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ABSTRACT  

Objective: Data extraction from the published literature is the most laborious step in conducting 

living systematic reviews (LSRs). We aim to build a generalizable, automated data extraction 

workflow leveraging large language models (LLMs) that mimics the real-world two-reviewer 

process. 

Materials and Methods: A dataset of 10 clinical trials (22 publications) from a published LSR 

was used, focusing on 23 variables related to trial, population, and outcomes data. The dataset 

was split into prompt development (n=5)  and held-out test sets (n=17). GPT-4-turbo and Claude-

3-Opus were used for data extraction. Responses from the two LLMs were compared for 

concordance. In instances with discordance, original responses from each LLM were provided to 

the other LLM for cross-critique. Evaluation metrics, including accuracy, were used to assess 

performance against the manually curated gold standard. 

Results: In the prompt development set, 110 (96%) responses were concordant, achieving an 

accuracy of 0.99 against the gold standard. In the test set, 342 (87%) responses were concordant. 

The accuracy of the concordant responses was 0.94. The accuracy of the discordant responses 

was 0.41 for GPT-4-turbo and 0.50 for Claude-3-Opus. Of the 49 discordant responses, 25 (51%) 

became concordant after cross-critique, with an increase in accuracy to 0.76. 

Discussion: Concordant responses by the LLMs are likely to be accurate. In instances of 

discordant responses, cross-critique can further increase the accuracy. 

Conclusion: Large language models, when simulated in a collaborative, two-reviewer workflow, 

can extract data with reasonable performance, enabling truly ‘living’ systematic reviews. 

Keywords: Systematic Review; Meta-Analysis; Large Language Models; Data Extraction; 

Natural Language Processing 
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INTRODUCTION     

As the medical field advances at an unprecedented rate, physicians struggle to keep up 

with the latest evidence to inform their practice.[1] Living systematic reviews (LSRs) address this 

challenge by continually integrating new findings and updating the evidence base.[2-9] However, 

the traditional LSR approach is susceptible to inefficiencies, with manual screening of citations 

and data extraction from publications being the most time-consuming tasks.[10] Additionally, error 

rates in manual data extraction can reach up to 50%, resulting from the diverse backgrounds and 

varying statistical and clinical expertise of data abstractors.[11]  Moreover, manual data extraction 

is cost-intensive, adding to the challenge of maintaining LSRs in a truly ‘living’ state.[12] 

Automating the LSR workflow can enhance accuracy, reduce costs, and enable near-real-time 

evidence synthesis, addressing the critical bottleneck in maintaining LSRs' timeliness.  

Historically, natural language processing (NLP) techniques[13] such as Latent Dirichlet 

Allocation (LDA), Conditional Random Fields (CRFs), and support vector machines (SVM) were 

used for text mining unstructured publication text.[14-18] However, these models required 

extensively annotated datasets for training, consuming significant time and resources. The advent 

of transformer-based, pre-trained large language models (LLMs) has revolutionized text 

generation and processing with natural language instructions.[19] Large language models, 

capable of tasks such as named entity recognition (NER), relation extraction, event identification, 

and text summarization,[20] have been widely investigated for generalizable information 

extraction.[21]  Pre-trained LLMs, enhanced through task-specific fine- and instruction-tuning,[22] 

show diverse capabilities in data extraction and other systematic review tasks without requiring 

large volumes of annotated datasets for training.[23-26] Notably, LLMs can critique and improve 

responses generated by other LLMs.[27] While commercial LLMs pretrained on the general 

domain can perform unsupervised data extraction without further fine-tuning, various model-, 

data- and framework-centric strategies can refine the response quality.[28] Among these 
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strategies, prompt engineering has emerged as an effective technique to condition LLM 

responses[29] without the risk of overfitting associated with task-specific fine-tuning.[30] 

  Given the unmet need for efficient data extraction for LSRs, we investigate a generalizable 

workflow leveraging Open AI’s GPT-4-turbo (GPT-4T)[31] and Anthropic’s Claude-3-Opus 

