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Abstract: Broadband dielectric spectroscopy in a broad temperature range was employed to study
ionic conductivity and dynamics in tetraalkylammonium- and tetraalkylphosphonium-based ionic
liquids (ILs) having levulinate as a common anion. Combining data for ionic conductivity with data
obtained for viscosity in a Walden plot, we show that ionic conductivity is controlled by viscosity
while a strong association of ions takes place. Higher values for ionic conductivities in a broad
temperature range were found for the tetraalkylphosphonium-based IL compared to its ammonium
homolog in accordance with its lower viscosity. Levulinate used in the present study as anion
was found to interact and associate stronger with the cations forming ion-pairs or other complexes
compared to the NTf2 anion studied in literature. In order to analyze dielectric data, different fitting
approaches were employed. The original random barrier model cannot well describe the conductivity
especially at the higher frequencies region. In electric modulus representation, two overlapping
mechanisms contribute to the broad low frequencies peak. The slower process is related to the
conduction mechanism and the faster to the main polarization process of the complex dielectric
permittivity representation. The correlation of the characteristic time scales of the previous relaxation
processes was discussed in terms of ionic interactions.

Keywords: ionic liquids; electrical conductivity; dielectric properties

1. Introduction

Research into ionic liquids (ILs) continues with undiminished interest due to the
possibility of customizing their physicochemical properties to suit specific applications
by systematic variations of the constituent ions; thus, they are referred to in the litera-
ture as “designer solvents”. A particularly interesting sub-set of ILs are those based on
tetraalkylammonium and tetraalkylphosphonium cations, which often display remarkable
electrochemical windows and high hydrophobicity, when alkyl chains of suitable lengths
are present. Changing the central atom of cation from nitrogen to phosphorus, i.e., tetraalky-
lammonium versus tetraalkylphosphonium has a marked effect upon the physicochemical
properties of these ILs. Indeed, ILs based on the tetraalkylphosphonium cation exhibit
significantly reduced viscosities [1–5], enhanced ionic conductivities [1,2,5], as well as
higher thermal degradation temperatures relative to their ammonium homologs [1]. In the
IL research arena, a clear tendency has emerged in recent years, namely the replacement
of ions obtained from fossil fuel-derived materials with bio-based ions prepared from
renewable sources [6]. In this context, polysaccharides, such as cellulose and hemicellulose,
are considered valuable sources of compounds for the development of anion bio-based
ILs. Indeed, sugars can be easily converted into smaller molecules i.e., formic acid, acetic
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acid, levulinic acid, furfural, and hydroxymethyl furfural [7,8]. Besides formate and acetate
ILs, a few different levulinate ILs have been prepared to date and showed promising
features in the pharmaceutical field [9], in asymmetric catalysis [10], in CO2 absorption
processes [11,12], or in the dissolution and modification of cellulose [13–16].

Broadband dielectric spectroscopy (BDS) has been widely used to study ionic conduc-
tivity and dynamics in ILs. Ionic conductivities are directly read off from the data, while
information on the dynamics is achieved by fitting dielectric data by proper equations.
A relaxation process is always present in dielectric spectra of ILs; however, its origin is
a matter of debate in the literature. One can find studies where this relaxation process
is considered as the ion conductivity relaxation [17–19] and others where the relaxation
process is assumed to arise from the reorientational motion of cations [20–22] or from
correlated anion–cation motions [23]. Contributions in dielectric response from both con-
ductivity relaxation and other relaxations have also been reported [24–27]. The origins of
the additional contribution’s structural reorganization of ionic atmosphere [28], interfacial
polarization [25], artificial due to insulating impurities [24,29] and reorientation of dipolar
cation [27], have been proposed.

