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Abstract

The knowledge about the spatial ecology and distribution of organisms is

important for both basic and applied science. Biologging is one of the most

popular methods for obtaining information about spatial distribution of ani-

mals, but requires capturing the animals and is often limited by costs and data

retrieval. Unmanned Aircraft Systems (UAS) have proven their efficacy for

wildlife surveillance and habitat monitoring, but their potential contribution to

the prediction of animal distribution patterns and abundance has not been

thoroughly evaluated. In this study, we assess the usefulness of UAS overflights

to (1) get data to model the distribution of free-ranging cattle for a comparison

with results obtained from biologged (GPS-GSM collared) cattle and (2) predict

species densities for a comparison with actual density in a protected area. UAS

and biologging derived data models provided similar distribution patterns. Pre-

dictions from the UAS model overestimated cattle densities, which may be asso-

ciated with higher aggregated distributions of this species. Overall, while the

particular researcher interests and species characteristics will influence the

method of choice for each study, we demonstrate here that UAS constitute a

noninvasive methodology able to provide accurate spatial data useful for eco-

logical research, wildlife management and rangeland planning.

Introduction

Assessing the distribution of species among available envi-

ronments and the reasons behind those patterns are

recurrent ecological questions that may also affect human

activities and conservation efforts (Morrison et al. 2006).

Resource utilization, wildlife management, conservation

planning, ecological restoration, and prediction of possi-
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ble future impacts of land use or climate changes are all

applied areas that benefit from spatial distribution data of

individuals, populations, species, and communities (Col-

linge 2010; Qamar et al. 2011).

Data for species distribution at large spatial scales are

highly demanded in order to establish bases on which

management schemes can be sustained, and there is a

plethora of methods described for this purpose in the sci-

entific literature (e.g., Seber 1986). For a given species,

the effort required to apply each method is highly variable

and conditions their applicability to be used mainly at

large spatial scales (Acevedo et al. 2008). Obviously, the

efforts required to collect data at large spatio-temporal

scales exclusively from fieldwork are unworkable for most

of the studies. Thus, surveying a number of representative

populations, on which the relationships between species

presence/abundance and the environmental conditions

can be determined, is a way to forecast the abundance

and/or environmental favorability for the species in

unsampled territories (e.g., Etherington et al. 2009; Ace-

vedo et al. 2014). In this regard, to record precise infor-

mation of species distribution is one of the challenges for

wildlife management.

Numerous methodologies are available to collect spatial

data for animals in the field. Direct methods include

observation, capture, phototrapping, biotelemetry and

cameras, whereas indirect methods are dependent on some

evidence of animal activity (e.g., bed sites, feces, nests, or

tracks) (Mcdonald et al. 2012). Biologging consists in the

remote data collection from free-ranging animals using

attached electronic devices (Cooke et al. 2004). This is an

increasingly popular option among ecologists because it

provides valuable information on the animals’ movements

and habitat use. This method has experienced a remark-

able development thanks to the continuous technological

advances, especially those regarding tags miniaturization

in recent years. Nevertheless, biologging techniques pre-

sent some constraints, including logistical challenges, pos-

sible undesirable effects on the animals during the capture,

handling and along the period on which the individuals

are tagged (see Murray and Fuller 2000 for a review), and

the limitation in the number of animals that can be stud-

ied, restricted by the number of tags deployed, which are

often expensive (Rutz and Hays 2009).

Unmanned Aircraft Systems (UAS hereinafter) have

proven useful to address various ecological challenges

involving animal surveys (Jones 2003; Watts et al. 2010;

Sard�a-Palomera et al. 2012; Vermeulen et al. 2013) and

habitat characterization (Getzin et al. 2012; Koh and

Wich 2012). There is a considerable potential value of

UAS for spatial ecology (Anderson and Gaston 2013), but

to date, there are just a few studies that have explored

their possibilities (i.e. Rodr�ıguez et al. 2012; Barasona

et al. 2014b). In this context, the aims of this work were

to test the suitability of aerial images obtained from UAS

flights for i) modeling spatial distribution patterns of ani-

mals as compared against a widely used method (biolog-

ging using GPS-GSM collars) and ii) predicting species

abundance by comparing estimates from the images with

actual abundance in the study area. We use as model spe-

cies free cattle Bos taurus inhabiting Do~nana Nature

Reserve (Southwest of Spain) under a traditional hus-

bandry system. Cattle are large mammals that offer logis-

tical advantages for biologging deployment and are easily

detectable in UAS images. In addition, the knowledge of

the spatial distribution of these large herbivores is critical

for ecosystem management (Lazo 1995; Bailey et al.

