and grading
To reduce the workload of pathologists and provide potentially

more objective diagnosis for intraoperative histopathology, we pro-
ceeded to train the Inception-ResNet-V2, a deep CNN composed of an
inceptionmodule and a ResNet module with a depth of 572, to achieve
automated diagnosis and grading of prostate cancer. Compared with
previous works on brain and larynx tissues (14), prostate tissues are
histologically much more heterogeneous with key diagnostic features
localized in the gland and/or lumen structures. Moreover, a large
tissue slide usually contains multiple areas of different Gleason
patterns, hence it could be hardly considered as a single uniform
class for training the network as previously adapted in brain and
larynx studies. In this work, digital SRS images from 61 patient cases
were presegmented by two pathologists. The resulting 386 segment-
ed and annotated smaller images (termed as “seg-images”; Supple-
mentary Table S2) were used as the training and test datasets,
categorized into five groups: benign (n ¼ 65), G3 (n ¼ 44), G4
(n ¼ 80), G5 (n ¼ 39), and nondiagnostic (n ¼ 158; Fig. 3A;
Supplementary Table S2). Here, the nondiagnostic group represents
areas of interstitial substance such as collagen fibers and connective
tissues without clear cellular structures.

For training the CNNmodel, each presegmented image (seg-images)
was further sliced into tiles of standard image size of 299 � 299 pixels,

and all the tiles in each groupwere divided into training and test datasets
with a ratio of 5:2. Within the training set, 5-fold cross-validation was
applied with the ratio between the training and validation subsets
regulated as 4:1. The number of seg-images and tiles for all the data
subsets are shown inSupplementaryTable S3. TheCNNinput a patch of
training tiles, and output the prediction value of five groups for each
tile (Supplementary Fig. S5). The subsequent prediction probabilities
for all the 63 test seg-images (without nondiagnostic class) are
displayed in descending order with classification results of correct
(green) or incorrect (red; Fig. 3B; ref. 45). The ROC curves are plotted
in Fig. 3C, with the AUC of 0.969 for benign, 0.980 for G3, 0.925 for
G4, and 0.934 for G5, indicating the high performance of the trained
model in grading each diagnostic category. We further analyzed the
misclassified images and found that among the 63 test cases, nine
cases were misclassified, including one benign case, four G4 cases,
and four G5 cases. Specifically, one benign case was misclassified as
G5, four G4 cases were misclassified as G3, two G5 cases were
misclassified as benign, one G5 case was misclassified as G4, and
the rest one case was unable to be classified because each class possess
similar probability. Overall, the trained CNN network achieved an
accuracy of 85.7% (54/63).

Aside from the above test dataset, which was preverified by pathol-
ogists (Fig. 3A), we also introduced an additional external test set to
evaluate the performance of our CNNmodel. The external test dataset
was collected from another 22 independent cases. SRS image of each
tissue was sliced into tiles in the same way as before, and packed as
independent patches without preannotation to feed the CNNnetwork.
On the basis of the CNN grading results, the SRS images were then
segmented into 90 smaller images, each of which contained one type of
Gleason pattern. These 90 images were further rated by three profes-
sional pathologists and comparedwithAI grading results, summarized
in the Venn diagram (Fig. 3D) and Table 2. We noticed that for
Gleason grading, interpathologist variations appeared quite signifi-
cant. Both pathologist 1 and pathologist 2 produced a few results (5 and
14 images for each) that were unable to match with others. The final
consensus of pathologists was determined as at least two of the three
pathologists sharing the same results andwas taken as the ground truth
for the evaluation of diagnostic results. The generated multiclass
confusion matrix was shown in Fig. 3E, indicating the concordance
(Cohen kappa) level between CNN and pathologists was approxi-
mately 0.763.