To model ion conductivity relaxation in ILs, the random barrier model (RBM) devel-
oped by Dyre in 1985 [30] and modified in 2008 [31] has been widely used. According
to the RBM, in disordered materials, ion transport [32] always results in a polarization
process, which is due to the ion motion within short length scales or at short time scales. At
a longer time scale, the mobile ions overcome the largest energy barrier of the system and
will contribute to the dc conductivity. The original RBM successfully describes the data for
many ILs in conductivity formalism [17,19] but there are cases where it lacks reproduction
of the data in permittivity formalism [33]. An IL ion cage (IC), which is formed by all the
anions in the first solvation shell of a cation or vice versa, and an ion-pair (IP), which is
defined as a partial association of oppositely charged ions to form distinct chemical species,
coexist [34]. The IC concept has been used by Gainaru et al. [33] to explain the origin of
the conductivity process observed in dielectric spectra. According to this model, dielectric
relaxation is due to the polarization mechanism caused by ions escaping from the cage
formed by surrounding counterions. On the other hand the existence of ion association in
ion-pairs and more complex structures has been used to explain lower ionicity, compared
to that expected according to their viscosity, observed in ILs. The positions of the data
of molar conductivity versus viscosity relative to the “ideal” line in the Walden plot as
described by Angell et al. [35] have been used as measures of ion association.

In this article, ILs with tetraalkylammonium and tetraalkylphosphonium as cation
and levulinate, as common anion, were studied using broadband dielectric spectroscopy to
determine the effect of changing the cationic central atom on ionic conductivity and the
dynamics in these systems. Dielectric studies in ILs based on tetraalkylphosphonium [36,37]
and tetraalkylammonium cation [25,27,38] can be found in the literature. However, there are
few comparative dielectric studies of ammonium and phosphonium-based ILs [26], while
no dielectric studies on levulinate-based ILs can be found, to the best of our knowledge.
The ecological transition ‘requests’ to move toward renewable compounds and materials
as fast as possible. However, performances of these materials should be comparable
to fossil-based ones. To understand properly the pros and cons of new materials, the
characterization of their physicochemical properties is of primary importance. In more
detail, some of the main research areas where ILs are employed include lignocellulose
biomass fractionation, dissolution, transformation, and/or functionalization. In this regard,
the proposed structures showed promising solvation capability towards cellulose [15].
The present work calls for an in-depth study on the properties of ILs prior to their use in
whatever application. This would help to rationalize the data available in the literature,
which are often based on the trial-and-error approach. Here, it is shown that substitution of
nitrogen with phosphorus results in higher values of ionic conductivity, which is controlled
by the viscosity of the systems, while no effect in ion association is found. However,
compared to other anions reported in the literature, levulinate associates stronger with
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cations. Regarding dynamics, an analysis of the dielectric response employing different
fitting approaches reveals the contribution of the conductivity relaxation in electric modulus
representation and the main polarization peak in complex dielectric permittivity formalism
observed in ILs. The results are discussed in terms of the ionic interactions, since, with a
better understanding of the relationship between structure and properties in ionic liquids,
it is possible to design and manufacture materials with desired application properties.

2. Results and Discussion
2.1. Dielectric Data

In Figures 1 and 2, different representations of dielectric data at various temperatures
obtained for [N8881]Lev and [P8881]Lev, respectively, are presented. Although quantities in
different representations of dielectric data are interrelated and contain equivalent informa-
tion, dielectrically active processes of ILs are differently emphasized in each representation,
giving complementary information, making their separate discussions helpful.
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Figure 1. Different representations of dielectric data obtained for [N8881]Lev at the temperatures 
indicated on the plot. Real part of dielectric permittivity ε′(f) (a), imaginary part of dielectric per-
mittivity, ε″(f) (b), derivative of ε′, ε″deriv(f) discussed in the text (at two selected temperatures, red 
symbols in (b), imaginary part of electric modulus, M″(f) (c), and real part of conductivity, σ′(f) (d). 

Figure 1. Different representations of dielectric data obtained for [N8881]Lev at the temperatures
indicated on the plot. Real part of dielectric permittivity ε′(f) (a), imaginary part of dielectric
permittivity, ε”(f) (b), derivative of ε′, ε′′deriv(f) discussed in the text (at two selected temperatures, red
symbols in (b), imaginary part of electric modulus, M”(f) (c), and real part of conductivity, σ′(f) (d).