(Claude-3O)[32] to automate data extraction from clinical trial publications. The workflow employs 

systematically designed prompts in a zero-shot experimental design, mimicking the traditional 

two-reviewer process in systematic reviews. We hypothesize that responses that are concordant 

between the LLMs are likely to be accurate, and in the instances of discordance, cross-critique 

between the LLMs will improve concordance.  
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BACKGROUND AND SIGNIFICANCE   

Utilizing LLMs for data extraction in systematic reviews and meta-analyses is an area of 

growing interest.[33] Kartchner et al. explored Open AI’s GPT-3.5-turbo and GPT-JT for 

summarizing and extracting information from clinical trials in two meta-analyses.[34] In a zero-

shot setting, GPT-3.5-turbo outperformed GPT-JT, however, its use was limited by a high degree 

of hallucinations within the generated responses. Gartlehner et al. used Anthropic's Claude-2 to 

extract data from 10 clinical trial publications, achieving an accuracy of 96.3%.[35] However, the 

study was limited to categorical variables and clinical trials with only one or two arms. Konet et al. 

compared GPT-4 and Claude-2 using the same publications and demonstrated a higher data 

extraction accuracy by GPT-4 (100%).[36] However, this study focused on a few data elements, 

limiting the generalizability of their approach. Reason et al. used GPT-4 for data extraction and 

code generation for network meta-analyses, achieving over 99% success by qualitative 

assessment.[37] However, their approach relied only on publication text for data extraction and 

extracted data for a few variables, limiting its broader applicability. 

Although these efforts showcase the promise of LLMs to automate data extraction for 

systematic reviews, existing efforts fall short by focusing on extracting high-level information that 

is insufficient for analyses, relying only on text to extract information, and demonstrating 

suboptimal performance. Utilizing a single LLM may generate responses with hallucinations, 

raising concerns about accuracy. We, therefore, investigate the collaborative LLM approach 

mimicking the traditional two-reviewer LSR workflow for accurate data extraction.  

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.20.24314108doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.20.24314108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
6 

 

 MATERIALS AND METHODS 

Data Sources 

This study utilized data from a published LSR and network meta-analysis on first-line 

treatments for metastatic castration-sensitive prostate cancer (mCSPC).[3] A manually curated 

gold-standard dataset derived from the full-text PDFs of 22 original and follow-up publications 

across 10 clinical trials was used to benchmark the data extraction performance of LLMs 

(Supplementary Table 1). The dataset included 23 variables categorized as “trial characteristics,” 

“population characteristics,” and “meta-analysis outcomes” for both the overall population and 

subgroups based on metastasis burden and timing (Supplementary Table 2).  

Data Processing 

 The workflow of preprocessing clinical trial publications, data extraction, and post-

processing is shown in Figure 1. Each PDF was processed using rule-based programming with 

conventional Python libraries. Text from the publications was extracted using PyMuPDF.[38] Non-

essential sections, e.g., “references,” “acknowledgments,” “appendices,” “ORCID IDs,” “author 

contributions,” “affiliations,” and “declaration of interests” were programmatically removed to focus 

on the relevant content and reduce the size of input tokens. The preprocessed text was split into 

smaller chunks based on GPT-4T and Claude-3O token limits to accommodate publications with 

longer text. Tiktoken library[39] was used to manage token counts. To ensure continuity of context, 

a 1000-token overlap between chunks was maintained. Pages containing the tables and figures 

were identified by keywords (“table” and “figure”) and captured as images at 500 dots per inch 

(DPI) resolution. 

 Sampling and Prompting 

The dataset was randomly sampled at the publication level and split into prompt 

development and test sets. The prompt development set was used for iterative prompt 
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engineering to extract relevant information from text and images (Supplementary Figure 1). The 

test set was held out and not evaluated until the prompts were finalized. 

