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Abstract

It has been indicated that there is an association between inflammatory bowel disease (IBD)

and hepatocellular carcinoma (HCC). However, the molecular mechanism underlying the

risk of developing HCC among patients with IBD is not well understood. The current study

aimed to identify shared genes and potential pathways and regulators between IBD and

HCC using a system biology approach. By performing the different gene expression analy-

ses, we identified 871 common differentially expressed genes (DEGs) between IBD and

HCC. Of these, 112 genes overlapped with immune genes were subjected to subsequent

bioinformatics analyses. The results revealed four hub genes (CXCL2, MMP9, SPP1 and

SRC) and several other key regulators including six transcription factors (FOXC1, FOXL1,

GATA2, YY1, ZNF354C and TP53) and five microRNAs (miR-124-3p, miR-34a-5p, miR-1-

3p, miR-7-5p and miR-99b-5p) for these disease networks. Protein-drug interaction analysis

discovered the interaction of the hub genes with 46 SRC-related and 11 MMP9- related

drugs that may have a therapeutic effect on IBD and HCC. In conclusion, this study sheds

light on the potential connecting mechanisms of HCC and IBD.

Introduction

Hepatocellular carcinoma (HCC), a major malignant form of the liver, is known as one of the

most dangerous cancers and a leading cause of cancer deaths globally [1]. Surgical resection,

transplantation and local ablation remain as standard therapeutic regimens for patients at an

early stage of HCC with high overall survival (OS) rates. HCC patients with later stages, on the

other hand, are usually subscribed for radio-/chemotherapies with significantly poorer out-

comes [2]. These findings suggest an urgent demand for novel early diagnostic biomarkers

and clinical treatment guidance for HCC patients. Generally, HCC develops in patients with

cirrhosis and chronic liver inflammation, which were driven by a hepatitis virus infection,
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alcohol consumption, long-term smoking and non-alcoholic fatty liver-associated diseases [3–

6]. Emerging evidence has demonstrated a contributing role of gut microbiomes in HCC

development. Accordingly, microbial dysbiosis and leaky gut stimulate the release of micro-

biota-associated metabolites, remarkably contributing to hepatic inflammation, fibrosis, cell

growth and anti-apoptosis signals [7, 8].

Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract,

which includes Crohn’s disease (CD) and ulcerative colitis (UC) [9]. Despite of being different

in the clinical features, the pathogenesis of CD and UC involves the same risk factors, such as

genetic susceptibility and alteration in gut microbiome and immune response [9]. Abnormal

gut microbiota, for example, may contribute to intestinal inflammation and immune response

dysregulation that eventually result in IBD [9–11]. Moreover, recent researches have demon-

strated that severe IBD can lead to gastrointestinal cancers [12, 13] as well as various extra-

intestinal manifestations including cardiovascular diseases, immune-mediated diseases [14–

17] and malignancies such as cholangiocarcinoma, lymphoma, melanoma [18–23]. Remark-

ably, HCC risk among patients with IBD, especially among those with CD, have been repeat-

edly reported [21, 24–26]. These findings suggested a potential cross-talk in the

pathophysiological pathways of IBD and HCC that needs to be further elucidated.

Despite numerous efforts on decoding the fundamental signaling molecules, the biomarkers

and mutual underlying molecular pathways between HCC and IBD remained poorly under-

stood. Therefore, in the present study, we have applied a systems biology approach to discover

common potential biomarkers and the underlying mechanisms, thereby providing new insights

into the pathology and clarifying the mutual immunity mechanisms of IBD and HCC.

Materials and methods

Data query

The workflow for the current study is presented in Fig 1. To discover the differentially

expressed genes (DEGs) in IBD and HCC, three microarray datasets namely GSE75214

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75214) for IBD and GSE14520

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520) and the Cancer Genome

Atlas TCGA-LIHC (https://www.cancer.gov) for HCC were used as the input. IBD dataset

(GSE75214) comprises the gene expression of biopsies from the colon of 11 controls, 97 UC

and eight CD patients and from the (neo-)terminal ileum of 11 controls and 67 CD patients.