Dielectric response of both ILs is qualitatively similar to the one found for ILs in the
literature. In the real part of the complex dielectric permittivity (ε∗(f) = ε′(f)− iε′′ (f)),
ε′, a step that shifts to higher frequencies with increasing temperature, which evidences a
polarization process, is observed (Figures 1a and 2a). In the imaginary part of dielectric
permittivity, ε”, contribution of dc conductivity, σ0, dominates, giving a linear dependence
of ε” with frequency, f, (ε′′ = σ0

2πεo
f−1). The large values of ε′′, at low frequencies due

to dc conductivity contribution, mask any loss peaks (Figures 1b and 2b). Dielectric
relaxations are resolved as peaks only when the derivative of ε′, which is free from dc
conductivity contribution, is used. In this approximation, also known as the “conduction
free” approximation, ε” is approximated by ε′′deriv = −π2

∂ε′(ω)
∂lnω [39]. Data in the ε′′der

representation are shown as red curves in Figures 1b and 2b, where a peak is visible. The
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dc conductivity is directly evidenced by the frequency independent regions revealed in the
real part of conductivity (σ∗(f) = σ′(f) + σ′′ (f)), σ′ (Figures 1d and 2d). The dc plateau in
σ′ is followed by an approximately power law increase at higher frequencies, behavior that
is often regarded as typical for hopping conductivity in a disordered matter.
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In the imaginary part of the electric modulus, M” (M∗(f) = M′(f) + iM′′ (f) = 1/ε∗(f))
a broad peak can be followed (Figures 1c and 2c). Broadening of the peak is more pro-
nounced at low temperatures and especially for [N8881]Lev where M” reveals a two-
contribution structure. In M” representation, the low-frequency steady increase in ε”
caused by conductivity and discussed above is converted into a peak. The peak frequency,
fM, which depends on the value of dc conductivity, σ0, and the dielectric constant εs,
σ0 = εoεs2πfM [40], is often used as the characteristic frequency of conductivity relaxation
in ILs. The peak observed in M” arising from conductivity usually occurs close to the
crossover frequency between the frequency independent (dc) and the frequency dependent
(ac) part of σ′. However, the polarization processes (dielectric relaxations) also lead to
peaks in M”, which are shifted to higher frequencies compared to the peaks observed in
ε” [39]. So, the broad peak in M”, especially its double structure observed for the systems
under investigation (Figures 1c and 2c), indicates the contribution of a dielectric relaxation
except the conductivity relaxation in the dielectric response of these IL systems. Moreover,
the linear increase of M” values at lower temperatures and at the higher frequency region
in logM”–logf plots (Figures 1c and 2c), indicates the contribution of a faster additional
dielectric relaxation. The influence on the frequencies window of a high frequency dielectric
relaxation can also be verified if the slope of diagrams logM”–logf is not constant at the
higher frequencies region.
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At low frequencies and high temperatures, dielectric response is dominated by elec-
trode polarization (EP) effects, caused by the accumulation of immobilized mobile charge
carriers at the interface between the sample material and metal electrodes [41–44]. EP
effects give rise to large values of ε′ (Figures 1a and 2a) and a drop in σ′ (Figures 1d and 2d)
at low frequencies. In ε”, the EP effect causes a deviation from f−1 dependence, while in
ε
′′
deriv, there is a power law increase at low frequencies, which leads to the formation of

a peak at even lower frequencies (Figures 1b and 2b). In the modulus representation, EP
effects are eliminated.

2.2. Dielectric Data Evaluation

Dielectric data evaluation gave information on the ionic conductivity and on the
dynamics of the ILs. In the following, the results regarding ionic conductivity and dynamics
are discussed separately.