Visualizing the CNN feature representations
To gain insights into the image features based on which our CNN

model had made decisions, we performed relevance backpropagation
using default parameters for a number of examples. For each Gleason
pattern, two representative SRS images were selected to generate the
probability distribution heatmap of the corresponding diagnostic
classes (Supplementary Fig. S6A–S6D). Interestingly but not surpris-
ingly, the regions with glandular structure showed higher activation
intensities. Particularly noted, in the benign tissues the thin luminal
parts of the ducts were clearly activated (Supplementary Fig. S6A); and
in tumor tissues the cellular regions were highlighted (Supplementary
Fig. S6B–S6D). It is known that these regions appear rich in cellular
morphology and patterns, which offer essential diagnostic features for
pathologists. Hence such observations imply that the prediction of
CNN model is indeed closely related to the key histoarchitectures for
grading prostate cancer. By recoding the prediction probability of each
class in cold-warm tones color (Supplementary Fig. S7), we preformed
grading semantic segmentation to reveal the spatial characteristics of
the diagnostic histologic heterogeneity on a prostate core needle biopsy
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imaged by SRS (Fig. 4A and B). The blue color represents the high
probability regions of predicted benign with plum-like gland units
and myofiber-like interstitial cells. The yellow color represents G3
region with moderately differentiated carcinoma. The orange and
red color predicted the G4 with fused glands and G5 with cell
clusters formed tumor nests, respectively. The gray area consisted
with empty or collagen rich regions. For this particular specimen,
the segmentation results showed the tumorous biopsy was mainly
composed of G4 pattern with a few sites of G3 and G5 pattern,
which agreed well with the ground truth segmentation labeled by a
pathologist (Fig. 4C). Magnified images of the four predicted
Gleason patterns showed the detailed histologic features to confirm

the prediction accuracy (Fig. 4D). In addition, a visualization of the
feature space learned by the model was pictured using t-distributed
stochastic neighbor embedding (t-SNE) method (Supplementary
Fig. S8; ref. 21). Each datapoint in t-SNE plot represents a single tile
from test datasets stratified by Gleason pattern (including benign,
G3, G4, and G5). As we can see in the feature space visualization,
most tiles within each category tend to cluster together, further
indicating a logical representation has learned by the model.

Gleason scoring of fresh core needle biopsy
Wenext simulated deep learning–basedGleason scoring on 21 cases

of fresh core needle biopsy to evaluate the feasibility of automated

Table 2. Diagnostic comparison between CNN and pathologists on external dataset containing 90 SRS images of fresh biopsy tissues.

CNN Pathologist 1 Pathologist 2 Pathologist 3 Combined
accuracy (%)Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

Benign 25 7 32 0 29 3 32 0 92.2
G3 11 2 6 7 13 0 13 0 82.7
G4 36 5 34 7 37 4 41 0 90.2
G5 4 0 3 1 4 0 4 0 93.8
Total 76 14 75 15 83 7 90 0 90.0
Accuracy (%) 84.4 83.3 92.2 100.0
Concordance 0.763 0.738 0.883 1.000

Figure 3.

Automated diagnosis with deep learning on SRS images. A, Presegmentation and annotation of the whole-slide SRS images for training. B and C, Test results of the
CNN model (B) and its ROC curves and AUC for the classification of benign and G3–G5 (C). D, Venn diagram of the diagnostic results of CNN model and three
pathologists. E, Confusion matrix of the four diagnostic subtypes between CNN and the consensus of three pathologists.
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grading and scoring of prostate cancer for FT. To achieve this goal, the
trained CNN model first performed semantic segmentation on the
whole tissue to map the spatial inhomogeneity of different diagnostic
patterns as shown in Fig. 4, and then calculated their occupation
percentage to yield the final score under the Gleason scoring criteria
(see Materials and Methods).

