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Alzheimer’s disease (AD) is a progressive neurological degenerative illness with a hidden onset. Its pathogenesis is complicated,
although with molecular biology research on cancer and targeted research on pathogenic mechanisms, good progress has not yet
been made. +erefore, this work built a multifactor-driven neuronal apoptosis dysfunction module for the purpose of probing its
underlying pathogenic mechanisms. We performed differential expression analysis, coexpression analysis, enrichment analysis, and
hypergeometric tests to calculate the underlying regulatory effects of multifactors on the modules by the way of the whole gene
expression profile of AD and identify a series of ncRNA (miR-320a) and TF (NFKB1). Additionally, we screened 10 modules
corresponding to the Hub gene, which tend to regulate the physiological progress of inflammation, regulation of autophagy, cerebral
cortex neuron differentiation, glial cell apoptotic, and so on. Meanwhile, Alzheimer’s disease is triggered by signaling pathways such
as the MPK signaling pathway. In this study, a dysfunction module is utilized to verify that miR-590-3 and SP1 motility factors can
regulate neurons in Alzheimer’s disease through the MPK signaling pathway, not only providing new insights into the pathogenesis
of Alzheimer’s disease but also laying a solid theoretical foundation for the biologists to further cure Alzheimer’s disease.

1. Introduction

Alzheimer’s disease (AD), a chronic neurodegenerative
disease, usually occurs at a slow rate and deteriorates with
time [1]. So far, there have been no effective drugs to cure or
delay it [2]. +erefore, it is urgent for research on the
pathogenesis and treatment mechanism of Alzheimer’s
disease. Fortunately, many biologists and medical re-
searchers have devoted themselves to the exploration of the
pathogenesis, physiological processes, and treatments of
Alzheimer’s disease, which made great achievements. For
example, Choi et al. found that glucocorticoids are the
leading risk factor for Alzheimer’s disease, severely causing
microtubule instability and cognitive impairment, which are
considered as an early pathological feature that ultimately
results in memory deficits [3]. Besides, there is increasing
evidence that the pathogenesis of Alzheimer’s disease is
intricate and involves various biological mechanisms, such

as amyloid-based neurodegeneration that affects degener-
ative diseases [4, 5]. +erefore, it is effective for targeting
these proteins to prevent neurodegeneration and protect
nerves [6]. In previous studies, it was found that the for-
mation of neurofibrillary tangles (NFTs) is the central mark
of AD, and an NFT is a twisted fiber that takes shape in brain
cells. Some factors regulate insulin signaling pathways to
involve the pathogenesis of AD, GSK 3β, JNK, CaMKII,
CDK 5, CK1, Mark4, PLK 2, Syk, DYRK1A, PPP, p70S6K,
and other mechanisms contributing to the formation of
neurotoxic Aβ and NFT in the brain [7]. It is worth noting
that synaptic plasticity and cognitive decline are the most
outstanding characteristics of Alzheimer’s disease [8]. In
brief, synaptic loss is an early pathological manifestation,
and cognitive decline is currently the best correlative factor
with Alzheimer’s disease [9]. Recently, evidence suggests
that neuronal inflammation stimulated by microglia
(macrophage-like immune cells in the brain) serves a vital
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function in the pathogenesis of chronic encephalitis, and the
fact that neuroinflammation is likely to be one of the key
factors causing Alzheimer’s disease is reliably proved by the
postmortem brain tissue in AD patients [10]. Furthermore,
sphingosine-1-phosphate (S1P) is a pleiotropic bioactive
lipid regulating many pathophysiological processes, in-
flammation included. Spinster homolog 2 (Spns2), an S1P
transporter, facilitates the proinflammatory activation of
microglia in vitro and in vivo, contributing to accelerating
the pathogenesis of Alzheimer’s disease [11]. Salazar et al.’s
study indicates that the risk factor PyK 2 (PTK2B) is par-
ticularly positioned on neurons in the adult brain and that
the Pyk 2 risk gene is directly associated with neuronal
amyloid-β-oligomer (Aβo) signaling pathways to impair
synaptic anatomy and function. +erefore, Pyk 2 serves a
central function in AD-related synaptic dysfunction by
mediating Aβ-triggered dysfunction [12].