2.2.1. Ionic Conductivity

Conductivity values were directly read off from the distinct dc plateaus in σ′(f) spectra
(Figures 1d and 2d) and plotted in a common Arrhenius diagram for both IL systems
under investigation in Figure 3. For both IL systems, the dc conductivity reveals the typical
non-Arrhenius temperature dependence known from glass forming systems. The data are
well described by the empirical Vogel–Fulcher–Tammann (VFT) expression:

σ = σ∞ exp
(
−B

T− T0

)
(1)

where σ∞, T0, and B are fitting parameters. The value of the parameter T0 is a few dozen
lower than the glass transition temperature, Tg, and B = DT0, where D is the so-called
strength parameter, which is used to distinguish between strong and fragile glass for-
mers [45]. A small value of D leads to a significant deviation from the Arrhenius-type
behavior and vice versa. Alternatively, the fragility index m is also used for the classifica-
tion of glass formers. Both parameters are connected via the relation m ≈ 16 + 590/D [46].
Fits of the VFT equation on the data are shown as solid lines in Figure 3. Slightly higher
values of D and correspondingly lower values of m were found for [N8881]Lev compared
to [P8881]Lev (D = 13.2, m = 61 and D = 11.7, m = 66, respectively). As pointed out [47],
except for the influence of the glass transition temperature, Tg, on the room temperature
conductivity of ILs, an important role, ‘plays’ the fragility (m or D). A higher value of m
found for [P8881]Lev compared to [N8881]Lev is consistent with the higher conductivity at
room temperature found for it (Figure 3). Table 1 shows the VFT parameters obtained from
fitting of conductivity for [N8881]Lev and [P8881]Lev.

Table 1. VFT parameters obtained from fitting of conductivity for [N8881]Lev and [P8881]Lev.

VTF
σ0 (T) [P8881]Lev [N8881]Lev

σ∞ [S/cm] 1.11 1.92

B 1608 1845

D 11.7 13.2

T0 [K] 138 140

m 66 61
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Figure 3. Arrhenius diagram of conductivity σ0 [S/cm] for [P8881]Lev (squares) and [N8881]Lev
(circles) IL systems. The solid lines are VFT fits to the data. The red crosses are reproduced data
from [25] for conductivity of [N8881]NTf2 IL system. The inset shows a Walden plot for the systems
under investigation and the [N8881]NTf2 IL system (red star) along with the “ideal” Walden line (KCl
aqueous solution).

Higher values of ionic conductivity were found for the phosphonium-based IL com-
pared to its ammonium homolog across the full temperature range studied, in accordance
with the results, regarding the effect of changing the cation charge center from nitrogen
to phosphorus, previously reported [1,2,26]. The fact that the reported results refer to IL
systems with cations having different lengths of alkyl chains and different anions than
those studied here indicates that this is a general trend. Higher values of ionic conductivity
found for [P8881]Lev compared to [N8881]Lev can be understood in terms of lower viscosity
and Tg values found for the former [48]. In the inset of Figure 3 the logarithm of molar
conductivity was plotted as a function of the logarithm of inverse viscosity, known as a
Walden plot [35,49]. Molar conductivity was calculated as Λ = σ0M/ρ, where M is the
molecular weight and ρ the density. For the calculations, ρ values obtained for the same
systems reported in [48] were used. The Walden plot was used for the determination of the
relationship between ionic conductivity and viscosity as well as for a qualitative description
of ILs regarding their ion association. The data for both ILs studied here fall in a straight line
of slope close to unity (1.0 for [P8881]Lev and 0.97 for [N8881]Lev), indicating that the charge
transport in both systems is controlled by viscosity, as has been reported for many aprotic
ILs [2,49–51]. The charge and mass transport in the investigated ILs are well coupled to
each other, pointing to a vehicular charge transport, dominating its conductivity response
at least at high temperatures where measurements of both techniques are available.