Fresh core needle biopsy tissues harvested from FT surgeries were
imaged with SRS directly. A typical biopsy of 1 � 15 mm2 size was
imaged within 8 minutes and then sent to the CNN model for
prediction, which could be executed within 60 seconds to generate
the color-coded segmentation heatmap (Fig. 5A). The heatmap
interpreted the distributions of all the classified patterns of benign,
G3, G4, and G5, with the same color codes as in Fig. 4. Moreover, in
contrast to the pathologists’ subjective diagnosis, our deep learning
system could quantitatively calculate the area partition ratio of each
pattern (Fig. 5B and C), and offer the final scoring results based on
Gleason scoring criteria. In the example case, the overall tumor
occupies 70.7% of the entire sample (Fig. 5B), among which, the
primary pattern was G3 (98.7%), the secondary pattern was G4 (1.3%),
less than 5% of the total tumor area (Fig. 5C). Therefore, the final
Gleason score of this biopsy was predicted to be “3þ3.” We also
demonstrated another case with 90.8% of the tissue composed of
tumor area (Supplementary Fig. S9A), among which, the primary
pattern was G4 (87.8%), the secondary pattern was G5 (9.2%), and G3
was notably less than 5% of the total tumor area (Supplementary

Fig. S9B and S9C). Therefore, the final Gleason score of this biopsy was
graded to be “4þ5.”The CNNpredicted scores of the total investigated
21 cases of core needle biopsy specimens are shown in Fig. 5D, along
with the diagnostic consensus of three pathologists on the same SRS
image (Supplementary Fig. S10), resulting in a diagnostic consistency
of approximately 71.4% (15/21). It is worth noting that most dis-
crepancies were originated from the secondary patterns, which is also
commonly inconsistent between pathologists.

Discussion
On the basis of the premise that the significant cancer foci tend to

drive the progression of prostate cancer, FT adopts a minimally
invasive approach to destroy the significant cancer foci that would
benefit cancer control (46). Currently, multiparametricMRI (mpMRI)
is regard as a standard tool for FT in identifying cancer locations,
becausempMRI has a high negative predictive value to detect clinically
significant diseases (47). However, solely relying on MRI may face the
challenges of accurate disease localization and guidance in the intrao-
perative settings. Recent attentions have been drawn to the precise
evaluation and localization of diseases (48). For example, it would be of
great help to develop a real-time solution to collect histologic images
from fresh biopsy tissues for grading prostate cancer during the
ablation needle insertions. However, the current intraoperative path-
ologic examination workflow is rather difficult to meet with the

Figure 4.

Visualizing the CNN feature representations.A andB, The typical SRS images of core needle biopsy (A) and corresponding activation heatmaps of benign andG3, G4,
G5 patterns (B). C, The Gleason grading map merged from recoded color activation heatmaps (B). D, Zoom-in SRS images represent four classes of benign and G3,
G4, and G5 patterns. Scale bars, 500 mm in A–C; 50 mm in D.
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requirements of FT: First, the acquisition of histologic images is time
consuming due to the complex procedure of tissue preparation and
H&E staining; Second, the pathologic reporting of histologic images is
not always timely. Given the lack of an intraoperative diagnostic tool
for prostate biopsy, we have demonstrated the capability of deep
learning–assisted SRS microscopy to provide rapid detection and
grading of prostate cancer with relatively high accuracy in this work.

SRS presented advantages in rapid and high-resolution imaging of
tissue morphology without any sample processing. Direct imaging of
fresh specimens in a nondestructive way could avoid the artefacts
introduced by sample process including freezing and staining and allows
the specimens to be reusable for subsequent histopathologic tests to
reduce duplicated sampling. Similar to the noticed recent works in
exploring the value of three-dimensional (3D) pathology of clinical
specimens, which were based on advanced light-sheet microscopy and
optical clearing technique (49), nondestructive 3Dpathology of prostate
biopsy could also be developed to improve prostate cancer risk strat-
ification, leveraging the intrinsic 3Doptical sectioningability of SRS (50).
Meanwhile, the chemical specificity inherited fromspontaneousRaman
scattering endowed SRS with the ability to identify biochemical com-
ponents in tissues, such as lipids, protein, andDNA(35). Fromthe lipid-
channel SRS images, we noted the lipid content was increases with
tumor malignancy and the further hyperspectral analysis indicated the
abundance in LDs might come from CE accumulation (Supplementary