Chunks of text and images from each PDF were independently processed for data 

extraction using the application programming interfaces (APIs) of GPT-4T (gpt-4-0125-preview 

for text and gpt-4-vision-preview for images) and Claude-3O (claude-3-opus-20240229), the 

latest available versions as of April 2024. The temperature of the models was set to zero to 

generate deterministic responses.  Initially, a baseline prompt was used, which was iteratively 

refined based on the prompt development set performance (Supplementary Figure 1). The final 

prompts included the input text or image, required variables, and user-defined instructions for 

data extraction (Supplementary Methods).   

Post-processing 

Responses generated by GPT-4T and Claude-3O were processed separately. Extracted 

text and image data were concatenated and processed using GPT-4T in a structured format 

(Supplementary Methods). The duplicate responses from different text chunks and images of the 

same publication were removed. Likewise, the most frequent response was selected for a given 

variable in case of conflicting responses from different text chunks and images. The post-

processing prompt included the extracted data and instructions for formatting. 

 Concordance Assessment and Cross-critique 

Responses from GPT-4T and Claude-3O were manually assessed for concordance. 

Numerical responses from GPT-4T and Claude-3O were required to match exactly to be 

considered concordant. Text-based responses from GPT-4T and Claude-3O were classified as 

concordant if they were identical or conveyed a similar meaning as defined by the expert 

reviewers. For discordant responses, the output of GPT-4T was provided to Claude-3O and vice 

versa for cross-critique. The cross-critique prompt included the original text or image, the other 
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LLM’s response, and instructions to verify the response (Supplementary Methods). The 

responses after cross-critique were reassessed for concordance.  

 Evaluation 

Responses generated by GPT-4T and Claude-3O before and after concordance 

assessment and cross-critique were evaluated at the publication level for all variable categories. 

A sensitivity analysis was performed on the test set, excluding clinical trials that were also present 

in the prompt development set. LLM responses were manually compared to the gold standard, 

with performance metrics including accuracy, precision, recall, F1 score, and percentage of 

hallucinations calculated as mean values with 95% confidence intervals (CI). The Wilcoxon 

signed-rank test[40] was used to compare data extraction performance across different 

approaches, with a p-value of <0.05 indicating a statistically significant difference in performance.

 Data availability 

 The workflow for automated data extraction and the gold standard responses are available 

in a public repository (LLM extraction with cross-critique). 
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RESULTS 

Ten clinical trials with 22 publications were included in this study (Supplementary Table 1). 

The publications were randomly split, with 5 (23%) in the prompt development set and 17 (77%) 

in the test set. A total of 279,279 text tokens from the prompt development and test set publications 

were processed for data extraction, averaging 12,698 ± 3,972 tokens (range: 7,766 – 21,351) per 

publication. Additionally, 169 images were processed, averaging 7.6 ± 2 images (range: 3 – 12) 

per publication. The prompt development set had 65,999 text tokens (average: 13,199 ± 4,357; 

range: 9,502 – 18,975) and 42 images (average: 8 ± 2 images; range: 6 – 11). The test set had 

213,370 text tokens (average: 12,551 ± 3,983; range: 7,766–21,351) and 127 images (average: 

7 ± 2; range: 3–12). 

A single LLM generated 506 responses for 23 variables across 22 publications 

(Supplementary Figure 2). The prompt development set had 115 responses, of which 110 (96%) 

were concordant and 5 (4%) were discordant. After cross-critique, 3 (60%) of the discordant 

responses became concordant, while 2 (40%) remained discordant. The test set had 391 

responses, of which 342 (87%) were concordant and 49 (13%) were discordant. After cross-

critique, 25 (51%) of the discordant responses became concordant, while 24 (49%) remained 

discordant.  