The position of the Walden curve for a given system relative to the “ideal” Walden
line, which corresponds to the fully dissociated electrolyte solution where ionic species
are equally mobile, is often used as a qualitative measure of the iconicity of ILs. From the
deviations of the curve, from the reference line in the Walden plot, Angell et al. classified
specific ILs as either “good” ILs, “poor” ILs, or non-ionic (molecular) liquids [35,52]. Here,
we do not use the Walden plot to classify ILs under investigation regarding their iconicity
but rather to compare the results obtained for similar systems. As can be seen in the inset of
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Figure 3, where the “ideal” line is plotted as a solid line, data for both IL systems lie below
this line, indicating strong interactions between ions and the existence of highly associated
ions in these systems. Similar behavior has been reported for other tetraalkylammonium
and tetraalkylphosphonium-based ILs [49]. No significant difference in ion association
between ILs studied here was found.

Data for ion conductivity of [N8881]NTf2 IL reported in the literature [25] are plotted as
crosses in Figure 3, along with current results. Considerably lower ion conductivity values
were obtained for [N8881]Lev compared to [N8881]NTf2 in accordance with the higher viscos-
ity measured for the former (at 298 K 1019 mPas [48] and 620 mPas [4], respectively). Inter-
estingly, the same values for ionic conductivity were found for [N8881]NTf2 and [P8881]Lev
although lower viscosity values were measured for the latter (at 298 K 620 mPas [4] and
366 mPas [48], respectively). The lower conductivity values from that expected according
to its viscosity obtained for [P8881]Lev, could be understood in terms of enhanced ion
association in this IL compared to [N8881]NTf2. Datum for [N8881]NTf2 at 298 K, using a
value of ρ equal to 1.1 g/cm3, reported in [25], is included as red star in the Walden plot
(inset of Figure 3). The positions of the data obtained for [N8881]NTf2 relative to those
obtained for the ILs under investigation indicate a stronger ion association in the latter.

2.2.2. Dynamics

Dielectric data were evaluated in different representations using different model
functions in order to extract information on the dynamics in ILs under investigation. The
RBM model in its original version [30] as well as the phenomenological Havriliak–Negami
(H–N) model [53] were employed. In the framework of the original RBM model, the
expression for the complex conductivity is given by the following simplified equation:

σ∗(f) = σ0

(
i2πfτRBM

ln(1 + i2πfτRBM)

)
(2)

where σ0 is the dc conductivity value and τRBM is a time constant at which the transi-
tion from ac to dc conductivity takes place. The time constant τRBM corresponds to the
attempt rate fRBM (fRBM = 1/2πτRBM) to overcome the highest energy barrier. For f = fRBM
Equation (2) gives σ′ = 1.17σ0. The real part of Equation (2) was used to fit σ′(f) data in
the frequency region of dc–ac transition. The RBM model describes relatively well the
experimental data of both ILs in the selected region, while it lacks describing the data at
higher frequencies, as can be seen in Figures 4 and 5. When the fit is performed in the
whole frequency range (not shown here) a negative divergence of the fitting curves from ex-
perimental data are observed even in the region of the ac–dc transition. However, it should
be noted here that the use of the RBM model is questionable, and is obviously not expected
to describe the dielectric response of materials when the basic assumptions of this model
are not met. The ILs studied here do not satisfy the assumptions and considerations of the
RBM model, because in addition to the existence of mobile ions that create a polarization
mechanism at low frequencies, and at even lower frequencies contribute to the dc conduc-
tivity, there is also the contribution of a faster dielectric relaxation at higher frequencies, as
mentioned above. As will be seen below, the effect of this faster dielectric mechanism is
significant in the frequency window of the present study. Thus, it would be expected that
the discrepancy of the RBM model at high frequencies would be due to the fact that the
contribution of this fast mechanism was not taken into account in Equation (2). In the case
where the extension of the best fit of Equation (2) resulted in lower values compared to the
experimental data in the high frequency range, the lack of the faster mechanism contribu-
tion to Equation (2) could explain the inability of this relation to describe the conductivity
response at higher frequencies. However, the extensions of the best fit of Equation (2), in
both ionic liquids, lead to higher values than the corresponding experimental data in the
high frequencies region, as shown in Figures 4 and 5. Thus, it becomes clear that the RBM
model is not able to describe satisfactorily the overall conductivity response of ILs studied
in the present work. The application of the original RBM in ionic liquids describes the
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conductivity spectra σ′(f) reasonably well but is not able to describe the data in the ε*(f)
representation [33]. Similar behavior was reported in [N8881][NTf2] ionic liquid where the
RBM describes the data in σ′(f) very well, but underestimates the data in σ”(f) at lower
frequencies and, as a consequence, lacks describing the ε′(f) [27]. In the present study, the
original RBM describes reasonably well the dc–ac region but overestimates the data in
σ′(f) at higher frequencies. In the framework of RBM, noninteracting charge carriers were
considered to perform hopping on a simple cubic lattice. The charge transport process was
governed by a broad distribution of energy barriers while the charges have to overcome a
certain percolation barrier in order for random diffusion to take place. So, the inability of
RBM to describe the overall conductivity response of some ionic liquid systems is possi-
bly due to the fact that some of the basic assumptions of this model cannot satisfactorily
describe the charge transport mechanisms in these materials. It is also possible that the
transport of ions is accompanied by dipolar contribution, as a result of their structures,
which is not taken into account by RBM.
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The fitting procedure traditionally used to analyze the dielectric data of molecular
liquids was employed to describe the dielectric data obtained for the ILs under investigation.
The analysis was performed in the ε′′deriv formalism using the (derived in this formalism)
equation, assuming the H–N equation for the description of ε′ [39] given below:

ε
′′
deriv = −π

2
∂ε′HN

∂ ln 2πf
=
π

2
ab∆ε(2πτ)α cos

[
απ

2 − (1 + b)θHN
][

1 + 2(2πfτ)α cos(aπ/2) + (2πfτ)2α
](1+b)/2

(3)

where θHN = arctan
[
sin
(
πα

2
)
/((2πfτ)−a + cos(πα/2))

]
.

The best fitting of the data were achieved assuming the contribution of two relaxation
processes (main peak and kink at high frequencies), which were modeled by two terms, such
as Equation (3), and of electrode polarization (linear increase at low frequencies), which
was modeled by a power law function (Af-s). Figures 6c and 7c show a representative fitting
of ε′′deriv data at 218 K for [N8881]Lev and [P8881]Lev, respectively. Individual contributions
of relaxation processes are shown as dashed and dotted lines in these plots.
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For both IL systems under investigation, the main relaxation process is described
by a Cole–Davidson (C–D) function (H–N with α = 1) with a b shape parameter equal
to 0.4, while ∆ε of the relaxation decreases from 8.1 to 5.8 (208 to 263 K) and from 9.4 to
5.4 (198 to 263 K) for [N8881]Lev and [P8881]Lev, respectively. The contribution, observed
as a kink at high frequencies, was modeled by a Cole–Cole (C–C) function with a αCC
parameter close to 0.3. The latter process is ascribed to secondary relaxations observed
in ILs [26,54,55] and will not be discussed further here. However, from Figures 6c and 7c,
it is obvious that the secondary dielectric relaxation significantly influences the dielectric
response up to 0.5 KHz, and 5 KHz for the [N8881]Lev and [P8881]Lev ILs, respectively.
Dielectric data in all the formalisms can be reproduced assuming the contributions of the
relaxation processes obtained by fitting of the ε′′deriv and the dc conductivity. So, dielectric
data in different representations (ε′, ε”, ε′′deriv, M”) at 218 K for [N8881]Lev and [P8881]Lev
are shown in Figures 6 and 7, respectively. The parameters obtained from the fitting of
ε
′′
deriv data were used to reproduce data in all other representations. For the reproduction

of data in different formalisms, additional terms were used. For the reproduction of
ε′ (f) (Figures 6a and 7a), the instantaneous permittivity, ε∞, for ε” (f) (Figures 6b and 7b),
conductivity term ( σ0

ε02πf ), and for M”(f) (Figures 6d and 7d), both ε∞ and the conductivity
term were added. The values used are those obtained directly from dielectric data. For both
ILs under investigation, the dielectric data are perfectly described in all the representations
assuming the contributions of two relaxation processes and of dc conductivity as shown in
Figures 6 and 7.