Figs. S3 and S4). This spectral differentiation could be a potential prostate
cancer marker and we are working on combining spectral information
with traditional histomorphology to construct high-dimensional data for
tumor diagnosis. From the perspective of AI diagnosis, although the
current automatic diagnosis accuracy is incomparable with our previous
binary classification works (>90%), it is clinically acceptable at multiple
classifications in cancers gradingwith actual diagnostic criteria.When the
size of dataset became huge, weakly supervised learning, which could
achieve classification based on single label in slide level (51), might be
suited to achieve diagnosis without labored manual annotations as we
have performed in Fig. 3A. Nonetheless, in the case of limited datasets,
supervised learning with patch level labeling is still the optimal solution.

We believe this AI assisted SRS microscopy could be an innovative
option in rapid pathological diagnosis of prostate cancer, which could
largely change the landscape of prostate cancer diagnosis and therapy.
In the procedure of prostate biopsy, this technique could improve the
accuracy of tumor detection, incidentally limiting the number of
nondiagnostic biopsy samples. For FT, this technique could help the
urologists to know the histology information nearby the ablation
needle during insertion, helping the urologists to eradicate the tumor
precisely. Our method could also be used to rapidly and accurately
detect the surgical margin during radical prostatectomy, ensuring the
safety of dissection. However, to fulfill the clinical translation, the
technique should be further improved. First, the current system should

Figure 5.

Color-coded and scoring fresh FT core needle biopsy.A, The presented SRS image of fresh FT core needle biopsy and the corresponding color-coded grading image.
B, The quantification analysis of the area fraction of benign and G3–G5. C, The proportion of each Gleason pattern (G3–G5) in the whole tumor region. D,Diagnostic
scoring results of CNN-based SRS, compared with the consensus of three pathologists on 21 cases. Scale bars, 500 mm.
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beminiaturized and integrated (52). To simplify optical configuration, a
U-net–based femto-SRS imaging method could be adapted (23), and
compact fiber lasers could be used to replace bulky solid-state lasers (53).
Second, the size of training dataset could be largely increased in a
multicenter, prospective clinical trial to improve the accuracy of AI-
based diagnosis. Because the pathology report was used as the ground
truths for AI evaluation, the sensitivity of AI systemmay not exceed the
employed pathologists. And considering the subjectivity reflected in
interpathologist variability, increasing the dataset annotated by different
pathologists may help reduce the effect of such variation (28).

In summary, we have presented the use of deep learning–assisted
SRS system on prostate core needle biopsy for the imaging and
diagnosis of prostate cancer. Our technique could potentially provide
timely histologic information with high accuracy during the ablation
needle insertion, which meets the demands of FT improvement in
several aspects. It could help characterize the cancer foci in the targeted
area of prostate; accurately guide and ensure the ablation needle into
the cancer foci; and finally evaluate the oncologic efficacy in near real
time. Therefore, the incorporation of our method may allow more
accurate FT and facilitate the advancement of FT.

Authors’ Disclosures
M. Ji reports grants from the National Key R&D Program of China and the

National Natural Science Foundation of China during the conduct of the study. No
disclosures were reported by the other authors.

Authors’ Contributions
J. Ao: Formal analysis, investigation, writing–original draft. X. Shao: Resources,

investigation, writing–original draft. Z. Liu: Software, formal analysis. Q. Liu:
Investigation. J. Xia: Resources, data curation. Y. Shi: Resources, data curation.
L. Qi: Validation, visualization. J. Pan: Conceptualization, supervision, writing–
review and editing.M. Ji:Conceptualization, supervision, writing–review and editing.

Acknowledgments
M. Ji acknowledges financial support from the National Key R&D Program of

China (2021YFF0502900), the National Natural Science Foundation of China
(61975033), Shanghai Municipal Science and Technology Major Project No.
2018SHZDZX01, and ZJLab. J. Pan acknowledges financial support from the
National Natural Science Foundation of China (82003148) and Shanghai
Municipal Science and Technology Project (21Y11904100). L. Qi acknowledges
funding from Shanghai Municipal Science and Technology Project
(21Y11910500).