The HCC dataset GSE14520 contains the gene expression of 225 HCC samples and 220 normal

liver tissues and TCGA-LIHC includes 50 normal control and 374 HCC samples.

Differential gene expression analysis

Prior to the differential gene expression analyses, data were transformed using log2 function

in R program (ver. 4.0.2; R Development Core Team, Vienna, Austria). Then, a principal com-

ponent analysis (PCA) was conducted using prcomp function to remove outliers. The genes

(probes) that were expressed in less than three samples were excluded. The Limma [27] and

DESeq2 packages [28] were used to find the significant DEGs and the p-values were corrected

using the False Discovery Rate (FDR) correction toolkit in the R software (ver. 4.0.2; R Devel-

opment Core Team, Vienna, Austria) for GSE and TCGA data. The significant DEGs with

FDR< 0.05 for GSE (fold change> 1) and TCGA (fold change > 2) data were identified. A

total of 1,793 immune genes (IMGs) were attained from 17 categories from the Analysis Portal

(ImmPort) website (https://www.immport.org) and Immunology Database after excluding the

duplicates [29]. The common DEGs between IBD, HCC and IMGs datasets were then identi-

fied and visualized by using VennDiagram package [30].
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Gene ontology and pathway enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway via

the clusterProfiler package [31] were used to assess the enrichment of common immune-

related DEGs. A p-value < 0.01 was used as a cut-off to determine the significant enrichment

GO terms and KEGG pathways.

Identification of hub genes via protein-protein interaction (PPI) network

construction

PPI network based on STRING (https://string-db.org/), an online tool for protein interaction

analysis, was constructed for a set of common immune-related DEGs. Homo sapiens was

selected as the organism for subsequent analysis. Network visualization in STRING was trans-

ferred to Cytoscape software (http://www.cytoscape.org/; version 3.8.2) to explore target mod-

ules and potential hub genes. The modules for potential hub genes in the PPI network via

MCODE plugin were identified with MCODE score > 2 and nodes > 3 as the cut-off criteria.

The interaction scores with a moderate confidence level of 0.4 was considered as the cut-off

for constructive visualization and disjoint nodes were hidden. Degree> 21 was selected as a

cut-off for hub gene identification.

Survival analysis

The TCGA data of 347 patients with HCC were used for survival analysis. These HCC patients

were assigned into low-risk and high-risk groups based on their median value of the

Fig 1. The workflow of the current study. HCC, hepatocellular carcinoma; IBD, inflammatory bowel disorder; DEGs,

differentially expressed genes; PPI, protein-protein interaction; GO, gene ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; TFs, Transcription factors.

https://doi.org/10.1371/journal.pone.0267358.g001
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prognostic risk score. Univariate Cox regression analysis was performed to explore the correla-

tion between the DEGs and OS [32]. The hazard ratio (HR) of death was computed and Bon-

ferroni adjusted p-values < 0.05 was considered statistically significant.

The protein expressions of prognostic hub genes

The Human Protein Atlas (HPA; https://www.proteinatlas.org/) is an open-access resource for

human transcriptome and proteome [33]. The hub genes were validated by immunohis-

tochemistry results in HCC and normal tissues obtained from the HPA database and a previ-

ous study [34].

The immune infiltration of prognostic hub genes

Since lymphocyte infiltration is an important indicator for lymph nodes’ status and cancer sur-

vival, the association between the hub genes expression levels and the immune infiltration lev-

els in HCC was evaluated using TIMER version 1 (TIMER: Tumor Immune Estimation

Resource) [35].

Identification of DEGs-interacted transcription factors and microRNAs

To identify transcription factors (TFs) and microRNAs (miRNAs) that bind to the hub genes

to regulate their expression, TF-target and miRNA-target interaction analyses were performed

using two open-access databases, JASPAR [36] and MirTarbase [37], respectively, followed by

a topological analysis using NetworkAnalyst [38].

Protein-drug interaction analysis

Protein-drug interaction analysis provides information about the potential interaction

between drugs and the target genes [39]. To identify potential drugs from the Comparative

Toxicogenomics Database (CTD) that might interact with the common DEGs, protein-drug

interaction analysis was performed via NetworkAnalyst [38].