According to this fitting procedure, the broad peak in logM”–logf plots is due to the
overlapping of two different mechanisms, as shown in Figures 6d and 7d. The high fre-
quency mechanism corresponds to the main dielectric relaxation in the ε′′deriv representation
while the low frequency is the conductivity relaxation mechanism. These two mechanisms
are essentially different although both are due to mobile ions. The main dielectric relaxation
is a polarization process due to short range ions motion while the second one is the conduc-
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tivity relaxation mechanism related to the dc conductivity via the relation σ0 = ε0εs2πfM,
where fM is the lower frequencies peak in the M” representation.

In order to compare the time scale of the relaxations obtained by fitting the dielectric
data, the Arrhenius diagram of the characteristic peak frequencies fε of the main dielectric
relaxation in the ε′′deriv representation and the characteristic frequency fM of the conductivity
relaxation in M” are presented in Figures 8 and 9. In the same figures, the characteristic
frequencies of the RBM model, fRBM, at which σ′ = 1.17σ0 (from the experimental data)
and the fitting processes, are also included. The unsatisfactory applicability of the RBM
model to ionic liquids studied in the present work, even in the dc–ac transition region, is
shown by the difference in fRBM frequency values as calculated from the experimental data
(σ′ = 1.17σ0) and the fitting processes (Figures 8 and 9). The characteristic frequency, fRBM,
as graphically estimated from σ′–f plots, always takes values between the characteristic
frequencies fε and fM of both ILs. According to the Arrhenius plots of Figures 8 and 9,
the relative difference of the characteristic frequencies fε and fM is higher for [N8881]Lev,
at each temperature. Moreover, the characteristic frequencies fε and fM of [P8881]Lev are
higher than the respective ones of [N8881]Lev, which means faster mechanisms.

While the frequency fM is related to the dc conductivity via the relation σ0 = εoεs2πfM,
the frequency fε of the main dielectric relaxation related also to the dc conductivity via
the well-known BNN relation σ0 = pεo∆ε2πfε, where ∆ε is the contribution of the main
dielectric relaxation in ε′ [56]. The coefficient p usually takes values close and around unity,
p ≈ 1 [57]. Therefore, fM/fε ≈ ∆ε/(∆ε+ ε∞) and, hence, fM < fε. So, the distances of the
characteristic frequencies fε and fM depend macroscopically on the parameters ∆ε and the
unrelated to ionic motion instantaneous permittivity ε∞. Microscopically, in the framework
of IC structures [58], a possible scenario that could explain the dielectric response of both
ionic liquids in Arrhenius plots of Figures 8 and 9 are as follows. Because the stimulus in
dielectric relaxation spectroscopy is the alternating electric field, E, the concept of signals
period T = 1/f is useful to better perceive the overall dielectric response. The main dielectric
relaxation, as detected in ε” representation, could be a result of the dipolar moments
induced by the relative displacements of ions in IC structures by the application of the ac
electric field E. Stronger ionic interactions in IC imply more difficult displacements of ions,
so a longer duration of E (higher period or lower frequency) is required to complete the
polarization mechanism and reach the peak fε. Therefore, stronger ionic interaction means
a lower value of fε and as a consequence, a lower value of fM (fM < fε) and, hence, lower dc
conductivity, a behavior that characterizes the experimental data of [N8881]Lev IL. This is in
accordance with a recent work [48]. The viscosity values and the related activation energy
of both ILs [48], suggest that [N8881]Lev has stronger interactions between anion–cation
pairs than [P8881]Lev. The higher the viscosity and the activation energy, the stronger the
ionic interactions.