Response Evaluation in the Single LLM Approach 

For 115 responses in the prompt development set, GPT-4T exhibited a mean accuracy of 

0.95 (95% CI: 0.93-0.97), mean precision of 1.00, mean recall of 0.92 (0.88-0.96), and mean F1 

score of 0.96 (0.95-0.97) whereas Claude-3O exhibited a mean accuracy of 0.95 (0.93-0.97), 

mean precision of 0.96 (0.94-0.98), mean recall of 0.97 (0.95-0.99) and mean F1 score of 0.96 

(0.94-0.98). The evaluation of GPT-4T and Claude-3O by variable categories is reported in 

Supplementary Table 3. Hallucinations were present in none (0%) of the responses with GPT-4T 
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and 2.60% (95% CI: 0.00-6.08%) of the responses with Claude-3O. The percentage 

hallucinations of GPT-4T and Claude-3O by variable categories are reported in Supplementary 

Table 19.   

From 391 responses in the test set, GPT-4T exhibited a mean accuracy of 0.89 (95% CI: 

0.87-0.91), mean precision of 0.98 (0.96-1.00), mean recall of 0.87 (0.85-0.89), and mean F1 

score of 0.92 (0.90-0.94) whereas Claude-3O exhibited mean accuracy of 0.90 (0.89-0.91), mean 

precision of 0.94 (0.92-0.96), mean recall of 0.91 (0.89-0.93) and mean F1 score of 0.92 (0.90-

0.94) (Supplementary Table 3). Hallucinations were present in 2.29% (95% CI: 0.61-3.98%) of 

the responses with GPT-4T and 2.76% (0.27-5.26%) of the responses with Claude-3O 

(Supplementary Table 19). 

Sensitivity analyses showed GPT-4T to have a mean accuracy of 0.89 (95% CI: 0.88-

0.90), mean precision of 0.98 (0.97-0.99), mean recall of 0.90 (0.89-0.91), and a mean F1 score 

of 0.93 (0.92-0.94) and Claude-3O to have a mean accuracy of 0.92 (95% CI 0.91-0.93), mean 

precision of 0.94 (0.93-0.95), mean recall of 0.95 (0.94-0.96), and a mean F1 score of 0.94 (0.93-

0.95) (Supplementary Table 9). Hallucinations occurred in 2.00% (95% CI 0.00%-4.59%) of the 

responses with GPT-4T and 1.44% (0.00%-3.49%) of the responses with Claude-3O 

(Supplementary Table 24). The evaluation of responses by clinical trial publications is reported in 

Supplementary Table 14.  

Response Evaluation in the Collaborative LLM Approach  

Concordant responses 

From 115 responses in the prompt development set, GPT-4T and Claude-3O generated 

110 (96%) concordant responses. The concordant responses exhibited a mean accuracy of 0.99 

(95% CI: 0.98-1.00), mean precision of 1.00, mean recall of 0.96 (0.94-0.97), and mean F1 score 

of 0.98 (0.97-0.99). The evaluation of concordant responses by variable categories is reported in 
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Supplementary Table 4. Hallucinations were present in none (0%) of the responses. The 

percentage hallucinations of concordant responses by variable categories are reported in 

Supplementary Table 20. 

From 391 responses in the test set, GPT-4T and Claude-3O generated 342 (87%) 

concordant responses. The concordant responses exhibited a mean accuracy of 0.94 (95% CI: 

0.93-0.95), mean precision of 1.00, mean recall of 0.92 (0.90-0.94), and mean F1 score of 0.96 

(0.956-0.964) (Supplementary Table 4). Concordant responses significantly outperform GPT-4T 

in terms of the mean accuracy (p-value: 0.003), precision (0.035), recall and F1 score (0.003), 

and Claude-3O in terms of the mean accuracy (p-value: 0.007), precision (0.022) and F1 score 

(0.004). The comparison of concordant responses with GPT-4T and Claude-3O by variable 

categories is reported in Supplementary Table 5. A comparison of the test set data extraction 

accuracy by GPT-4T and Claude-3O in the single LLM approach and concordant responses in 

the collaborative LLM approach is shown in Figure 2. Comparison of the test set data extraction 

precision, recall, and F1 scores by GPT-4T and Claude-3O in the single LLM approach and 

concordant responses in the collaborative LLM approach are shown in Supplementary Figures 3, 

4, and 5, respectively. Hallucinations were present in 0.25% (95% CI: 0.00-0.70%) of the 

responses (Supplementary Table 20).  