Gene-disease association analysis

The gene-disease associations by DisGeNET, which cover a wide range of biomedical charac-

teristics of diseases, was commonly used to understand human genetic diseases [40]. The rela-

tionship between common DEGs and associated diseases was explored through

NetworkAnalyst [38].

DNA methylation analysis

The UALCAN tool was used to find the correlation between DNA methylation and four hub

genes. It provided information on TCGA gene expression, DNA methylation, clinical data and

friendly web resource [41].

Results

Common DEGs among HCC, IBD and IMGs

Gene expression datasets (HCC-GSE14520, HCC-TCGA and IBD-GSE75214) and IMGs list

were collected in the current study. There were 9,045, 10,657, and 4,406 significant DEGs in

the IBD-GSE75214, HCC-GSE14520, HCC-TCGA datasets, respectively. The Jvenn tool

showed common DEGs among groups, 112 common DEGs among HCC, IBD and IMGs have

PLOS ONE Biomarkers for inflammatory bowel disease and liver cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0267358 April 22, 2022 4 / 20

https://www.proteinatlas.org/
https://doi.org/10.1371/journal.pone.0267358


been detected (Fig 2; S1 Table). These common DEGs were then subjected to further down-

stream analyses.

Gene ontology and pathway enrichment analysis of common DEGs

The top significantly enriched GOs and KEGG pathways were shown in Fig 3A and 3B, respec-

tively. The GO analysis revealed that these common DEGs were significantly contributed to

negative regulation of response to external stimulus, cell chemotaxis and regulation of inflam-

matory response under biological process (Fig 3A). For cellular component-GOs, common

DEGs were significantly involved in the external side of the plasma membrane and secretory

granule lumen. Lastly, for molecular function, DEGs were mainly involved in receptor-ligand

activity, signaling receptor activator activity, cytokine activity, etc. (Fig 3A). In addition, the

most importantly enriched KEGG pathways included cytokine-cytokine receptor interaction,

viral protein interaction with cytokine and cytokine receptors, axon guidance, IL-17 signaling

pathway in cancer (Fig 3B).

Determination of hub proteins

This PPI network analysis via STRING database is commonly used to investigate the biological

responses in disease and health conditions. The PPI network of 112 common DEGs analysis

revealed 20 hub genes that meet the cut-off degree> 21 (Fig 4A; S2 Table). Six modules for

potential hub genes in the PPI network with MCODE score > 2 and nodes > 3 were identified

Fig 2. The Venn diagram for visualization of immune-related differentially expressed genes found in IBD, HCC.

The value represented the number of unique gene symbols covered from the ensemble IDs and probe IDs. IBD,

Inflammatory bowel disease; HCC, Hepatocellular carcinoma; IMGs, immune genes; TCGA, The Cancer Genome

Atlas.

https://doi.org/10.1371/journal.pone.0267358.g002
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(S1 Fig). The visualization of the main module using Cytoscape showed four hub proteins in

the center, namely CXCL2, MMP9, SPP1 and SRC (Fig 4B). The topological features and

involvement of the hub proteins in HCC and IBD were presented in Table 1.

The hub genes validation

The twenty hub genes from the PPI network with the highest degree were subjected to the sur-

vival analysis using univariate Cox analysis. The results exposed the significance of four hub

genes (CXCL2, MMP9, SPP1 and SRC) as prognostic makers of HCC (Fig 5; S3 Table). Specifi-

cally, the increased expression levels of MMP9 (p = 0.028), SPP1 (p = 0.0001) and SRC
(p = 0.032) and the decreased expression levels of CXCL2 (p = 0.026) were strongly related to

poorer prognosis in HCC patients (Fig 5).