The conductivity relaxation time is related to the characteristic frequency fM, which
appears below fε, as shown previously. The relative distance of these two characteristic
frequencies depends on how strong the ionic interactions are in the IC structures. Stronger
interactions imply that a longer duration of E (higher period or lower frequency) is required
to assist the ions to escape from the coulombic cage in IC structures, and then move at a
longer distance, giving rise to the conductivity relaxation mechanism as detected in the M”
representation. Therefore, a larger relative difference between the characteristic frequencies
fε and fM indicates stronger ionic interactions, and this behavior characterizes [N8881]Lev,
as discussed previously. Both characteristic frequencies fRBM and fM are related to the
conduction mechanism. According to the Arrhenius diagrams in Figures 8 and 9, fRBM
(from σ′ = 1.17σ0) is systematically higher than fM and lower than fε, fM < fRBM < fε.
While fRBM is related microscopically to the ion hopping rate of the largest energy barrier
according to the RBM model, fM is directly connected to the macroscopic parameters σ0
and εs, which are measurable quantities.
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3. Materials and Methods
3.1. Materials

Trioctylmethylammonium and trioctylmethylphosphonium methylcarbonate methanol
solutions were purchased by Proionic GmbH (Raaba-Grambach, Austria). Levulinic acid
was provided by Alfa Aesar (Haverhill, MA, USA).
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Synthesis of [N8881]Lev and [P8881]Lev

Trioctylmethylammonium levulinate [N8881]Lev and trioctylmethylphosphonium lev-
ulinate [P8881]Lev were synthetized from methylcarbonate precursors following a previ-
ously reported procedure [15]. 1H and 13C NMR, and FTIR spectra, were in agreement
with those reported.

3.2. Methods

A broadband dielectric spectroscopy (BDS) technique in a broad frequency 10−1–106 Hz
and temperature 173–333 K range was used to study the ILs. Measurements were per-
formed using an Alpha-A analyzer combined with a Novocool temperature controller, both
provided by Novocontrol. The capacitor was prepared by placing ionic liquids between
two parallel gold-plated flat electrodes, 20 mm in diameter. The distance between the
electrodes was kept constant at 50 µm using silica spacers. Since the transport properties of
ILs have been found to be significantly affected even by low water contamination [59], prior
to the measurements, the samples were kept at 353 K for 24 h in a vacuum oven. The two
ILs analyzed in this work belonged to the same batch of samples studied in the previous
work on levulinate-based ILs [48] where the results of Karl Fischer titrations for [N8881]Lev
and [P8881]Lev were 88 and 92 ppm, respectively. The samples were dried at 333 K for 12 h
in vacuum before the analysis. Considering that [N8881]Lev and [P8881]Lev are hydrophobic
ILs and that our drying procedure is similar, similar values of water contents can possibly
be assumed. A voltage amplitude equal to 0.1 V was used.

4. Conclusions

Tetraalkylammonium and its phosphonium homolog as cations were combined with
the levulinate anion to form the IL systems studied here. Ionic conductivity and dynamics in
these systems were studied by employing the broadband dielectric spectroscopy technique
in a broad frequency and temperature range. Between the systems studied here, higher
values of ionic conductivity and ion mobility were found for tetraalkylphosphonium-based
IL compared to its ammonium homolog in accordance with the lower viscosity found for
the former. No significant differences between the systems were found in ion association.
A comparison of the systems studied here, with corresponding systems having NTf2 as
anion, revealed that the levulinate anion used in the present study results in stronger
interactions and ion association, and as a consequence to lower values of room temperature
conductivity. The analysis presented here demonstrates that the original random barrier
model does not describe well the conductivity response, especially in the higher frequency
range. The broad low frequency peak in electric modulus representation consists of two
overlapping contributions. The slower process is related to the conduction mechanism
while the faster process corresponds to the polarization mechanism of the main dielectric
relaxation in the complex dielectric permittivity representation. Stronger ionic interactions
were found to lead to a slower conductivity relaxation mechanism, which means a lower
dc conductivity value and vice versa.
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