Sensitivity analyses showed the concordant responses to have a mean accuracy of 0.97 

(95% CI: 0.96-0.98), mean precision of 1.00, mean recall of 0.97 (0.96-0.98), and a mean F1 

score of 0.98 (0.975-0.984) (Supplementary Table 10). Hallucinations occurred in none (0%) of 

the concordant responses (Supplementary Table 25). The evaluation of concordant responses by 

clinical trial publications is reported in Supplementary Table 15.   
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Discordant responses 

From 115 responses in the prompt development set, GPT-4T and Claude-3O generated 5 

(4%) discordant responses. In the subset of discordant responses, GPT-4T exhibited a mean 

accuracy of 0.25 (95% CI: 0.00-0.69), mean precision of 1.00, mean recall of 0.25 (0.00-0.69), 

and mean F1 score of 0.40 (0.36-0.44) whereas Claude-3O exhibited a mean accuracy of 0.50 

(0.06-0.93), mean precision of 0.50 (0.06-0.93), mean recall of 1.00 and mean F1 score of 0.67 

(0.63-0.71). The evaluation of discordant responses by GPT-4T and Claude-3O by variable 

categories is reported in Supplementary Table 6. Hallucinations were present in none (0%) of the 

responses with GPT-4T and 50% (95% CI: 0.00-100.00%) of the responses with Claude-3O. The 

percentage hallucinations of GPT-4T and Claude-3O-generated discordant responses by variable 

categories are reported in Supplementary Table 21. 

From 391 responses in the test set, GPT-4T and Claude-3O generated 49 (13%) 

discordant responses. In discordant responses, GPT-4T exhibited a mean accuracy of 0.41 (95% 

CI: 0.30-0.52), mean precision of 0.54 (0.40-0.68), mean recall of 0.46 (0.32-0.60), and mean F1 

score of 0.50 (0.36-0.64), whereas Claude-3O exhibited a mean accuracy of 0.50 (0.36-0.64), 

mean precision of 0.60 (0.46-0.74), mean recall of 0.72 (0.61-0.83) and mean F1 score of 0.65 

(0.54-0.76) (Figure 2; Supplementary Table 6; Supplementary Figures 3, 4, and 5). Hallucinations 

were present in 26.93% (95% CI: 6.38-47.48%) of the responses with GPT-4T and 41.00% (17.41-

64.59%) of the responses with Claude-3O (Supplementary Table 21).  

Sensitivity analyses of the discordant responses showed GPT-4T to have a mean 

accuracy of 0.60 (95% CI: 0.43-0.77), mean precision of 0.57 (0.37-0.77), mean recall of 0.48 

(0.30-0.67) and a mean F1 score of 0.51 (0.32-0.69) and Claude-3O to have a mean accuracy of 

0.44 (95% CI: 0.00-0.18), mean precision of 0.44 (0.26-0.63), mean recall of 0.67 (0.49-0.85) and 

a mean F1 score of 0.53 (0.34-0.72) (Supplementary Table 11). Hallucinations occurred in 14.33% 
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(95% CI: 0.00%-36.24%) of the discordant responses with GPT-4T and 50.00% (6.17%-98.83%) 

of the discordant responses with Claude-3O (Supplementary Table 26). The evaluation of 

responses by clinical trial publications is reported in Supplementary Table 16.    

Response Evaluation after Cross-critique 

 Concordant responses after cross-critique 

From 5 discordant responses in the prompt development set, GPT-4T and Claude-3O 

generated 3 (60%) concordant responses upon cross-critique with a mean accuracy, precision, 

recall, and F1 score of 1.00. The evaluation of concordant responses after cross-critique by 

variable categories is reported in Supplementary Table 7. Hallucinations were present in none 

(0%) of the responses. The percentage hallucinations of concordant responses after cross-

critique by variable categories are reported in Supplementary Table 22.  