Fig 3. The mainly enriched (A) gene ontologies (GOs) and (B) KEGG pathways for 112 DEGs. The abscissa represents

the number of genes enriched in the function. MF, molecular function; CC, cellular component; BP, biological process.

https://doi.org/10.1371/journal.pone.0267358.g003
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The hub genes immunohistochemistry expression

The protein expression levels of four hub genes (CXCL2, MMP9, SPP1 and SRC) in HCC and

control group was explored via the HPA database and a previous study [34]. Accordingly, pro-

tein expression levels of MMP9, SPP1 and SRC were substantially increased and CXCL2 was

decreased in HCC compared to the controls (Fig 6).

The correlation between hub genes and immune cell infiltration and their

methylation status in HCC

We used TIMER online tool to explore association between hub genes and six immune cell

types (CD4+/CD8+ T cells, B cells, macrophages, neutrophils and dendritic cells) and tumor

Fig 4. The protein-protein interaction (PPI) network of 112 immune-related differently expressed genes. The hub

proteins were selected based on the topological parameter (degree>21). (A) The PPI network was generated using

STRING. (B) The main module showed four hub genes in the center by MCODE plugin in the Cytoscape.

https://doi.org/10.1371/journal.pone.0267358.g004

Table 1. Overview of four hub proteins obtained from the protein-protein interaction network in HCC and IBD.

Symbol Degree Aspect

CXCL2 >21 • CXCL2 is downregulated in HCC. Overexpression of CXCL2 inhibits HCC cell proliferation

and tumor growth; induces apoptosis [34].

• CXCL2 was highly expressed in the inflamed colon of IBD patients [42, 43]. Overexpression of

the corresponding receptor CXCR2 in mesenchymal stromal cells induces anti-inflammatory

effect [42].

MMP9 >21 • MMP9 is associated with tumor invasion and poor outcomes and is expected to be a potential

predictive marker for HCC patients [44].

• MMP9 is upregulated in inflamed mucosa or serum of IBD patients and is a novel marker for

intestinal inflammation [45].

SPP1 >21 • SPP1 promotes tumor growth in HCC; a diagnostic and therapeutic marker for HCC; SPP1

polymorphisms are associated with HCC occurrence [46, 47].

• SPP1 is up-regulated in IBD. The SPP1 expression by CD103−dendritic cells (DCs) is crucial

for their pathogenicity. Inhibiting the interaction of SPP1 with integrin α9 expressed on CD103

−DCs abolished their inflammatory effects [48].

SRC >21 • SRC promotes HCC progression, invasion and metastasis [49, 50].

• c-SRC activity is highly induced in premalignant ulcerative colitis epithelia, and is strongly

associated with colon cancer development [51].

HCC: Hepatocellular carcinoma; CXCL2: C-X-C Motif Chemokine Ligand 2; MMP9: Matrix Metalloproteinase 9;

SPP1: Secreted Phosphoprotein 1; SRC: Proto-oncogene tyrosine-protein kinase Src.

https://doi.org/10.1371/journal.pone.0267358.t001
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purity by the Spearman tests. These analyses indicated that MMP9 expression was significantly

correlated infiltrating levels of all six immune cell types and tumor purity, especially high for

dendritic cell, B cell, macrophage and CD8+ T cells; SPP1 expression was significantly associ-

ated with infiltrating levels of macrophage and dendritic cell; and SRC expression was signifi-

cantly linked to macrophage, dendritic cell, CD4+ T cells, B cell and neutrophil (S2 Fig).

In addition, gene expression and methylation analysis showed significant differences in

both gene expression (Fig 7A) and methylation patterns (Fig 7B) of CXCL2, MMP9, SPP1 and

SRC between liver tumor and normal liver tissue samples. Furthermore, a negative correlation

between methylation patterns and gene expression was also noted for three genes (MMP9,

SPP1 and SRC). This finding indicated that upregulation of these three hub genes might be a

result of their diminished DNA methylation in HCC.

Determination of regulatory signatures

Next, a network-based approach was performed to screen for the DEG-TF, DEG-miRNA

interactions, thereby detecting the potential regulatory molecules of the hub DEGs. The gene-

TF and gene-miRNA networks revealed six TFs namely FOXC1, FOXL1, GATA2, YY1,

ZNF354C and TP53 (Fig 8A; S4 Table) and five miRNAs namely miR-124-3p, miR-34a-5p,

miR-1-3p, miR-7-5p and miR-99b-5p (Fig 8B; S5 Table) as the potential regulators of the four

hub genes. The biological functions of these TFs and miRNAs in HCC are presented in

Table 2.