1996). Researchers and park managers are specially inter-

ested in cattle spatial distribution because their foraging

impact and their interactions with wild ungulates in the

protected area constitute a controversial conservationist

and sanitary issue (Lazo 1995; Espacio Natural Do~nana

2000; Gort�azar et al. 2008).

Materials and Methods

Study site and species

Do~nana Nature Reserve (DNR hereinafter; 37°00N,
6°300W) is located in the right bank of the Guadalquivir

river estuary in the Atlantic coast of Southwestern Spain.

DNR covers 1008 km2 and hosts a variety of ecosystems

including marshlands, lagoons, scrub woodland, forests

and sand dunes, which led to its declaration as a World

Heritage Site and Biosphere Reserve (UNESCO 2014).

The area has a Mediterranean climate classified as dry

subhumid with marked seasons. We performed the field

work during the dry season, when the study area includes

the following main habitats (Barasona et al. 2014b):

(LT1) dense scrub dominated by Erica scoparia and Pista-

cia lentiscus, (LT2) low-clear shrubland, mainly of Halim-

ium halimifolium, Ulex minor and Ulex australis (LT3)

herbaceous grassland, (LT4) Eucaliptus sp. and Pinus sp.

woodlands, (LT5) bare lands, sandy dunes and beaches,

and (LT6) water bodies and vegetation associated with

watercourses covered mainly by Juncus sp. patches

(Fig. 1). A north–south-oriented humid ecotone can be

identified between the scrublands and the edge of the dry

marshlands (Barasona et al. 2014a), dominated by Scirpus

maritimus and Galio palustris with Juncus maritimus asso-

ciations. The study area in DNR is divided into four

management areas (MAs hereinafter) from south to north

named, respectively: Marismillas (MA1), Puntal (MA2),

Biological Reserve (MA3), and Sotos (MA4).

Our model species is free-ranging cattle Bos taurus that

occupy different MAs along the protected area. The cattle

ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 4809

M. Mulero-P�azm�any et al. UAS for Animal Spatial Ecology



management has traditionally been minimal, with the ani-

mals being captured just once per year for sanitary han-

dling. Do~nana cattle is mainly an autochthonous breed,

named “Mostrenca,” although some cross-breeds exist in

some herds. This cattle population is especially interesting

from an ecological perspective because free-ranging cattle

with little human interference is not common in large

protected Mediterranean ecosystems (Lazo 1995). Since

2000, cattle are managed according to the Cattle Use Plan

(Espacio Natural Do~nana 2000) which determines the

maximum number of individuals allowed on each MA.

The cattle numbers provided by the DNR authorities for

this study dates were MA 1 = 318, MA 2 = 152, MA

3 = 168, and MA 4 = 350 and are based on the annual

sanitary campaign (July 2011) where all the animals are

captured and identified by ear tags.

Unmanned Aircraft Systems (UAS)
methodology

We completed a total of 192 km of UAS diurnal aerial

tracks of two types (east–west- and north–south-oriented

transects) on each cattle management area with six repli-

cates (Fig. 1). UAS surveys took place during August and

September 2011, the end of the dry season and a time

when food resources become more limiting for herbivores

in DNR in terms of water and forage availability (Bugalho

and Milne 2003) between 15.00 h and 20.00 h local time.

The tracks were performed at an average speed of 40 km/

h at 100 m altitude above ground level. The covered

strips were approximately 4 km long and 100 m wide

(Fig. 1).

The flights were carried out with a small UAS (1.96 m

wingspan; see Fig. 2) assembled at Do~nana Biological Sta-

tion using a foam fuselage of an Easy Fly plane (St-mod-

els, Jiaxing, China) propelled by an electrical engine. It is

equipped with an Ikarus autopilot (Electronica RC,

Seville, Spain), which provides waypoint following capa-

bility and an Eagletree GPS logger V.4 (Eagletree systems,

Bellevue, WA) with a barometric altitude sensor. The dig-

ital photo camera Panasonic Lumix LX-3 11MP (Osaka,

Japan) is integrated in the plane wing nadir pointing, and

the shutter is activated by a mechanical servo. The images

were taken in speed priority mode and in its widest zoom

Figure 1. Map of Do~nana Nature Reserve

study area. Habitat is mainly divided in dense

scrub (land cover type, LT1), low-clear shrub

land (LT2), herbaceous grassland (LT3),

woodland (LT4), bare land (LT5), watercourse

vegetation, and water body (LT6). Unmanned

Aircraft System tracks location at the four

cattle management areas, and fixed kernel

(95% utilization distribution) home ranges of

GPS collar locations in the Biological Reserve

(MA3) are represented.
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position with continuous shooting. Total price of the sys-

tem was around 5700 € as of June 2011.