From 49 discordant responses in the test set, GPT-4T and Claude-3O generated 25 (51%) 

concordant responses upon cross-critique with a mean accuracy of 0.76 (95% CI: 0.60-0.92), 

mean precision of 0.72 (0.52-0.92), mean recall of 0.65 (0.49-0.81) and mean F1 score of 0.68 

(0.52-0.84) (Supplementary Table 7). The overall test set concordance and accuracy of the 

concordant responses after cross-critique relative to the discordant responses by GPT-4T and 

Claude-3O before cross-critique is shown in Figure 3. The test set precision, recall, and F1 score 

of the concordant responses after cross-critique relative to the discordant responses by GPT-4T 

and Claude-3O before cross-critique is shown in Supplementary Figures 6, 7, and 8, respectively. 

Hallucinations were present in 8.30% (95% CI: 0.00-19.35%) of the responses (Supplementary 

Table 22).  

Sensitivity analyses showed the concordant responses after cross-critique to have a mean 

accuracy of 0.85 (95% CI: 0.75-0.95), mean precision of 0.78 (0.59-0.97), mean recall of 0.63 

(0.45-0.81) and a mean F1 score of 0.70 (0.52-0.88) (Supplementary Table 12). Hallucinations 
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occurred in none (0%) of the concordant responses after cross-critique (Supplementary Table 

27). The evaluation of concordant responses after cross-critique by clinical trial publications is 

reported in Supplementary Table 17.  

Discordant responses after cross-critique 

From 5 discordant responses in the prompt development set, GPT-4T and Claude-3O 

generated 2 (40%) discordant responses upon cross-critique. From the responses that were 

discordant after cross-critique, neither GPT-4T nor Claude-3O generated correct responses 

(mean accuracy: 0.00; mean precision: 0.00; mean recall: 0.00). The evaluation of discordant 

responses by GPT-4T and Claude-3O after cross-critique by clinical trial publications is reported 

in Supplementary Table 8. Hallucinations were present in 50% of the responses with GPT-4T and 

100% of the responses with Claude-3O. The percentage hallucinations of GPT-4T and Claude-

3O generated discordant responses after cross-critique by clinical trial reports is reported in 

Supplementary Table 23. 

From 49 discordant responses in the test set, GPT-4T and Claude-3O generated 24 (49%) 

discordant responses upon cross-critique. From the responses that were discordant after cross-

critique, GPT-4T exhibited a mean accuracy of 0.18 (95% CI: 0.06-0.30), mean precision of 0.29 

(0.13-0.45), mean recall of 0.48 (0.32-0.64), and mean F1 score of 0.36 (0.20-0.52), whereas 

Claude-3O exhibited a mean accuracy of 0.45 (95% CI: 0.29-0.61), mean precision of 0.46 (0.30-

0.62), mean recall of 0.75 (0.59-0.91) and mean F1 score of 0.57 (0.41-0.73) (Supplementary 

Table 8). Hallucinations were present in 56.25% (95% CI: 30.57-81.93%) of the responses with 

GPT-4T and 47.92% (20.64-75.20%) of the responses with Claude-3O (Supplementary Table 23).  

Sensitivity analyses of the discordant responses after cross-critique showed GPT-4T to 

have a mean accuracy of 0.15 (95% CI: 0.02-0.28), mean precision of 0.38 (0.10-0.65), mean 

recall of 0.29 (0.10-0.49) and a mean F1 score of 0.33 (0.10-0.56) and Claude-3O to have a mean 
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accuracy of 0.55 (95% CI: 0.29-0.81), mean precision of 0.42 (0.14-0.69), mean recall of 0.47 

(0.17-0.76) and a mean F1 score of 0.44 (0.15-0.73) (Supplementary Table 13). Hallucinations 

occurred in 14.67% (95% CI: 2.33%-81.00%) of the discordant responses with GPT-4T and 

50.00% (6.17%-93.83%) of the discordant responses with Claude-3O (Supplementary Table 28). 