The publication costs of this article were defrayed in part by the payment of
publication fees. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.

Note
Supplementary data for this article are available at Cancer Research Online (http://
cancerres.aacrjournals.org/).

Received July 4, 2022; revised October 19, 2022; accepted December 29, 2022;
published first January 3, 2023.

References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.

Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin
2021;71:209–49.

2. AshrafiAN, Tafuri A, Cacciamani GE, Park D, de Castro Abreu AL, Gill IS, et al.
Focal therapy for prostate cancer: concepts and future directions. CurrOpinUrol
2018;28:536–43.

3. Valerio M, Cerantola Y, Eggener SE, Lepor H, Polascik TJ, Villers A, et al. New
and established technology in focal ablation of the prostate: a systematic review.
Eur Urol 2017;71:17–34.

4. Ahmed HU, Hindley RG, Dickinson L, Freeman A, Kirkham AP, Sahu M, et al.
Focal therapy for localised unifocal andmultifocal prostate cancer: a prospective
development study. Lancet Oncol 2012;13:622–32.

5. Valerio M, Ahmed HU, EmbertonM, Lawrentschuk N, Lazzeri M, Montironi R,
et al. The role of focal therapy in the management of localised prostate cancer: a
systematic review. Eur Urol 2014;66:732–51.

6. Gal AA, Cagle PT. The 100-year anniversary of the description of the frozen
section procedure. JAMA 2005;294:3135–7.

7. Eissa A, Zoeir A, SighinolfiMC, Puliatti S, Bevilacqua L, Del Prete C, et al. Real-
time" assessment of surgical margins during radical prostatectomy: state-of-the-
art. Clin Genitourin Cancer 2020;18:95–104.

8. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, et al. Label-free
biomedical imaging with high sensitivity by stimulated Raman scattering
microscopy. Science 2008;322:1857–61.

9. Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: an
emerging platform for biology and medicine. Science 2015;350:aaa8870.

10. JiM,OrringerDA, Freudiger CW,Ramkissoon S, LiuX, LauD, et al. Rapid, label-
free detection of brain tumors with stimulated Raman scattering microscopy.
Sci Transl Med 2013;5:201ra119.

11. Hollon TC, Lewis S, Pandian B, Niknafs YS, Garrard MR, Garton H, et al. Rapid
intraoperative diagnosis of pediatric brain tumors using stimulated Raman
histology. Cancer Res 2018;78:278–89.

12. Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S, et al.
Detection of human brain tumor infiltrationwith quantitative stimulated Raman
scattering microscopy. Sci Transl Med 2015;7:309ra163.

13. JiM,ArbelM, Zhang L, Freudiger CW,Hou SS, LinD, et al. Label-free imaging of
amyloid plaques in Alzheimer’s disease with stimulated Raman scattering
microscopy. Sci Adv 2018;4:eaat7715.

14. Zhang L, Wu Y, Zheng B, Su L, Chen Y, Ma S, et al. Rapid histology of laryngeal
squamous cell carcinoma with deep-learning based stimulated Raman scattering
microscopy. Theranostics 2019;9:2541–54.

15. Lu F-K, Calligaris D, Olubiyi OI, Norton I, YangW, Santagata S, et al. Label-free
neurosurgical pathology with stimulated Raman imaging. Cancer Res 2016;76:
3451–62.

16. Yang Y, Yang Y, Liu Z, Guo L, Li S, Sun X, et al. Microcalcification-based tumor
malignancy evaluation in fresh breast biopsies with hyperspectral stimulated
Raman scattering. Anal Chem 2021;93:6223–31.

17. Sarri B, Canonge R, Audier X, Simon E, Wojak J, Caillol F, et al. Fast stimulated
Raman and second harmonic generation imaging for intraoperative gastro-
intestinal cancer detection. Sci Rep 2019;9:10052.

18. Shin KS, Francis AT, Hill AH, Laohajaratsang M, Cimino PJ, Latimer CS, et al.
Intraoperative assessment of skull base tumors using stimulated Raman scat-
tering microscopy. Sci Rep 2019;9:20392.