We georeferenced the images using the information

provided by the UAS and Eagletree data with a cus-

tomized extension of ENVI software to produce GeoTIFF

files. Accuracy of our UAS locations is estimated in the

range of 10–50 m before postprocessing (Mulero-

P�azm�any et al. 2014a,b; M. Mulero-P�azm�any, unpub-

lished data) and was improved up to 1–3 m after GIS

corrections (superimposing the images on orthopho-

tographs and manually correcting them using reference

points). We traced the animals in the images and pro-

cessed them over a 1 ha-approximated patch size (grid)

as proposed in detailed studies on ungulate behavior

(Gibson and Guinness 1980).

Biologging methodology

Twelve adult female Mostrenca cattle selected randomly

from different familiar groups were equipped with GPS-

GSM collars in July 2011 in the Biological Reserve (MA3)

(Fig. 2) during routine veterinary inspections with the

animals restrained in a cattle chute. The collars included

a satellite position capture system (GPS) and a Global

System for Mobile communications (GSM) (Microsensory

System, Spain) (Cano et al. 2007). The price per collar is

2750€ plus sms service, covered by the manufacturers in

our case. The collars were programmed to take a GPS

location every hour, sending encoded packets with 20

positions to the central station when mobile phone cover-

age allowed. Data collected included the following: date,

time, geographic coordinates, and location acquisition

time (LAT hereinafter, precision measure to obtain a fix;

range from 0 to 160 sec). We screened our data using

LAT ≥ 154 sec to detect anomalous fixes (manufacturer’s

technical data; Microsensory System, Spain). We obtained

a fix rate of 93.95%, which is acceptable considering that

fix-rate success of <90% can cause habitat-induced bias in

resource selection studies (Frair et al. 2004). Positional

error associated with GPS locations was 26.64 m on aver-

age, SD = 23.5 m, according to stationary tests carried

out in the center of our study area.

Data analysis

Landscape covariates

Environmental variables were estimated from thematic

cartography 1:10,000 scale (Consejer�ıa de Medio Ambi-

ente y Ordenaci�on del Territorio. 2013) using Quantum

GIS version 1.8.0 Lisboa (QGIS Development Team 2012)

and were determined following the information of the

landscape factors potentially driving ungulates spatial dis-

tribution in the study area and related to habitat quality

(Braza and Alvarez 1987; Lazo 1995; Barasona et al.

2014b). For each 1 ha grid of the study area (to-

tal = 29,532 grids, including the 10.1% corresponding to

UAS track grids; n = 2983; 3728.75 ha) and for each

26 m radius buffer (according to GPS positional error

(Recio et al. 2011)) around each GPS used and available

cattle locations (Jerde and Visscher 2005), we calculated

the following: distance to nearest artificial water hole

(DW), distance to nearest marsh-shrub ecotone (DE),

exact grid area (GA) to control the variation in UAS

Figure 2. Left: Unmanned Aircraft System

(UAS). Mostrenca cattle equipped with GPS-

GSM collar. Right: image obtained with UAS of

Mostrenca cattle aggregated in the ecotone of

the study area.
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image areas in the case of UAS track grids, and propor-

tion of the different land cover types (LT1-LT6). Dis-

tances, areas, and land cover type proportions were

treated as continuous variables (Table S1), and cattle

management area (MA), as a categorical variable. Dis-

tance variables were obtained as the shortest distance

from each grid and buffer centroid to the nearest envi-

ronmental feature.

To correct visibility reduction produced by vegetation

cover for cattle detection in UAS images, we calculated

detection coefficients for LT1 and LT4 land cover types.