The evaluation of responses by clinical trial publications is reported in Supplementary Table 18. 
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DISCUSSION  

This study simulated the real-world setting for data extraction in systematic reviews and 

showed that LLMs, when used collaboratively, analogous to the two-reviewer approach, 

demonstrate superior performance compared to the individual LLMs. The results of this study 

showed that the responses that are concordant between LLMs are likely to be correct. However, 

when they are discordant, cross-critique by LLMs, synonymous with human discussions while 

making decisions, further improves the accuracy. Given the rapid pace of evidence generation in 

domains like oncology[3-7] and COVID-19[41], the laborious data extraction process was the 

bottleneck for creating truly ‘living’ systematic reviews. Therefore, we have proposed a systematic 

LLM-based workflow (Figure 4) to simulate a two-reviewer setting that can be leveraged to 

facilitate the process of data extraction in living evidence synthesis informing clinical practice 

guidelines.  

The proposed approach has several strengths. First, the collaborative LLM approach 

reduces the risk of hallucinated responses, which is a major limitation of using individual LLMs in 

the real-world practice of systematic reviews. This is evident by a higher mean test set accuracy 

of 0.94 with collaborative LLMs compared to GPT-4T (0.89) and Claude-3O (0.90) alone (Figure 

2). Likewise, the subset of responses with the collaborative LLM approach had fewer 

hallucinations (0.25%) compared to individual LLMs (~2.5%). Second, we have developed a 

templated prompt specifically for data extraction that can be modified to extract different sets of 

variables across a variety of published articles (Supplementary Figure 1). This enables the 

reviewers to incorporate new variables in an existing LSR or to initiate a new review, making the 

workflow generalizable. Third, this approach offers significant time and cost savings. The average 

cost for data extraction was $3.40 for one publication, with an additional cost of $2.06 for cross-

critique in almost real-time. Given these findings, this approach would significantly lower the costs 
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and tremendously expedite the data extraction in LSR which otherwise would take months of 

manual effort[10 12]. 

However, the findings of this study should be interpreted in the context of some limitations. 

The dataset used in this study includes only prostate cancer trials and hence, the applicability to 

the fields outside oncology may be limited. However, we followed a systematic approach by 

randomly sampling our dataset into prompt development and test sets for unbiased evaluation. It 

could be argued that the inclusion of different publications from the same clinical trials in both 

prompt development and test sets could potentially contaminate the test data. However, a 

sensitivity analysis including unique clinical trials with no publications present in the prompt 

development set showed consistent results. It is also possible that the LLMs were previously 

exposed to publications that were included in the prompt development and test sets, which could 

have potentially overestimated the performance. While the collaborative approach achieved 

perfect accuracy for extracting variables like trial characteristics, the performance was relatively 

lower for other variables where implicit judgment is required, highlighting the need for more 

intelligent approaches for achieving automation. For example, introducing a third reviewer, either 

a human or an LLM, may mitigate this limitation. 

In the future, we aim to integrate the proposed approach into our existing living interactive 

evidence (LIvE) synthesis framework[42] with a focus on reducing manual effort by iteratively 

identifying areas where LLMs can autonomously handle data synthesis tasks (Figure 4). Given 

the promising performance of the collaborative LLMs approach in this study, there is significant 

potential for its integration into both existing and new living evidence infrastructures.[3-7 43-54] 

Beyond its immediate application in data extraction, this approach could extend to other critical 

steps in the systematic review process, such as screening, quality assessment, and evaluating 

the certainty of evidence.[55] Additionally, the LLMs can be used collaboratively as planners for 

designing sophisticated analytic strategies enabling advanced meta-analysis.[56 57] Moreover, a 
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key future direction involves further exploring the reasoning chains of LLMs, which could not only 

enhance confidence in their use but also improve trackability throughout the data extraction 

process. Beyond evidence synthesis, the collaborative LLM approach can be integrated into 

clinical workflows and systems to advance patient care and quality improvement initiatives.  