Fig 5. Association of the overall survival and four potential hub genes (A) CXCL2; (B) MMP9; (C) SPP1; (D) SRC in

HCC based on Kaplan–Meier plotter. The horizontal axis signifies the time to event (in days). The patients were

stratified into the high- and low-risk-level group and labeled with green and red color, respectively. HR is the hazard

ratio of the high-risk over low-risk groups and p< 0.05 indicates a statistically significant difference.

https://doi.org/10.1371/journal.pone.0267358.g005
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Recognition of protein-drug and gene-disease interactions

To find drugs that can target the hub proteins, we studied protein-drug interactions and iden-

tified 46 SRC-related and 11 MMP9-related drugs (S3 Fig; S6 and S7 Tables). In addition, the

gene-disease analysis showed that three out of four hub genes (CXCL2, SRC and SPP1) were

also associated with mammary neoplasms, pulmonary fibrosis, dermatitis and allergic contact

diseases (S4 Fig; S8 Table).

Discussion

Despite the immune system has been well recognized for its roles in regulating tumorigenesis,

there are no effective molecular targets currently available in routine clinical practice since the

exact mechanisms involved in its pathogenesis remain poorly understood [75–77]. The immu-

notherapy remains unclear in liver cancer; therefore, it is necessary to classify the potentially

Fig 6. Immunohistochemistry of three hub proteins from the Human Protein Atlas database. Protein levels of (A)

MMP9 in HCC tissues; (B) MMP9 in normal liver tissues; (C) SPP1 in HCC tissues; (D) SPP1 in normal liver tissues;

(E) SRC in HCC tissues; (F) SRC in normal liver tissues.

https://doi.org/10.1371/journal.pone.0267358.g006
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effective patients who might be benefit from the therapy and to predict the outcomes. IBD

itself alters the gut microbiome [78, 79]. The harmful bacteria were then directed to portal cir-

culation, causing abnormal expression of cell adhesion molecules, thereby increasing the risk

of liver cancer [25]. Furthermore, the treatment therapies of IBD might also stimulate the

HCC progression related to the impairment of the immune response [12]. In this study, we

identified 112 common DEGs among IBD, HCC datasets and an immune gene list. Both GO

and KEGG pathway analyses revealed a significant role of the inflammatory response in the

HCC progression, in which cytokine-cytokine receptor interaction is the most common

between IBD- and HCC-associated genes. In addition, this interaction was reported to be

remarkably associated with HCC, supporting our observation [80, 81].

The current study identified CXCL2, MMP9, SPP1 and SRC as the four hub genes among

IBD, HCC and IMGs. Notably, CXCL2, a small cytokine of the CXC chemokine family, was

identified as a top significant gene through PPI network, IHC staining and survival analysis.

CXCL2 related to neutrophil response under various conditions such as wound healing, cancer

metastasis and angiogenesis [82]. Recently, CXCL2 was reported as an inhibitor of the HCC

cell cycle [34]. Exosomes containing CXCL2 or expressing CXCL2 receptors improved chemo-

taxis of HCC; thus, it was exploited for targeted drug delivery. Additionally, CXCL2 was also

noted to be an important cytokine for IBD [43]. Particularly, CXCR2, mediated the release of

neutrophils from the bone marrow via binding to its two ligands (CXCL1, CXCL2) [83].