We estimated the detection proportion of 100 random

circle points (1 m2 size) created in QGIS from ten differ-

ent habitat images (1 ha) of each cattle management area

and land cover type (80 images analyzed) considering any

point above vegetation cover as “not detected” and any

point without vegetation cover as “detected” (Barasona

et al. 2014b). Detection coefficients used in statistical

analysis were 0.544 for LT1 and 0.360 for LT4, respec-

tively. Colinearity between explanatory variables was

tested with Spearman’s pairwise correlation coefficients

r > |0.5| (Hosmer and Lemeshow 2000).

Cattle distribution modeling

We tested the factors affecting the spatial distribution of

cattle (1) using UAS images as a first approach and (2)

using GPS-GSM collar locations as a second approach, by

means of generalized linear models (GLM).

For the UAS model, we only included the east–west
UAS track data, because north–south UAS tracks showed

low habitat feature variation (these data were later used

for model validation). The response variable was the

number of detected animals per UAS grid and was mod-

eled with a negative binomial distribution and logarithmic

link function (Cameron and Trivedi 2013). The final UAS

model was obtained using a backward stepwise procedure

based on the Akaike information criterion (AIC) (Akaike

1974).

For the GPS model, we used resource selection func-

tion (RSF) logistic regression (Manly 2002) where used

locations (only considering the ones obtained during the

same period hours of UAS flights) were coded as 1, and

random locations (available, ten per used GPS location),

inside the individual fixed kernel (95% utilization distri-

bution) home ranges, as 0. The response variable was the

presence/absence of cattle in the grid, and the model

included the variables selected for UAS approach except

the MA categorical factor (as the collared animals were

restricted in MA3). Residuals of both UAS and GPS mod-

els were examined and tested for spatial autocorrelation

using the Moran’s I in order to detect spatial structures

(Diniz-Filho et al. 2003).

Validation and comparison between the two
methods

UAS model validation was performed by mean of Pear-

son’ correlations with independent (20%) data of the

east–west tracks and all information in north–south UAS

track dataset. GPS model validation was performed by

assessing the predictive capacity of each model with the

area under a relative operating characteristic (ROC) curve

(AUC), to rate the probability that the models correctly

discriminated between used and random locations. The

AUC ranges from 0.5 for models with no discrimination

ability to 1 for models with perfect discrimination (Pearce

and Ferrier 2000). Spatial predictions of both final models

were transferred to MA3 area where visual and quantita-

tive comparisons were conducted to verify correspon-

dence between predictions of UAS and GPS approaches

by Spearman’s pairwise correlation. All statistics were

performed in R version 3.0.1 (R Development Core Team

2013).

We also compared the densities (number of animals/

surface) predicted by the UAS model with the actual den-

sity in the different MAs (data provided by Do~nana Bio-

logical Reserve and Do~nana National Park authorities for

the studied time period) and evaluated cattle aggregation

in the grids by variance to mean ratio (Elliot 1977).

Results

A total of 358 individual cattle were identified and located

on the UAS track images along DNR (Fig. 2). We did not

observe any disturbance reactions to the UAS during the

overflights from the cattle nor from other ungulates pre-

sent in the area. Overall, the GPS collars fixed 1752 loca-

tions of the 12 marked animals during the same period of

UAS flights. Table S1 illustrates the descriptive statistics

for the analyzed continuous landscape covariates in the

UAS track grids, GPS (used and available) location buf-

fers, and total MA3 and DNR grids.

Results of the variables included in the spatial distribu-

tion models selected by the stepwise procedure (DAIC),
estimated coefficients, standard errors, and significance

are summarized in Table 1 for each approach. The best

fitting UAS model (AIC = 397, DAIC from saturated

model = �32) found that the environmental covariates

influencing cattle distribution are mainly related to land

cover types, with a positive effect of grasslands on the

ungulates distribution and a negative effect of the distance

to the ecotone and shrubs. The best fitting UAS model

also revealed a significant effect of the management area

on cattle abundance. GPS method identified all the

included variables as significant and showed a similar

effect of them over cattle presence.
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Validation of the model predictive performance on

independent UAS track datasets showed that the selected

best spatial distribution model performed with significant

Pearson’s rank correlations (east-west data: r = 0.30,

P < 0.001, n = 258; and north–south data: r = 0.32,

P < 0.001, n = 852). The assessment performed for the

GPS location model showed a high predictive capacity

(AUC = 0.945). The residuals of both models were not

spatially structured according to Moran’s I index. These

validation results permitted the transference of the models

to the MA3 using total 1 ha grids (Fig. 3).