With the molecular studies of Alzheimer’s disease, some
key genes have been discovered as therapeutic targets.
+rough the report of Tian et al., we know that oxidative
stress is related to the pathogenesis of Alzheimer’s disease.
When oxidative stress becomes more and more obvious, the
endogenous protective pathway of nuclear factor E2 related
factor 2 (Nrf2)/antioxidant response element (ARE) was
reduced in PS1V97L-Tg mice of 10 months old [13]. In the
original astrocytes and brain lysates of AD patients, KCa3.1
expression was significantly connected with endoplasmic
reticulum (ER) stress and unfolded protein response (UPR).
KCa3.1 also regulated Ca2+ homeostasis in astrocytes and
weakened UPR as well as ER stress, resulting in memory
deficits and neuronal loss [14]. On the other hand, biologists
have also identified a series of Alzheimer’s disease-related
signaling pathways affecting all kinds of physiological
processes and mediating the occurrence of diseases. As
described in the studies by Cisternas et al., Wnt signaling
disorders are connected with dominating neurodegenerative
diseases, and the fact that neuroprotective effects of Wnt
signaling in ADmousemodels are at least partially improved
by Wnt-mediated neuronal glucose metabolism is known
from the animal experiments [15]. Moreover, L-3-n-
butylphthalide (L-NBP) can inhibit neuronal apoptosis,
which serves a neurogenic function in various animal and
cell models. PI3K/Akt may be a target in the process by
upregulating cyclin D1 to encourage neural stem cell pro-
liferation [16]. A study found that JAK/STAT 3 signaling
pathways mediate the development and progression of
neuroinflammation in the neurons of patients with Alz-
heimer’s disease [17]. Furthermore, the AMPK/SIRT 1
signaling pathway is regulated by dihydromyricetin (DHM),
which serves as a protection in AD by upregulating the
AMPK/SIRT1 pathway, inhibiting inflammatory responses
and hippocampal cell apoptosis, and improving cognitive
function [18].+ese new gene targets offer a new therapeutic
approach to Alzheimer’s disease. However, further explo-
ration is still required for a comprehensive understanding of
the basic detailed mechanisms and key molecular targets of
Alzheimer’s disease.

Here, we combine data of patients with Alzheimer’s
disease and normal people to further explore the underlying

pathogenesis of Alzheimer’s disease and finally conclude
that miR-590-3 and SP1 are key regulatory genes to Alz-
heimer’s disease, which can encourage neuronal apoptosis in
patients with Alzheimer’s disease through the AMPK sig-
naling pathway. +erefore, the comprehensive strategy
based on functional modules not only helps to explore the
potential pathogenic molecular mechanisms of Alzheimer’s
disease but also offers rich resources and theoretical guid-
ance for biologists to further explore its therapeutic
mechanisms.

2. Materials and Methods

2.1. Related Gene Expression Profile of Alzheimer’s Disease.
+e data of Alzheimer’s disease-related expression profile
was obtained from the NCBI Gene Expression Omnibus
(GEO) database [19]. Among them, GSE85426 contains 90
cases of healthy people and 90 cases of patients with Alz-
heimer’s disease. Besides, the basic data processing package
of the R language expression profiling chip (including
R.utils, R.oo, R.methodsS3, and hgu133plus2cdf) were ap-
plied to construct disease and normal sample expression
profiles for 180 samples, calculated by the R language limma
package [20]. For chip data, primarily background correc-
tion and standardization were performed by the background
correct function. +en, the control probe and the low-
expressed probe are filtered using the quantile normalization
method based on the normalized between arrays function to
obtain high quality of standardized data. +e lmFit and
eBayes functions of the limma package were analyzed with
default parameters to identify differentially expressed genes
with p value> 0.01, and finally 433 differential genes were
obtained.

2.2. Coexpression Analysis. For exploring the synergistic
expression of these human apoptosis-related genes in Alz-
heimer’s disease neurons, we employed weighted gene
coexpression network analysis (WGCNA) [21] to investigate
the gene expression profile of human apoptosis-related genes
and look for gene modules for synergistic expression. Unlike
general clustering methods, it is biologically significant for the
WGCNA clustering criteria. Accordingly, the correlation
coefficient of the intergene expression level is taken as n power
so that the distribution of the correlation coefficient values
gradually conforms to the scale-free distribution.+en, on the
basis of cohesion, a hierarchical clustering tree is built by
calculating correlation coefficients among genes. Genes with
similar patterns are grouped into the same branch, and
various branches of the cluster tree stand for various gene
modules. +erefore, the results obtained by this method are
more credible. In this study, 11 coexpression modules were
obtained with the gray modules removed to obtain the Hub
gene corresponding to 10 modules.

2.3. Analysis of Functional and Pathway Enrichment.
Exploring the function and signaling pathways involving
genes is often a practical means of studying the molecular
mechanisms of disease. Hence, the enrichments of Go
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function (pvalueCutoff� 0.01, qvalueCutoff� 0.01) and the
KEGG pathway (pvalueCutoff� 0.05, qvalueCutoff� 0.2)
were performed for the 10 modules of the gene using the R
language clusterProfiler package. Moreover, we apply the
Cytoscape application to conduct functional analysis for the
integrated module network.

2.4. Identification of the Regulation of ncRNA and TF on
Modules. For exploring the driving force of the coex-
pression module of neuronal apoptosis-related genes in

Alzheimer’s disease, we employed the ncRNA-miRNA
(protein) interaction pairs with a score≥ 0.5 in the RAID
v2.0 database and downloaded from the TRRUST v2.0 da-
tabase. All data of human transcription factor target were
utilized as background sets for pivotal analysis. Pivot
analysis refers to finding a driver with at least two inter-
actions corresponding to the module in a target pair and
calculating the significance of the interaction between the
driver and the module according to the hypergeometric test.
+e ncRNA with p value< 0.01 was screened for the pivot of
the significant regulatory module. Finally, statistical analysis
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Figure 1: (a) Coexpression analysis clusters related genes of human apoptosis into 11 modules, with 11 colors standing for different
modules. (b) Cluster expression heat map of the module genes in the sample. (c) Cluster analysis tree betweenmodules, with different colors
representing different modules.
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of pivots was conducted. Pivots that regulated more dys-
functional modules were authentically identified as core
pivots. +e data based on ncRNA and TF targets were
predicted as background sets, and the pivotal regulator of the
regulatory dysfunction module was obtained.

3. Result

3.1. Analysis of Gene Differential Expression of Alzheimer’s
Disease. Gene expression dysregulation features in the
process of disease. For the purpose of exploring the genetic
disorder of Alzheimer’s disease, we screened the expression

profiles of Alzheimer’s disease and obtained 433 differen-
tially expressed genes (p< 0.01). +ese differentially
expressed genes may be directly or indirectly in touch with
Alzheimer’s disease, which is probably important in the
development of the disease.

3.2. Coexpression Behavior of Related Genes of Human Ap-
optosis in Alzheimer’s Disease. For the purpose of system-
atically studying the mechanism of action of Alzheimer’s
disease-related genes in patients’ samples, we conducted
massive analytical studies. Primarily, we built expression
profiles with 4571 human apoptosis-related genes in patient
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Figure 2: Functions and pathways involving modular genes identify neuronal apoptosis and dysfunction modules of Alzheimer’s disease.
Analysis excerpt of GO function enrichment in module genes. +e deeper the colors, the stronger the enrichment. +e larger the circle, the
greater the proportion of the module genes account for the entry gene of GO function. (a, b) Analysis excerpt of the KEGG pathway
enrichment in module genes. +e deeper the colors, the stronger the enrichment. +e larger the circle, the greater the proportion of the
module genes account for the entry gene of the KEGG pathway. (c) +e corresponding functional and access networks according to the
relationships between the modules were utilized to identify the proportion of the corresponding functions and pathways involving modules.
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samples. +en, on the basis of analysis of coexpression
network, we obtained expression states of neuronal apo-
ptosis-related modules in 11 groups of Alzheimer’s disease
patients (Figures 1(a)–1(c)). +ese gene sets were authen-
tically as 11 dysfunction modules. Besides, these 11 modules
were screened, and the gray module was removed. Even-
tually, the hub genes corresponding to 10 modules were
captured. +ese dysfunction modules may engage in various
functions and pathways on behalf of the situation of various
regulatory mechanisms mediating neurons of Alzheimer’s
disease.

3.3. Identification of Pathogenic Modules Based on Function
and Pathway. It is an important medium for identifying
their pathogenesis to study the functions and pathways
involved with genes. In order to study the possible dys-
function of the modular gene imbalance, we performed
analysis of GO function and KEGG pathway enrichment for
11 modules. We gathered abundant GO terms, totaling 5061
cell composition entries, 8280 molecular functional terms, as
well as 48822 biological processes (Figure 2(a)). On the basis
of the functional analysis, we observed that relevant func-
tional modules have a tendency to enrich multiple disease-
related functions. For example, regulation of autophagy,
cerebral cortex neuron differentiation, and glial cell apo-
ptotic process. On the other hand, the 48822 KEGG pathway
enrichment results (Figure 2(b)) illustrated that the func-
tional module genes are chiefly engaged in the AMPK
signaling pathway, apoptosis, the PI3K-Akt signaling
pathway, and the NF-kappa B signaling pathway. +ese
signaling pathways have been proved to be inextricably
linked to neurons of Alzheimer’s disease. Since the func-
tional and pathway results obtained by enrichment of the

module genes are closely connected with the apoptosis of
neurons in Alzheimer’s disease, we determined these 11
modules as dysfunction modules. Module genes can regulate
a range of functions and pathways, and module dysregu-
lation is likely to be an important inducement of morbidity.
Looking back at the whole effect of these modules, we
constructed a functional network of all modules in con-
junction with the relationships between the modules
(Figure 2(c)), which may stand for a global dysfunctional
mechanism for neurons of Alzheimer’s disease. +e dys-
regulation of genes within the module triggers dysfunction
of the module, which in turn influences the functions and
pathways involved, inducing the occurrence and progression
of the disease.

3.4. ncRNA 3at Mediates Dysfunction Modules. +e tran-
scription and post-transcriptional regulation of genes have
long been regarded as key factors to regulate the occurrence
and development of diseases, and ncRNA is thought to be an
important regulator. Scientific prediction of ncRNAs that
regulate dysfunction module genes facilitates our further
investigation of the transcriptional regulation mechanisms
of neurons in Alzheimer’s disease. +us, kindly I scatter, the
pivot analysis of pRNA was employed to seek for the ncRNA
regulators that cause dysfunction of the module. +e pre-
dicted results (Schedule 2, Figure 3(a)) manifested that 2027
ncRNAs have a dramatic regulatory impact on the module,
referring to1327 ncRNA-Module target pairs.+ese ncRNAs
affect the apoptosis of neurons in Alzheimer’s disease to
varying degrees. Besides, statistical analysis of the results
found that miR-320a have distinguished regulatory func-
tions on 9 dysfunctional modules, vital in the dysfunction of
the module. However, miR-148b-3p, miR-182-5p, and miR-

SP1

m2

miR-590-3p

CREB1

AMPK signaling
pathway

(c)

Figure 3: Related dysfunction module in the neuronal apoptosis of Alzheimer’s disease that pivot regulator mediates. (a) Network diagram
of the adjustment of ncRNA to neuronal apoptosis-related modules in Alzheimer’s disease. (b) Network diagram of transcription factors
regulating related functional modules of neuronal apoptosis in Alzheimer’s disease. (c) Identification of key genes of Alzheimer’s disease
may affect neuronal apoptosis in patients with Alzheimer’s disease through corresponding signaling pathways.
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200c-3p have been identified and have important regulatory
roles in eight dysfunction modules, which may become
potential apoptotic factors in neurons in patients with
Alzheimer’s disease. Other than that, ncRNAs also exhibit
distinguished modulation for dysfunction modules and have
an effect essentially on the apoptosis of neurons in patients
with Alzheimer’s disease.

3.5. Identification of Key Target Genes Based on TF-Pivot.
+e apoptosis in patients with Alzheimer’s disease is also
inseparable from the dysregulation of transcription factors,
which is also embodied in the regulation of transcription
factors on dysfunction modules. +erefore, we performed a
pivot analysis of the module on the basis of the regulatory
relationship of the transcription factor to the gene. +e
results illustrate that (Schedule 3, Figure 3(b)), a total of 128
transcription factors have distinguished transcriptional
regulation for dysfunction modules of neuronal apoptosis in
Alzheimer’s disease, referring to 157 TF-Module regulatory
pairs. Statistical analysis of the regulatory roles of these
transcription factors reveals that HIF1A, NFKB1, RELA, and
TP53 prominently regulate 4 dysfunction modules, which
may join in the inflammatory process and accel-
erateneuronal apoptosis in patients with Alzheimer’s dis-
ease. However, JUN, HDAC1, SP1, and STAT3 are also
indispensable in the neuronal apoptosis mechanism of pa-
tients with Alzheimer’s disease. Reviewing the global
(Figure 3(c)), we also found that the key genes miR-590-3
and SP1 affecting neurons in Alzheimer’s disease may jointly
contribute to the apoptosis of neurons in Alzheimer’s disease
by targeting CREB1 to mediate the involvement of module 2
in the AMPK signaling pathway and enhance the neuronal
apoptosis in patients with Alzheimer’s disease.

4. Discussion

Alzheimer’s disease (AD), a progressive neurodegenerative
disease, features cognitive decline and dementia [22, 23]. In
recent years, the exploration of Alzheimer’s disease has
focused on certain genes or proteins, as well as related
signaling pathways, and certain achievements have been
made. However, the global regulation of these genes, pro-
teins, and signaling pathways in Alzheimer’s disease remains
unclear. For the purpose of comprehensively exploring the
mechanism of action of potential pathogenic genes in
Alzheimer’s disease, primarily these potential pathogenic
genes as well as their interaction genes were integrated and
observed for their coordinated expression behavior in dis-
ease patient samples. +us, we obtained 11 coexpression
modules. Meanwhile, these 11 modules were screened, and
the gray module was removed. Eventually, 10 modules
corresponding to 10 Hub genes were captured. It has been
found that the Hub gene GSTP1 of the sixth module is
considered to be a risk factor for Alzheimer’s disease. +is
view is also sided by studies of scientists such as Wang
M. thatGSTP1 polymorphism may raise the risk of Alz-
heimer’s disease [24]. Further, we also observed that the Hub
gene adiponectin receptor 1 (ADIPOR1) of block 7 as a

permeation protein receptor may be associated with the
Nogo-A and Nogo-66 receptor 1 (NgR1) to develop a
complex that inhibits long-term potentiation and cognitive
function. Osmotic proteins are able to encourage neurite
outgrowth as well as synaptic complexity through AdipoR1
and NgR1 signaling, suggesting that AdipoR1 may be an
available therapeutic target for neurodegenerative diseases
like Alzheimer’s disease [25].

Next, on the basis of the results of enrichment analysis,
we found that genes of two modules (RELA and TLR4) are
chiefly engaged in the regulation of autophagy. Among
them, Zahmatkesh and other scholars have reported that
autophagy stress is linked to Alzheimer’s disease, which is
also considered to be a potential cause of nerve loss [26].
+erefore, the regulation of autophagy features in the
pathogenesis of Alzheimer’s disease. In another aspect, the
enrichment result of the pathway reveals that the functional
module gene chiefly engages in the neuronal apoptosis
triggered by the AMPK signaling pathway in Alzheimer’s
disease. Studies have demonstrated that TRPML1 may
regulate autophagy to engage in the pathogenesis of AD
through the AMPK signaling pathway [27]. Additionally,
Wang et al. confirmed that the type 2 cannabinoid receptor
(CB2R) joins in AD pathology in a mouse model, and it
turns out that AD-like tau protein is hyperphosphorylated.
In the meantime, neurodegenerative lesions including
phosphorylated tau protein are also manifested in biologists
such as Tapia-Rojas C. After being verified, deletion of CB2R
has induced behavioral impairment and AD-like pathology
alternation via the AMPK pathway [28, 29]. +erefore, it is
proved that the functions and pathways involving these
module genes produce a comprehensive network effect,
comprehensively regulating the pathogenesis of Alzheimer’s
disease.

We then explored substantial drivers for these dys-
function modules. Transcription factors based on NFKB1,
RELA, and TP53 are important regulatory factors for dys-
function modules. First, inflammation is the main mecha-
nism of acute brain injury and chronic neurodegeneration,
whereas neuroinflammation is basically regulated by the
transcription factor NF-κB, which is closely connected with
the occurrence of Alzheimer’s disease [30]. Secondly, the
pathology of AD is often accompanied by an inflammatory
response, and RELA (P65), an important signaling factor in
the NF-κB pathway, is usually involved in the regulation of
neuroinflammation to mediate the development and
progress of Alzheimer’s disease [31]. +en, the tumor
suppressor TP53 is a key protein of neurodegenerative
diseases and cancer, which can downregulate specific
autophagy-related mitotic responses through transcriptional
inhibition of PINK1 [32]. +erefore, these studies have
proved that these driving factors are important for regu-
lating the occurrence and development of Alzheimer’s
disease. Moreover, in terms of the driving force of ncRNA,
we predicted that multiple miRNAs such as miR-320a, miR-
182-5p, and miR-200c-3p serve as important mediators for
dysfunction modules. Studies by Denk et al. have confirmed
that miR-320a is also associated with the protein biomarker
amyloid β1-42 and phosphorylated neurofilament heavy
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chain levels, suggesting its potential effect in progressive
neuronal degeneration monitoring [33]. +e difference of
synaptic plasticity is one of the earliest expressions of
neurodegenerative states clinically. Many of the microRNAs
(miRNAs) are enriched in synapses, possibly regulating local
protein synthesis in a rapid response to stressors like rep-
licating prions, which may be a candidate modulator of
neurodegenerative changes. Boese et al. found an increase in
miRNAs that are dysregulated in the later stages of the
disease by mimicking infected animals (AD model), in-
cluding misalignment of miR-182-5p andmiR-200c-3p [34].

5. Conclusion

In our analysis process, we also found that the drivers of
Alzheimer (miR-590-3 and SP1) may target the module
genes and have an important regulatory effect. +us, we
boldly speculated that its involvement in the regulation of
transforming growth factor-β1 (TGF-β1) is decreased in the
hippocampus of AD mice, causing impairment of memory
function and neuronal apoptosis in Alzheimer’s disease [35].

In light of the results of this study, we obtained a more
comprehensive dysfunction module for neuronal apoptosis
in Alzheimer’s disease.+ese modules provided a number of
genes proved to be linked with Alzheimer’s disease and
candidate factors to be tested, supplying a theoretical basis
for further research on Alzheimer’s disease. After systematic
research, we believe that miR-590-3 and SP1 are key reg-
ulatory genes for Alzheimer’s disease, which can promote
neuronal apoptosis in patients with Alzheimer’s disease
through the AMPK signaling pathway.
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