MMP9, SPP1 and SRC, in contrast, were positive regulators of HCC cell death. In this

study, SPP1 is the most significant interaction gene of HCC and IBD. Osteopontin, a protein

encoded by the SPP1 gene, is up-regulated in IBD [84]. SPP1, with inference value of 129.66

from the gene-disease association dataset, is regarded as potential drug targets for the liver can-

cer treatment. Moreover, SPP1 promotes HCC growth and induces resistance to cell apoptosis,

suggesting that SSP1 is a potential therapeutic target in HCC [46]. MMP9 plays a vital role in

promoting cell migration and metastasis [85]. HCC develops as a result of a change in MMP 9

protein expression [86]. Lastly, SRC, which belongs to a group of SRC family kinases, primarily

involved in the regulation of embryonic development and cell growth. A previous study

showed that increased SRC expression and activity promoted cancer progression processes,

including cell proliferation, differentiation, invasion and migration [87]. In HCC, SRC signal-

ing pathway contributes to cell growth, metastasis and drug resistance via targeting ASPP2,

TIGF, L-FABP, GRP78, CD47 and TM4SF5/CD44 [87]. Saracatinib, an SRC inhibitor, might

Fig 7. The expression and methylation status of hub genes in hepatocellular carcinoma (n = 377) as compared to

the normal controls (n = 50) using TCGA samples. (A) Expression levels of CXCL2, MMP9, SPP1 and SRC using

TCGA samples; (B) Promoter methylation levels of CXCL2, MMP9, SPP1 and SRC, respectively.

https://doi.org/10.1371/journal.pone.0267358.g007
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improve the outcomes of liver cancer patients and have been approved by the food and drug

administration organization for the treatment of HCC [88]. Moreover, the IHC staining results

showed an increase of MMP9, SPP1 and SRC protein expression levels and a significant

decrease in CXCL12 [34] in HCC tissues. Besides, our results showed a moderate positive

Fig 8. Hub gene interaction network. (A) Hub genes—transcription factors (TFs): The red spheres represent four hub

genes; the blue squares represent six major hub genes-associated TFs and the cyan squares represent other gene-

associated TFs; (B) Hub genes—miRNAs: red spheres represent four hub genes; the bigger blue squares show five main

hub gene-associated miRNAs; the smaller blue squares show other hub gene-associated miRNAs.

https://doi.org/10.1371/journal.pone.0267358.g008
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association between four hub genes and infiltration levels of macrophages and dendritic cells.

These outcomes were supported by GO results, suggesting the possible regulatory role of the

target genes in negative response with an external stimulus of tumor-related to those cells.

Likewise, these results indicated that three hub genes can activate macrophages, resulting in

increased T cell exhaustion. Moreover, this study discovered negative correlations between the

gene expression levels and methylation status of three hub genes (MMP9, SPP1 and SRC).

Interestingly, when the expression levels of three hub genes significantly increased, their meth-

ylation profile was significantly inhibited. In addition, the upregulation of SPP1 and SRC due

to lower promoter methylation in liver carcinoma has been reported [89, 90], which is in

agreement with the findings of this study.

Different interaction networks have been analyzed to identify the potential regulatory miR-

NAs and TFs of the hub genes. Among the identified TFs, FOXC1 was considered as a novel

biomarker for the early stages of HCC [53]. Foxl1 was able to induce liver repair by activating

the canonical Wnt/b-catenin pathway [91]. Reduced GATA2 expression was related to a poor

outcome of HCC following resection [55]. YY1 enhanced linc01134 transcription by interacts

with linc01134 promoter to mediates HCC progression [92]. In addition, YY1 has been shown

to be an important mediator of the mTORC1, a signaling pathway in immune cell metabolism

Table 2. Top regulatory signatures of common DEGs predicted from DEG-TF and DEG-miRNA interaction

networks.

Factors Biological functions References

Transcription factors

FOXC1 Overexpression FOXC1 promotes HCC proliferation and metastasis [52, 53]

FOXL1 Upregulation of FOXL1 inhibits proliferation and migration of HCC cells. [54]

GATA2 Decreased expression of GATA2 was correlated with poor prognosis of HCC. [55]

YY1 YY1 is upregulated in HCC cell lines, which promotes tumor progression and inhibits

cell differentiation in HCC. YY1 promotes the malignancy of HCC by increasing the

expression of Quaking that is associated with poor outcomes of HCC.

[56–59]

ZNF354C ZNF354C is a transcriptional repressor in HCC; patients with higher expression levels of

ZNF354C exhibit a better overall survival.