Developing guidelines and safeguards for using LLMs in evidence synthesis and healthcare is 

essential for widespread adoption. Training healthcare professionals and researchers to use AI-

based tools effectively will be crucial for successfully implementing these solutions. 

 

CONCLUSIONS 

  In summary, concordant responses by the LLMs are likely to be accurate. In instances of 

discordant responses, cross-critique can further increase the accuracy. Large language models, 

when simulated in a collaborative, two-reviewer workflow, can extract data with reasonable 

performance, enabling truly ‘living’ systematic reviews. Validation of this workflow on external 

datasets is required to assess its widespread applicability.  
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FIGURES 

 

Figure 1: Data extraction workflow 

 
Abbreviations: PDF: Portable document format 

The figure shows the data extraction approach used in our study. The approach includes (A). Preprocessing: Text is 
programmatically extracted from the PDF files of clinical trial publications, followed by the segregation into chunks. 
Ancillary text, including acknowledgments, references, and appendix, is removed. Tables and figures are identified 
based on the keyword-based search for “tables” and “figures” from the publications, with pages containing tables and 
figures captured as high-resolution images. (B). Data extraction: Extracted text chunks and images are provided to 
GPT-4-turbo and Claude-3-Opus, in a structured prompt comprising input text or image, variables, and instructions for 
data extraction. Responses generated by GPT-4-turbo and Claude-3-opus are in an unstructured format. (C). Post 
processing: Extracted data is converted in a structured format with GPT-4-turbo using a structured prompt that includes 
the unstructured data and formatting instructions. The duplicate responses from the structured responses are then 
removed. 
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Figure 2: Mean accuracy of the individual versus the 2-reviewer collaborative LLM 
approach in the test set responses 

 
Abbreviations: LLM: Large language model; GPT: Generative pretrained transformer 

The figure shows (A). Mean data extraction accuracy with 95% confidence intervals (CI) of GPT-4-turbo and Claude-
3-Opus in the single LLM approach. (B). Mean data extraction accuracy with 95% CI of the discordant responses by 
GPT-4-turbo and Claude-3-Opus, and for concordant responses in the collaborative LLM approach. The concordant 
responses significantly outperform either GPT-4-turbo or Claude-3-Opus alone in overall data extraction accuracy and 
accuracy for extracting population characteristics and meta-analysis outcomes from clinical trial publications  
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Figure 3: Cross-critique of discordant responses in the collaborative LLM approach 

 
Abbreviations: GPT: Generative pre-trained transformer 

The figure shows (A). Overall percentage of test set concordant responses before and after cross-critique. Cross-
critique of the discordant responses has shown to increase the overall test set concordance from 87% to 94% (B). 
Mean test set accuracy with 95% confidence intervals of the discordant responses by GPT-4-turbo and Claude-3-Opus, 
and the concordant responses after the cross-critique. Cross-critique has shown to generate concordant responses 
with a higher accuracy than the discordant responses by either GPT-4-turbo or Claude-3-Opus 
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Figure 4: Implementation of the data extraction approach in the living evidence workflow  

 
Abbreviations: PDF: portable document format; LLM: large language model; LSR: living systematic reviews 

The figure shows the implementation of the proposed collaborative LLM approach in the living evidence synthesis 
workflow. Analogous to the 2-reviewer manual approach, the 2-reviewer LLM is suggested for extracting data from 
clinical trial publications. Concordant from the collaborative LLM approach are selected as reliable, whereas the 
discordant responses are cross-critiqued. Concordant responses demonstrating a higher performance can be relied 
upon while the discordant responses require an additional human or an LLM-in-the-loop approach before being stored 
for downstream analyses. 
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