The map representing predicted spatial distribution of

cattle shows common distribution patterns throughout

MA3 between UAS and GPS approaches. High relations

were found between the predicted values of UAS and

GPS methods in the MA3 by Spearman’s rank correlation:

r = 0.716, P < 0.001, n = 6501.

The mean of predicted densities calculated by the UAS

approach for each MA was higher than the densities pro-

vided by DNR authorities, showing differences between

the four MA of DNR, with more overestimated values in

the MA with higher aggregation coefficients (Table 2).

Discussion

In an effort to assess the ability of UAS to contribute to

animal spatial ecology studies, we compared the predicted

spatial patterns of free-ranging cattle in Do~nana Biological

Reserve obtained using animal locations from UAS over-

flights images against locations from biologged cattle

(GPS-GSM collars). Both models, using the same envi-

ronmental covariates, performed well and provided simi-

lar spatial distributions of cattle at a very fine scale (1 ha

grids).

Model results

The environmental variables selected by the UAS model

to explain the abundance of cattle are those expected to

be more important from an ecological perspective. The

positive influence of herbaceous grasslands on ungulates

distribution reflected by our models has been previously

identified (Bailey et al. 1996) indicating the need to for-

age on green pastures during the dry season. Previous

work conducted specifically in our study area also indi-

cated that seasonality in the phenology of the herbaceous

layer has major repercussions in the ranging behavior of

Do~nana cattle (Lazo 1995) that concentrate in the areas

identified by our models when the resources are scarce.

The ecotone between the shrublands and the marshlands

is the higher quality habitat of DNR, offering perennial

grasses with high levels of palatability (Lazo 1995). This

area keeps a high soil humidity and offers not only grass-

lands but also tree shade and refuge which are valuable

for ungulates in the dry season (Braza and Alvarez 1987).

Models also showed a negative effect of dense and low-

clear shrub on cattle presence that tend to avoid those

land types in favor of the open grassland areas (Casas�us

et al. 2012). However, as this work is limited to data

obtained at a specific season and time of the day, because

our main goal is to compare two methods in the same

conditions, general habitat use by cattle should be

addressed in a more complete study performed all year/

day round.

Although the UAS method worked successfully for pre-

dicting cattle spatial patterns, it overestimated cattle den-

sity in all the management areas (Table 2). This

discrepancy may be explained because the flight locations

were biased toward the areas where cattle is more concen-

Table 1. Results of generalized lineal models to determine the most relevant factors explaining cattle distribution patterns in Do~nana Nature

Reserve: Best fitting model for Unmanned Aircraft System (UAS) approach (response variable is “number of detected animals in 1 ha grid”) and a

model for biologging (GPS collars) with UAS-selected covariates (response variable is “presence/absence in a 1 ha grid”). Estimated coefficients

and standard errors (SE) are shown.

Estimated coefficients (SE)

UAS method GPS method

Intercept �2.6910 (0.7280)*** �0.0820 (0.0610)

Variables

DE Distance to nearest

marsh-shrub ecotone (km)

�0.0006 (0.0004)* �0.0028 (0.0001)***

LT1 Dense scrub (%) �13.270 (4.3270)** �0.0206 (0.0011)***

LT2 Low-clear shrub (%) �2.0360 (0.86189* �0.0316 (0.0013)***

LT3 Herbaceous grassland (%) 2.3320 (0.6438)** 0.0044 (0.0007)***

MA1 Management area (1) Ref. category

MA2 Management area (2) 2.8060 (0.7901)***

MA3 Management area (3) 1.8070 (0.8591)*

MA4 Management area (4) 2.2570 (0.9636)*

P values: *P < 0.05, **P < 0.01, ***P < 0.001.
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trated, a problem which could be solved by performing

stratified surveys in the different habitats. Also, the over-

estimation is not homogeneous along DNR, but higher in

those areas with a more aggregated distribution. This fact

has been proven relevant for animal surveys in general

and manned aerial censuses – more related with UAS –
in particular (Teller�ıa 1986; Fleming and Tracey 2008).

There are various protocols to assess this effect (Redfern

et al. 2002; Tracey et al. 2008) and techniques to correct

it (Bayliss and Yeomans 1989; Fleming and Tracey 2008)

that should be considered if the researcher main objective

was estimating abundance, for instance increasing sam-

pling effort as cattle spatial aggregation does.