[60]

TP53 TP53 is a well-known tumor suppressor gene that was mutated in >30% of HCC

patients. HCC patients with TP53 hot-spot mutations (R249S and V157F) have poorer

prognosis.

[61, 62]

microRNAs

miR-124-

3p

MiR-124-3p is a putative tumor suppressor whose expression was often reduced in HCC

cells and tissues. It inhibits the proliferation, invasion and metastasis of HCC and is being

considered as a novel diagnostic marker and therapeutic target for HCC

[63–65]

miR-34a-

5p

MiR-34a-5p was usually downregulated in liver cancer cells and tissues. Its

overexpression inhibits HCC cells growth and progression, while enhances apoptosis in

HCC cells.

[66–68]

miR-1-3p MiR-1-3p is downregulated in HCC cell lines. Overexpression of miR-1-3p induces

apoptosis and inhibits cell proliferation in HCC. Serum miR-1 is a novel prognostic

marker for patients with HCC.

[69, 70]

miR-7-5p MiR-7-5p has been characterized as a tumor suppressor. It is generally downregulated in

HCC tissues. Its overexpression suppresses tumor growth and metastasis. It can serve as a

potential prognostic and/or therapeutic target for HCC.

[71–73]

miR-99b-

5p

MiR-99b is highly expressed in HCC tissues and cell lines. Overexpression of miR-99b

promotes tumor progression, migration and invasion of HCC and is associated with poor

outcomes of patients with HCC.

[74]

HCC: Hepatocellular carcinoma; FOXC1: Forkhead Box C1; FOXL1: Forkhead Box L1; GATA2:Endothelial

Transcription Factor GATA-2; YY1: Transcriptional Repressor Protein YY1; ZNF354C: Zinc Finger Protein 354C;

TP53: Tumor Protein P53.

https://doi.org/10.1371/journal.pone.0267358.t002
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[93]. ZNF354C play a vital role in the dissociation of the complex from CHD1L and BCL9 pro-

moters to abolish the transcription inhibition, suggesting its potential target for diagnosis and

treatment of HCC [60]. TP53, a tumor suppressor gene, plays a critical function for the HCC

progression [94].

MiRNAs are short (~22nt) RNA molecules that directly bind to the target mRNAs and neg-

atively regulate their expression. MiRNAs are extensively studied and being used as potential

biomarkers for various human diseases, including cancers. This study identified five potential

miRNAs (miR-124-3p, miR-1-3p, miR-7-5p, miR-34a-5p and miR-99b-5p) that might target

and regulate the expression of four hub genes. These five miRNAs are downregulated in HCC

(Table 2) [66, 69, 71, 95]. Additionally, these five miRNAs were also suggested as the molecular

signature of IBD [96–101]. For instance, miR-7-5p inhibited the expression of TFF3 in IBD

[101].

Protein-drug interaction analysis is central to drug discovery and disease treatment, which

contributes to understanding the mechanisms of action and potential side effects of drugs, as

well as the sensitivity of the receptors [102]. The current study identified 46 SRC-related and

11 MMP9-related drugs. Additionally, the protein-disease interaction networks showed three

out of five hub genes (CXCL2, SRC and SPP1) are also associated with mammary neoplasms,

pulmonary fibrosis, dermatitis and allergic contact diseases. The presence of the common

genes between conditions suggested that there might be a link between them [103]. However,

in the present study, the identification of the hub genes was barely based on the gene expres-

sion microarray data overlapping with immune genes, which might cause some errors/biases

in the outcomes. Additional experimental evidence is required to confirm the findings.

Conclusions

In summary, these results strongly indicated CXCL2, MMP9, SPP1 and SRC as key genes in

IBD and HCC. The analyses of the present study identified several TFs (FOXC1, FOXL1,

GATA2, YY1, ZNF354C and TP53) and miRNAs (miR-124-3p, miR-1-3p, miR-7-5p, miR-

34a-5p and miR-99b-5p) that potentially regulate those key genes. These hub genes and their

transcriptional and/or posttranscriptional products might be the potential therapeutic targets

in connecting mechanisms of HCC and IBD.
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