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Abstract The 2019 Nobel Prize in Physiology or Medicine was awarded to three physician sci-

entists, Drs. William G. Kaelin, Jr., Peter Ratcliffe and Gregg Semenza, for their ground-
breaking work revealing how cells sense and adapt to oxygen availability. Here, we
summarize the history of their discoveries.
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The 2019 Nobel Prize in Physiology or Medicine was awarded
to three physician scientists, Drs. William G. Kaelin, Jr.,
Peter Ratcliffe and Gregg Semenza, for their ground-
breaking work revealing how cells sense and adapt to oxy-
gen availability. We are fortunate to have had the
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opportunity to work in Dr. William Kaelin’s laboratory as
postdoctoral trainees (Fig. 1). Here, we provide a brief
description of the history and timeline of Dr. Kaelin’s
research, as well as that by Drs. Ratcliffe and Semenza.
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Figure 1 Dr. William G. Kaelin Jr. and the authors (A) Dr. Kaelin and his trainees. From left to right: Dr. William Kaelin, Dr. Samuel
McBrayer, Dr. Qing Zhang, Dr. Kimberley Briggs and Dr. Alan Baik (B) Dr. Kaelin and Dr. Haifeng Yang (C) Dr. Kaelin and Dr. Wenyi Wei
(D) Dr. Kaelin and his trainees. From left to right: Dr. Wenyi Wei, Dr. Qin Yan, Dr. William Kim, Dr. Archana Bommi-Reddy, Dr.
William Kaelin, Dr. Lianjie Li and Dr. Yoji Andrew Minamishima (E) Dr. Kaelin and the authors at Fenway Park, Boston, MA on August
31, 2015 after the memorial service for Dr. Kaelin’s beloved wife, Dr. Carolyn Kaelin, who died of brain cancer. From left to right:
Dr. Qin Yan, Dr. Haifeng Yang, Dr. William Kaelin, Dr. Wenyi Wei, and Dr. Qing Zhang.
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Oxygen is vital for all living organisms. During the course
of evolution, animals have developed the ability to adapt to
changes in the oxygen concentration on earth. However, it
was unclear how animals can sense and adapt to changes in
oxygen availability until around thirty years ago. The pio-
neering work performed by the laboratories of Drs. William
Kaelin, Jr., Peter Ratcliffe and Gregg Semenza paved the
way to understand the molecular mechanism of oxygen
sensing. We herein summarize the major milestones in the
history of research on the oxygen sensing pathway (Fig. 2).

The journey started with the purification of erythropoi-
etin (EPO), a glycoprotein hormone produced by the fetal
liver and then by adult kidneys. The protein was purified in
19771 and the gene was cloned in 1985.2 At that time, it was
known that EPO was produced in response to a low blood
oxygen concentration. However, it was not known how EPO
was regulated by low oxygen. Semenza and his colleagues
found that a region located on the 3’ enhancer of EPO,
currently knownas theHypoxia Response Element (HRE), was
responsible for nuclear factor binding and EPO expression
under hypoxia.3 This finding was subsequently confirmed in
the same year by Ratcliffe and his colleagues.4 In addition,
Ratcliffe and colleagues found that HRE DNA binding can
occur in all cell types, including those not involved in EPO
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Figure 2 Milestones in the history of oxygen sensing research (Reprint permitted by Science Bulletin).
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production, suggesting that this may be a general oxygen
sensing mechanism that can regulate the expression of other
genes that may be oxygen responsive,5 including genes
encoding glycolytic enzymes and the angiogenic factor,
vascular endothelial growth factor (VEGF).6,7

However, the nuclear factor binding to the enhancers of
EPO remained elusive. In 1995, Dr. Guang-Liang Wang and
Dr. Bing-Hua Jiang, both working as postdoctoral fellows
under Semenza, purified and cloned this transcription fac-
tor, which they named hypoxia inducible factor-1 (HIF-1).8,9

HIF-1 is composed of two subunits, the oxygen labile HIF-1a
and the constitutively expressed HIF-1b (also called ARNT,
aryl hydrocarbon receptor nuclear translocator). Despite
the fact that the mRNA expression of both subunits typi-
cally remains constant under either normoxia or hypoxia,
the HIF-1a protein was found to be induced and accumulate
under hypoxia, suggesting that some type of post-
transcriptional/post-translational modification(s)
contribute to the regulation of HIF-1a at the protein level.

Kaelin’s group at Harvard made major contributions to
deciphering this regulatory mechanism. Based on his clin-
ical experience as an oncologist, Kaelin was aware that
most kidney tumors that lose expression of the von Hippel-
Lindau (VHL) tumor suppressor are highly vascularized.
When he and his group found that VHL forms a complex with
Elongin B and C and CUL2, homologs of yeast ubiquitin
ligase proteins,10,11 he hypothesized that the absence of
VHL could lead to VEGF stabilization and subsequent
increased vascularity. Indeed, he soon discovered that VHL
deficiency led to upregulation of VEGF and other HIF tar-
gets, even under normoxia.12 The E3 ubiquitin ligase ac-
tivity of the VHL complex was subsequently demonstrated
after Joan and Ronald Conaway collaborated with Kaelin to
identify another essential protein called Rbx1, which is
required for the ubiquitin ligase activity.13,14 It did not take
long for both Kaelin and Ratcliffe to ascertain the molec-
ular link between VHL and HIF. Indeed, in two back-to-back
landmark papers published in 2001,15,16 they demonstrated
that VHL binds HIF-1a under normoxia, but fails to do so
under hypoxia, suggesting that VHL recognizes a modified
form of HIF-1a.

This modification turned out to be prolyl hydroxylation
on the proline 564 residue, which is essential for the
recognition of HIF-1a by the VHL complex. Recognition of
the modification leads to the ubiquitination and subsequent
proteasomal degradation of HIF-1a. This breakthrough
demonstrated that oxygen-dependent prolyl hydroxylation
is key for mammalian oxygen sensing. However, this led to
another question, namely, what was responsible for the HIF-
1 oxygen-dependent hydroxylation. Ratcliffe, Kaelin (with
the Conaways) and Steve McKnight all found the same
answer using completely independent methods: HIF-1a hy-
droxylation is catalyzed by a family of prolyl-4-hydroxylases
(PHDs) that are enzymatically inactive under hypoxia.17e19

Ratcliffe, Semenza, and others had already shown that
HIF-1 C-terminal transactivation domains were also subject
to oxygen-dependent regulation, which altered the tran-
scriptional activity of HIF-1 without affecting the protein’s
stability.20,21 Semenza and colleagues identified and char-
acterized a protein that interacts with HIF-1 and impairs its
transcriptional activity, which was accordingly named fac-
tor inhibiting HIF-1 (FIH-1).22 Richard Bruick’s group sub-
sequently showed that FIH-1 is the asparaginyl hydroxylase
of HIF-1, and this hydroxylation inhibits its ability to bind to
transcriptional coactivators.23

The discovery of HIF prolyl and asparaginyl hydroxyl-
ation completed the elegant network of oxygen-modulated
regulation of HIF-1 activity. Interestingly, FIH-1 can be
enzymatically active at a lower oxygen concentration than
PHDs.24 FIH-1 hydroxylates asparagine 803, which is located
in the C-terminal transactivation domain of HIF-1a, thereby
inhibiting HIF-1a transcriptional activity by preventing its
interaction with transcriptional coactivators, including
CBP/p30023. As oxygen levels keep increasing, the PHDs
become active and prolyl hydroxylate HIF-1a, promoting
the interaction of HIF-1a with the VHL E3 ubiquitin ligase



Figure 3 A schematic representation of HIF-1a regulation under normoxic and hypoxic conditions (Reprint permitted by Science
Bulletin).
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complex, which leads to HIF-1a ubiquitination and subse-
quent proteasomal degradation (Fig. 3).

In less than a decade, Kaelin, Ratcliffe and Semenza
delineated the detailed molecular mechanism by which the
oxygen sensing pathway works. It is important to point out
that these three outstanding scientists worked indepen-
dently and solved many puzzles from different perspec-
tives: Kaelin started his line of research from his
experiences in oncology and based on biochemical in-
vestigations; Ratcliffe’s studies started from his role as a
nephrologist, and Semenza utilized his expertise in medical
genetics. Their Nobel prize-winning work embodies the
importance of cross-disciplinary approaches in tackling
critical questions in physiology and human diseases.

Importantly, their work opened up the important field of
research focused on mammalian oxygen sensing. At pre-
sent, there are close to 70 enzyme family members that
may depend on oxygen for their functions besides prolyl
hydroxylases.25 In fact, some of the enzymes involved in
epigenetic regulation, including KDM5A (also known as
RBP2) histone demethylase, which identified by Kaelin and
Yi Zhang,26 were recently shown to be oxygen sensing en-
zymes.27,28 It remains to be determined how other enzymes
would work in oxygen sensing, and if the effects of the
various enzymes are synergistic, complementary or
whether they lead to feedback inhibition. It is also impor-
tant to note that there may be other prolyl hydroxylase
substrates besides HIF.29,30 For example, HIF-2a inhibitors
only showed a partial response in kidney cancer cell lines
and patient-derived xenografts,31,32 suggesting that there
are other VHL substrates.29 Although research in this field
will continue to expand for the foreseeable future, the
findings have already been translated to the clinic. For
example, a pan-prolyl hydroxylase inhibitor, Roxadustat,
has just been approved in China for the treatment of ane-
mia caused by kidney failure.
In summary, Drs. Kaelin, Ratcliffe and Semenza paved
the road for understanding oxygen sensing and adaptability,
and major efforts are currently underway to develop
therapeutic strategies to treat human diseases such as
anemia, coronary artery disease, inflammatory bowel dis-
eases and cancer.
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