Methods comparison

Although biologging and UAS approaches proved to be

useful in our study, there are several factors that condi-

tion their general applicability in spatial ecology. The

most desirable aspects for carrying out spatial ecology

studies are to optimize sampling size and data accuracy

while maximizing diversity and frequency. However, it

is also required to minimize impact, cost, logistic, and

data-processing effort. On these bases, we provide

below an analysis of the pros and cons of each

method.

Sampling size

Sampling size for biologging is limited by financial con-

strains and/or trapping success (Cooke et al. 2004; Rutz

and Hays 2009; Hebblewhite and Haydon 2010). This

may lead to incurring in data biases caused by the selec-

tion of animals to be fitted with tags, including that pro-

duced by the non-random selection in relation to age,

sex, and geographic location, which increases if the trap-

ping method is not selective. Deployed tags can fail

because they may stop sending data or becoming lost,

further reducing sample size, a fact that may lead to

biased inferences by focusing on the space use of a few

Figure 3. Map of Do~nana Biological Reserve

study area (MA3) with the transference at 1 ha

spatial resolution of the cattle predicted spatial

distribution values obtained by modeling

landscape variables with: (A) Unmanned

Aircraft System (UAS) dataset (predicted

abundance of animals); and (B) Biologging

(GPS-GSM collars) dataset (predicted

probability of presence).

Table 2. Comparison of actual cattle density (individuals/ha) in four

different management areas in Do~nana Nature Reserve with predicted

density calculated with Unmanned Aircraft Systems dataset. Variance

to mean ratio as an aggregation indicator.

Management

area

Actual

density

UAS predicted

density

Predicted to

actual density

ratio

Variance

to mean

ratio

1 0.031 0.035 � 0.030 1.13 1.77

2 0.040 0.118 � 0.124 2.95 19.82

3 0.026 0.033 � 0.084 1.27 2.79

4 0.057 0.139 � 0.196 2.44 15.84
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individuals while ignoring the position of nontagged ani-

mals (con- or heterospecifics).

Sampling size for UAS monitoring depends in the first

place on the area the system is able to cover during the

flights (which in turn depends on UAS range and auton-

omy) and secondly on UAS detection capacity. Both fac-

tors are related and UAS flight altitude must be a

compromise between obtaining adequate resolution to

distinguish the species under investigation and the size of

the area to cover.

Fleming and Tracey (2008) analyzed the efficacy of

manned aerial surveys, which is also applicable to UAS,

identifying the size, shape, color, shadow (which can be

related to time of the day), and contrast against back-

ground of the animals, as well as their response to the

aircraft, as relevant factors for detection. Our experiments

were conducted with cattle that present large size and

color patterns, offering high contrast with the surround-

ing vegetation, and performed in the late afternoon; thus,

those factors seemed irrelevant. We easily spotted cattle

adults and calves, along with other ungulates such as wild

boars, red and fallow deers, with the embarked 11 MP

commercial camera flying at 100 m altitude above ground

level. Smaller animal such as birds have also been

detected in daylight conditions from UAS (e.g., Sard�a-

Palomera et al. 2012) although flying at lower altitudes.

Species behavior and habitat characteristics also affect

detectability by means of UAS. Bayliss and Yeomans

(1989) noted that the main source of (manned) aerial

survey bias of feral livestock is obstructive vegetation

cover. We addressed this problem in our study using

detection coefficients adequate for the present land cov-

ers. This coefficient, estimated from random location of

points, assumes that animals are also randomly dis-

tributed with respect to tree cover, but if the animals

were actively seeking tree cover, then the densities

obtained by UAS could be underestimated, or just the

opposite if individuals selected otherwise. Besides, selec-

tion for cover may vary among species, individuals, sea-

son, and time of day (in our case, all the flights were

performed in the late afternoon and during summer).

Equipping UAS with thermal cameras allows distinguish-

ing animals in dense vegetation areas or at night. Never-

theless detectability and animal identification with

thermal cameras can be difficult for daylight conditions

and in dense vegetation habitats (Mulero-P�azm�any et al.

2014b).

It is important to consider that any of the above men-

tioned physical or behavioral characteristics that influence

UAS detectability may affect differentially a subgroup of

the target species (such as a sex or age classes), which

could potentially bias spatial ecology studies conducted

with UAS. Admittedly, physical characteristics, behavioral

responses, and habitat features are less critical when data

are obtained through biologging. On the other hand,

assuming a suitable detection rate for UAS, one of the

main advantages of this method versus biologging is that

it provides the researcher with an image of the animals

that are present in the area, permitting to include group

influence or interspecific aggregation as variables of the

ecological studies.

Data accuracy, diversity, and frequency

Spatial accuracy of the animal locations obtained by UAS

after processing is estimated between 1 and 3 m. This

constitutes a major advantage for UAS in spatial distribu-

tion studies against biologging that provides less accuracy

(e.g., 26 m for the GPS collars we used).

The use of specific sensors in biologging tags is devel-

oping fast, allowing to measure individual parameters

(e.g., physiological, behavioral, movement speed and

range), which is information that could not be obtained

with the UAS approach. On the other hand, UAS have

the capacity to provide real-time information on habitat

characteristics, which is especially interesting in highly

dynamic landscapes (Rodr�ıguez et al. 2012), where short-

term changes affecting animals’ movements (i.e., pro-

duced by fires, human interventions and flooding) may

not be reflected on satellite or GIS resources available

with proper spatial–temporal resolution. This temporal

accuracy is a major advantage, as obtaining animal infor-

mation and environmental variables at the same level of

detail and reliability would significantly improve ecology

studies (Gaillard et al. 2010; Hebblewhite and Haydon

2010).

While trapping animals may be complex, once the ani-

mals are biologged, they can produce enormous volumes

of data for a long period of time. In contrast, to obtain

long-term data with UAS would require numerous flight

field campaigns, and with this method, it is difficult to

identify specific individuals in the images and recognize

them on subsequent flights.

Impact

Biologging requires capture and handling of the animals

that besides involving bioethical approval might affect

their behavior and survival (Silvy et al. 2012), thus com-

plicating the use of this technique (Cooke et al. 2004). A

point in favor of the use of UAS is that due to the small

size and the reduced noise that these systems produce,

animal response is very low (at least not visually notice-

able in our case) so that the method does not significantly

disturb the study subjects. Electric UAS are also zero-

emission vehicles, and this is an aspect particularly
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important when surveying nature reserves. Additionally,

because UAS are classified as a noninvasive technique, no

approval by animal committees is deemed necessary, but

legal constraints may affect their use in countries with

strict aerial regulations that can prevent the use of this

approach.

Cost, logistics, and data-processing effort

We invested 33000 € in the 12 cattle collars used for this

work. In contrast, the complete UAS we used had a cost

of 5700 €. As a reference, using data from the same time

period in our study for both methods, we obtained single

locations of 358 cattle with UAS flights (2615 ungulates

located in total: horses, red and fallow deer, and wild

boar) versus the 1752 locations of 12 cattle individuals

that were marked with radiocollars. Data retrieval is sim-

ple for GPS-GSM biologging systems, as the researcher

receives animal locations at this office, but the UAS

method requires images postprocessing (georeferencing

and detecting the animals in the images) which in our

case took about 40 h of work.

In summary, our results demonstrate that UAS consti-

tute an effective tool for spatial ecology by providing the

data required to develop distribution models for at least

large animals, which may be comparable to those

obtained using other widely accepted techniques such as

biologging. Different methodologies have their own

strengths and weaknesses, so the decision on which one

to use would depend on the researcher objectives. We

foresee that a combination of both approaches may prove

an interesting synergy. UAS can be a complementary

method to broaden objectives in animal spatial studies or

to include more spatially and/or socially representative

samples. For instance, UAS could be used to obtain a first

general picture of a species spatial distribution and abun-

dance patterns that could later be used to select the areas

and/or individuals more adequate to capture for biolog-

ging. Additionally, information of intra- and interspecies

interactions for larger groups obtained by UAS could be

combined with fine detailed habitat selection data

obtained from fewer biotagged individuals (or obtained

by other methods).

Management implications

The cattle predictive models obtained in this study con-

tribute to a better understanding of the free-grazing her-

bivore distribution patterns within a protected area,

which is critical for ecosystem management (Bailey et al.

1996) because these species have spatially variable impacts

on resources (Gordon 1995). Individual or groups contact

patterns at intra- or interspecific levels, and the study of

interactions with habitat features (e.g. environmental

aggregation points such as water points) is also crucial

for evaluating the epidemiology of diseases in the wild,

for which UAS provided excellent information (Barasona

et al. 2014b). The methodology developed for this study

is not only useful for ecology, wildlife, and epidemiology

research, but also for rangeland managers who need live-

stock accurate information for designing effective strate-

gies to optimize their resources (Coulombe et al. 2006).
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