19. Bentley JN, JiM, Xie XS, OrringerDA. Real-time image guidance for brain tumor
surgery through stimulated Raman scattering microscopy. Expert Rev Antican-
cer Ther 2014;14:359–61.

20. Orringer DA, Pandian B, Niknafs YS, Hollon TC, Boyle J, Lewis S, et al.
Rapid intraoperative histology of unprocessed surgical specimens via fibre-
laser-based stimulated Raman scattering microscopy. Nat Biomed Eng 2017;
1:0027.

21. Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS, et al. Near real-
time intraoperative brain tumor diagnosis using stimulated Ramanhistology and
deep neural networks. Nat Med 2020;26:52–8.

22. Zhang L, Zou X, Huang J, Fan J, Sun X, Zhang B, et al. Label-free histology and
evaluation of human pancreatic cancer with coherent nonlinear optical micros-
copy. Anal Chem 2021;93:15550–8.

23. Liu Z, SuW, Ao J, WangM, Jiang Q, He J, et al. Instant diagnosis of gastroscopic
biopsy via deep-learned single-shot femtosecond stimulated Raman histology.
Nat Commun 2022;13:4050.

24. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, et al.
The 2014 international society of urological pathology (ISUP) consensus
conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol
2016;40:244–52.

25. Sauter G, Steurer S, Clauditz TS, Krech T,Wittmer C, Lutz F, et al. Clinical utility
of quantitative Gleason grading in prostate biopsies and prostatectomy speci-
mens. Eur Urol 2016;69:592–8.

Ao et al.

Cancer Res; 83(4) February 15, 2023 CANCER RESEARCH650



26. Nagpal K, Foote D, Tan F, Liu Y, Chen P-HC, Steiner DF, et al. Development and
validation of a deep learning algorithm for Gleason grading of prostate cancer
from biopsy specimens. JAMA Oncol 2020;6:1372–80.

27. Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al.
Automated deep-learning system for Gleason grading of prostate cancer using
biopsies: a diagnostic study. Lancet Oncol 2020;21:233–41.

28. Str€om P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM,
et al. Artificial intelligence for diagnosis and grading of prostate cancer
in biopsies: a population-based, diagnostic study. Lancet Oncol 2020;21:
222–32.

29. Yang Q, Xu Z, Liao C, Cai J, Huang Y, Chen H, et al. Epithelium
segmentation and automated Gleason grading of prostate cancer via deep
learning in label-free multiphoton microscopic images. J Biophotonics
2020;13:e201900203.

30. Marginean F, Arvidsson I, Simoulis A, Christian Overgaard N, Åstr€om K,
Heyden A, et al. An artificial intelligence-based support tool for automation
and standardisation of Gleason grading in prostate biopsies. Eur Urol Focus
2021;7:995–1001.

31. Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, et al.
Diagnostic outcomes of esophageal cancer by artificial intelligence using con-
volutional neural networks. Gastrointest Endosc 2019;89:25–32.

32. Nagpal K, FooteD, Liu Y, Chen P-HC,Wulczyn E, Tan F, et al. Development and
validation of a deep learning algorithm for improvingGleason scoring of prostate
cancer. NPJ Digit Med 2019;2:48.

33. Fu Y, Jung AW, Torne RV, Gonzalez S, V€ohringer H, Shmatko A, et al. Pan-
cancer computational histopathology revealsmutations, tumor composition and
prognosis. Nat Cancer 2020;1:800–10.

34. Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of
tissue and cell sections. CSH Protoc 2008;2008:pdb prot4986.

35. Lu F-K, Basu S, Igras V, Hoang MP, Ji M, Fu D, et al. Label-free DNA imaging
in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A
2015;112:11624–9.

36. He R, Xu Y, Zhang L, Ma S, Wang X, Ye D, et al. Dual-phase stimulated Raman
scattering microscopy for real-time two-color imaging. Optica 2017;4:44–7.

37. Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, et al. Dynamic
imaging of collagen and itsmodulation in tumors in vivo using second-harmonic
generation. Nat Med 2003;9:796–800.

38. Burke K, SmidM, Dawes RP, Timmermans MA, Salzman P, van Deurzen CHM,
et al. Using second harmonic generation to predict patient outcome in solid
tumors. BMC Cancer 2015;15:929.

39. Liu Y, Yi Y, Li Z, Zhan Z, Li L, Zheng L, et al. Visualization of collagen
morphological changes in transition from tumor to normal tissue in breast
cancer by multiphoton microscopy [abstract]. In: Luo Q, Li X, Gu Y, Zhu D,
editors. Optics in health care and biomedical optics XI. Proceedings of
SPIE; 2021.

40. Burns-Cox N, Avery NC, Gingell JC, Bailey AJ. Changes in collagen metabolism
in prostate cancer: a host response that may alter progression. J Urol 2001;166:
1698–701.

41. Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, et al. Suppressing
fatty acid uptake has therapeutic effects in preclinical models of prostate cancer.
Sci Transl Med 2019;11:eaau5758.

42. Yue S, Li J, Lee S-Y, Lee HJ, Shao T, Song B, et al. Cholesteryl ester accumulation
induced by PTEN loss and PI3K/AKT activation underlies human prostate
cancer aggressiveness. Cell Metab 2014;19:393–406.

43. Randall EC, Zadra G, Chetta P, Lopez BGC, Syamala S, Basu SS, et al. Molecular
characterization of prostate cancer with associated Gleason score using mass
spectrometry imaging. Mol Cancer Res 2019;17:1155–65.

44. Chen X, Cui S, Yan S, Zhang S, Fan Y, Gong Y, et al. Hyperspectral
stimulated Raman scattering microscopy facilitates differentiation of low-
grade and high-grade human prostate cancer. J Phys D Appl Phys 2021;54:
484001.

45. Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, et al.
Automated Gleason grading of prostate cancer tissue microarrays via deep
learning. Sci Rep 2018;8:12054.

46. Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G, et al. Copy number
analysis indicates monoclonal origin of lethal metastatic prostate cancer.
Nat Med 2009;15:559–65.

47. Sathianathen NJ, Omer A, Harriss E, Davies L, Kasivisvanathan V, Punwani S,
et al. Negative predictive value of multiparametric magnetic resonance imaging
in the detection of clinically significant prostate cancer in the prostate imaging
reporting and data system era: a systematic review and meta-analysis. Eur Urol
2020;78:402–14.

48. Nassiri N, Chang E, Lieu P, Priester AM, Margolis DJA, Huang J, et al. Focal
therapy eligibility determined bymagnetic resonance imaging/ultrasound fusion
biopsy. J Urol 2018;199:453–8.

49. Xie W, Reder NP, Koyuncu C, Leo P, Hawley S, Huang H, et al. Prostate cancer
risk stratification via nondestructive 3D pathology with deep learning-assisted
gland analysis. Cancer Res 2022;82:334–45.

50. Qi J, Li J, Liu R, Li Q, Zhang H, Lam JWY, et al. Boosting fluorescence-
photoacoustic-Raman properties in one fluorophore for precise cancer surgery.
Chem 2019;5:2657–77.

51. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V,
BusamKJ, et al. Clinical-grade computational pathology usingweakly supervised
deep learning on whole slide images. Nat Med 2019;25:1301–9.

52. Liao C-S, Wang P, Huang CY, Lin P, Eakins G, Bentley RT, et al. In vivo and in
situ spectroscopic imaging by a handheld stimulated Raman scattering micro-
scope. ACS Photonics 2017;5:947–54.

53. Freudiger CW, Yang W, Holtom GR, Peyghambarian N, Xie XS, Kieu KQ.
Stimulated Raman scattering microscopy with a robust fibre laser source.
Nat Photonics 2014;8:153–9.

AACRJournals.org Cancer Res; 83(4) February 15, 2023 651

Label-Free Diagnosis and Gleason Scoring of Prostate Cancer



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice


