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Insect sounds dominate the acoustic environment in many natural habitats such as

rainforests or meadows on a warm summer day. Among acoustic insects, usually

males are the calling sex; they generate signals that transmit information about the

species-identity, sex, location, or even sender quality to conspecific receivers. Males

of some insect species generate signals at distinct time intervals, and other males

adjust their own rhythm relative to that of their conspecific neighbors, which leads

to fascinating acoustic group displays. Although signal timing in a chorus can have

important consequences for the calling energetics, reproductive success and predation

risk of individuals, still little is known about the selective forces that favor the evolution

of insect choruses. Here, we review recent advances in our understanding of the

neuronal network responsible for acoustic pattern generation of a signaler, and pattern

recognition in receivers. We also describe different proximate mechanisms that facilitate

the synchronous generation of signals in a chorus and provide examples of suggested

hypotheses to explain the evolution of chorus synchrony in insects. Some hypotheses

are related to sexual selection and inter-male cooperation or competition, whereas others

refer to the selection pressure exerted by natural predators. In this article, we summarize

the results of studies that address chorus synchrony in the tropical katydid Mecopoda

elongata, where some males persistently signal as followers although this reduces their

mating success.

Keywords: insect choruses, chorus synchrony, female choice, rhythm generation, pattern recognition,

cooperation

ACOUSTIC COMMUNICATION IN INSECTS

Grasshoppers, crickets, and katydids usually produce sound by stridulation, that is using a striated
file-like body structure and associated structures that vibrate when they are rubbed across a
sclerotized plectrum (peg). While crickets and katydids rub their forewings against each other,
grasshoppers move their hind legs across a peg located at the base of their wings. The sound signals
generated can be as short as 0.5ms (i.e., the female acoustic reply in Phaneropterine species) or can
last for many minutes or even longer (e.g., the calling songs of trilling katydids). Acoustic signals
can also be classified according to the responses they evoke from conspecific receivers: signals
that are generated in aggressive interactions with conspecific rivals are termed aggressive songs,
whereas calling songs are used to attract mates (Heller, 1988). When within close range to females,
males often generate courtship songs with reduced amplitudes, different temporal patterns, and
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carrier frequencies. In most species, only males generate acoustic
signals, and the mute females approach the singing males
(phonotaxis). In duetting species, females reply to signals
produced by distant males by emitting a short acoustic signal,
which then elicits male phonotaxis (Heller and von Helversen,
1986; Zimmermann et al., 1989). A general feature of acoustic
signals in insects is their high degree of stereotypy and
redundancy. Since acoustic signals serve as effective premating
isolation barriers, they are highly diverse among species. The
temporal signal pattern is particularly essential for species
recognition among grasshoppers (von Helversen and von
Helversen, 1975, 1998), katydids (e.g., Morris et al., 1975; Keuper
and Kühne, 1983), and crickets (e.g., Walker, 1957, 1969; Popov
and Shuvalov, 1977; Mhatre et al., 2011; Schmidt and Römer,
2011; Schmidt and Balakrishnan, 2015). The carrier frequencies
can range from 1 to 2 kHz far into the ultrasonics, and signals
can be broadband (as in many katydids) or fall within a narrow
frequency band (most crickets). The selective advantage of using
either broadband or narrow-band acoustic signals for sound
transmission and perception in a noisy environment has been
previously described (Rheinlaender and Römer, 1980; Schmidt
and Römer, 2011; Schmidt et al., 2011, 2013; Schmidt and
Balakrishnan, 2015).

After successfully detecting signals, receivers evaluate the
temporal signal pattern to obtain information about the species
identity of the signaler. When signal period is rather variable or
males advertise themselves by producing long-lasting trills, the
period of syllables (for definition, see Table 1) usually contains
information about the species identity (e.g., Walker, 1957; Popov
and Shuvalov, 1977; Doherty and Callos, 1991; Simmons, 1991;
Cade and Cade, 1992). However, when males generate a group of
syllables (termed chirps) at fixed time intervals, the signal period
could be a cue that indicates species identity (e.g., Walker, 1969).
With reference to the current topic of timing inmusic and speech,
the latter is particularly important. The intrinsic signal period of
males shows little variability in some acoustic insect species, and
males listen and respond to the signals of conspecific neighbors.
As a result, the signal timing of chorus members strongly deviates
from random, whereby synchrony and signal alternation are
extreme forms of temporal patterns that emerge from acoustic
interactions. Since signal timing in a group can have important
consequences for calling energetics, mate choice, and predation,
researchers have been asking questions about the evolution of
chorusing for decades. Before going into detail about the various
causes and consequences of synchronous insect choruses, we will
provide a brief review of recent advances in our understanding
of the neuronal basis of signal pattern generation and rhythm
perception in insects, both of which are basic requirements for
acoustic communication.

Rhythm-Generating Neural Circuits
The temporal patterns of acoustic signals are generated by
rhythm-generating networks of the central nervous system.
Acoustic insects are valuable model organisms for the study
of these networks because the rhythm of their songs is rather
simple and their nervous system is rather primitive as compared
to vertebrates or mammals. Another advantage is that neurons

TABLE 1 | Definition of bioacoustic terms.

Term Temporal pattern Duration

Syllable Unitary element of chirps 5–30ms

Chirp Consists of several syllables 50–800ms

Trill Consists of a train of syllables Minutes to hours

can be identified on the basis of their response properties
and unique anatomy. This allows comparisons of the function
of identified homologous neurons that are part of pattern-
generating networks across species to be made, which provides
important insights into the evolution of both temporal signal
patterns and song diversification.

In order to attract females from a distance, males of the
Mediterranean field cricket Gryllus bimaculatus emit calling
songs that are characterized by aperiodic chirps consisting of
about 4–5 syllables. Recently, the network involved in pattern
generation was identified in this species. Schöneich and Hedwig
(2011) located its position in the CNS by systematically dissecting
the connection between abdominal ganglia (for a similar method,
see Hennig and Otte, 1996). After transecting the connectives
between the third thoracic ganglion (metathoracic ganglion
complex) and the first abdominal ganglion, singing behavior was
immediately and permanently terminated. Later, four neurons
in these ganglia that showed rhythmic activity in phase with
the syllable pattern were identified (Schöneich and Hedwig,
2012). Interestingly, a similar, characteristic neuroanatomy of the
song pattern generator was found in the metathoracic-abdominal
ganglion complex in grasshoppers, where songs are produced
through rhythmic movements of hind legs (Gramoll and Elsner,
1987; Hedwig, 1992; Schütze and Elsner, 2001). Even more
surprising, the neuronal circuit for courtship song production
in drosophila (Clyne and Miesenböck, 2008; von Philipsborn
et al., 2011) and rhythmic sound production via tymbals in arctiid
moths (Dawson and Fullard, 1995) was also located in thoracic-
abdominal ganglia. This suggests a common evolutionary origin
for early thoracic-abdominal motor control networks, which
may have been linked to ventilation (cf. Robertson et al.,
1982; Dumont and Robertson, 1986). By gathering knowledge
about the location and function of interneurons that constitute
part of the central pattern generator, a framework for further
comparative studies can be constructed. In such an attempt
it would be worthwhile to investigate the neuronal basis that
is responsible for rhythm adjustment in chorusing insects (see
below).

Rhythm Perception and Associated
Neuronal Correlates
Mate choice experiments performed with various field cricket
and katydid species have revealed that the signal traits evaluated
by receivers for species recognition are as diverse as the signals
(e.g., Heller and vonHelversen, 1986; Shaw et al., 1990; Simmons,
1991; Hennig and Weber, 1997; Hennig, 2003, 2009; Poulet
and Hedwig, 2005; Greenfield and Schul, 2008; Hartbauer et al.,
2014; Hennig et al., 2014). It has been generally accepted that
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temporal pattern recognition is both hardwired and genetically-
determined as compared to olfaction and visual orientation,
where learning also plays an important role (Bazhenov et al.,
2005; Papaj and Lewis, 2012). To understand the principal
mechanisms of species recognition and mate choice in insects, it
is necessary to unravel the response properties both of auditory
neurons that convey information about acoustic signals to the
brain, and the filter network in the brain itself. The expectation
in this research was to find a neuronal network and describe
synaptic mechanisms that result in selective responses to the
conspecific temporal song pattern, which matches the selectivity
of these patterns in behavior. Two model organisms were used
for this approach: the grasshopperChorthippus biguttulus and the
field cricket G. bimaculatus.

Male Ch. biguttulus grasshoppers generate temporally-
structured signals via stridulation and females respond to the
temporal pattern of syllable-pause combinations of attractive
songs by emitting a short acoustic reply (von Helversen and
von Helversen, 1998; Meckenhäuser et al., 2013). Females in this
species prefer short pauses and a strong onset accentuation of
song elements (von Helversen, 1972; Balakrishnan et al., 2001).
Stumpner et al. (1991) studied the response of several neurons
to conspecific song models and showed that, of various local
neurons in the thorax, one neuron (BSN1) responded to varying
syllable-pause combinations in a way thatmatched behavior. Two
other thoracic neurons (SN6, AN4) responded to gaps in the
verse of conspecific song models in a highly reliable manner
(Stumpner and Ronacher, 1994). By selectively heating individual
body segments, the brain was identified as the location where
pattern recognition takes place, whereas the oscillator for song
production was localized in the thoracic ganglia (Bauer and
von Helversen, 1987; Gramoll and Elsner, 1987; Hedwig, 1992;
Schütze and Elsner, 2001; Schöneich and Hedwig, 2012). The
brain neurons involved in pattern recognition still need to be
characterized in this species.

As already mentioned above, male G. bimaculatus attract
distant females by producing calling songs that are made up of
aperiodic chirps, each consisting of about four syllables. As in
many other cricket species, the syllable period represents a crucial
parameter for species recognition. Behavioral experiments
revealed that song pattern recognition inG. bimaculatus relies on
two computations with respect to time (Grobe et al., 2012). Using
a modern modeling approach, Hennig et al. (2014) were able to
simulate the response of females that listened to various calling
song models with different temporal patterns by using a short
integration time window that operated as a filter for the pulse rate
and a longer integration time window that allowed the evaluation
of song energy over time.

Recently, the neuronal network that enables pulse rate
recognition in the brain of G. bimaculatus has been identified.
It turned out that this complex task depends on the detection
of the coincidence of successive pulses in a delay line network
(Schöneich et al., 2015). Subsequent sound pulses are encoded
in the bursting activity of a neuron that receives sensory input
at the thorax and ascends to the brain (AN1). In the brain,
the sensory information of this neuron is split into two parallel
pathways, one involving two other neurons (LN2 and LN5). The

FIGURE 1 | Pulse pattern recognition in G. bimaculatus. (A) Schematic

drawing of the feature detector involved in the recognition of pulse rates. Black

triangles represent the excitatory synapses and red triangles, the inhibitory

synapses. LN2 and LN5 caused a delay of the nervous response in LN3

relative to the excitation mediated via AN1. (B) The pulse period tuning of the

feature detector LN4 matched female preference. Modified from Schöneich

et al. (2015).

processing of sensory information in these neurons leads to a
moderate delay and, thus, to the coincidence of the bursting
response of AN1 and LN5 in the postsynaptic neuron LN3 when
pulses are separated by a syllable interval of more than 20ms (see
Figure 1A). While LN3 operates as coincidence detector, LN4
represents a feature detector that exhibits temporal band pass
characteristics that are highly similar to those of the pulse period
tuning of female phonotaxis (Figure 1B; Kostarakos andHedwig,
2012). This feature-detection mechanism enables recognition of
the species-specific temporal song pattern in this field cricket, and
is a principal mechanism that evaluates the pulse period of calling
songs.

INSECT CHORUSES

In some insect species, males congregate in groups where they
form acoustic leks (also referred to as “spree” in the temporal
domain; Walker, 1983; Kirkpatrick and Ryan, 1991; Höglund
and Alatalo, 1995). These male aggregations offer females the
opportunity to compare the calling songs of several males
simultaneously, which is principally different from sequentially
comparing potential mating partners (Kokko, 1997). An analysis
of signal timing in males within these aggregations revealed
various forms of collective broadcasting where signal timing was
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non-random. Greenfield (1994a) reviewed various mechanisms
for a joint display of signals in groups. These included: (1)
Changing light conditions trigger the simultaneous activity of
senders in dusk and dawn choruses. (2) Unison bout singing,
triggered by males who initiate calling and are then joined
by most other signalers. Participants in such choruses usually
maintain a high signal rate for several minutes, after which
the calling effort gradually decreases to zero. Then, the cycle is
repeated after variable intervals of silence. (3) Periodic signal
production can be controlled through a central pattern generator
that leads to high precision of signal timing, if individuals in a
group slowly adapt their signal period to the rhythm of others
who exhibit similar, intrinsic, “free-running” signal periods (as
in some synchronizing firefly species). (4) In some chorusing
species, males are able to maintain a constant phase relationship
between their signals and those of othermales by responding with
a phase shift to the signal produced by a neighbor. Depending
on certain properties of signal oscillators and the number of
participants, signals are either broadcast in collective synchrony
or in a kind of alternation.

When singing within the hearing range of one other, males of
the same species often time their signals strictly and temporally.
Depending on chorus size and inter-male distance, males either
alternate (e.g., Jones, 1963; Latimer, 1981; Meixner and Shaw,
1986; Tauber et al., 2001) or synchronize their periodic signals
(Walker, 1969; Shaw et al., 1990; Sismondo, 1990; Greenfield and
Roizen, 1993; Nityananda and Balakrishnan, 2007; Greenfield
and Schul, 2008; Schul et al., 2014). Synchrony is often found in
species that emit signals relatively rapidly (with a period of <1 s),
whereas alternation normally involves slower signal rhythms (a
period of >1 s) (Greenfield, 1994b). In principle, alternation
in periodic signals is restricted to only two signalers, whereas
the number of individuals engaged in synchronous signaling is
theoretically unlimited. Depending on the properties of song
oscillators, synchrony can either lead to a significant overlap
in signals or temporally-fixed delays of signals produced by
different males. At close range, synchrony can be rather precise,
so that even the syllables within the chirps are synchronized with
those of neighboring males: when singing in close proximity,
males of the chorusing species Amblycorypha parvipennis tend
to synchronize the syllable pattern of their signals (Shaw et al.,
1990). Synchronous signal displays are not restricted to the
acoustic world, but can also be found in other modalities.
Aggregating firefly species collectively broadcast visual displays
in almost perfect synchrony, which results in fascinating group
displays (Buck and Buck, 1968; Otte and Smiley, 1977; Buck et al.,
1981). Furthermore, the vibratory communication signals of wolf
spiders (Kotiaho et al., 2004) and the visual communication
system of fiddler crabs (Backwell et al., 1998) are characterized
by their high degree of synchrony.

Is there a common proximate mechanism that is responsible
for synchronous signaling in these different systems? The
oscillator properties that lead to synchronous signal displays were
first described for fireflies, where a “phase delay model” was
suggested to explain flash synchrony in these organisms (Hanson,
1978; Buck et al., 1981). Greenfield (1994b; see also Greenfield
et al., 1997) modified this model, hypothesizing the existence of

an inhibitory resetting mechanism of signal oscillators to explain
the diversity of alternating and synchronous choruses observed
among members of the different species. In this model, in the
absence of a stimulus, the oscillator level constantly rises to a
point where the production of a signal is triggered with a minor
delay (effector delay). One important characteristic of this model
is that the oscillator level is reset for the duration of the stimulus,
which leads to a phase delay. However, the neuronal basis of this
model has not yet been described.

While inhibitory resetting can lead to the rapid
synchronization of signals in a chorus (e.g., Mecopoda elongata:
Sismondo, 1990; Hartbauer et al., 2005), the degree of synchrony
is much higher when the signalers mutually adjust their intrinsic
signal rates. Mutual rhythm adjustment has been observed to
lead to the attainment of almost perfect flash synchrony in firefly
individuals (Ermentrout, 1991). Furthermore, a combination
of inhibitory resetting and period adjustment is responsible for
the high degree of signal overlap among chorusing katydids
(Walker, 1969; Nityananda and Balakrishnan, 2007; Murphy
et al., 2016). In the same way, perfect synchrony of humans
has been attributed to both “phase correction” and “period
adjustment” mechanisms (e.g., Semjen et al., 1998; Repp, 2001,
2005; see also Merker et al., 2009).

Evolution of Chorus Synchrony
How synchrony among different individuals could evolve in the
absence of a central controlling instance within the group (i.e., an
individual that would play a role similar to that of a conductor
in an orchestra) is puzzling. Mechanisms that would ultimately
favor the evolution of chorus synchrony are thought to be diverse
and may have evolved in response to selective forces either
driven by other chorus members, through female choice (see
Section Female Choice and the Evolution of Chorus Synchrony)
or natural predators (see Section Cooperation, Competition,
and a Trade-Off between Natural and Sexual Selection). Males
that advertise themselves in a chorus may gain one or more
of the following mutual (group) benefits by timing signals
(reviewed in Greenfield, 1994b): (1) Synchrony preserves a
species-specific rhythm or a distinct call envelope that is offset
by silent gaps (Walker, 1969; Greenfield and Schul, 2008).
(2) In contrast, alternation ensures that females can detect,
and discriminate critical signal features during mate choice.
(3) Synchrony maximizes the peak signal amplitude of group
displays, which is an emergent property also known as the
“beacon effect” in the firefly literature (Buck and Buck, 1966,
1978). This property increases the conspicuousness of signals
in a group of males as compared to that of a lone singer if
females evaluate the peak signal amplitude rather than average
signals over a longer period of time. This hypothesis states that
males in a group can attract females from a greater distance by
timing their signals to achieve nearly perfect synchrony. As a
consequence, individuals in a chorus potentially increase their
fitness as compared to isolated singing individuals. However,
empirical evidence for the existence of a “beacon effect” in
acoustic insects is rare and has been restricted to evidence from
computer-model simulations of chorus synchrony evolution in
an Indian Mecopoda species (Nityananda and Balakrishnan,
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2009). A strong increase in the amplitude of synchronous
acoustic signals was described in M. elongata (Hartbauer et al.,
2014). For a description of other suspected “beacon effects” in
bullfrog choruses see Bates et al. (2010) and in the vibratory
communication of a treehopper, see Cocroft (1999). Whereas
the hypotheses described above are based on sexual selection,
the timing of communal displays may also be shaped by
natural selection. For example, predators eavesdropping on
the calling songs of signalers may have difficulty localizing
an isolated signaler in a group of synchronously-signaling
individuals due to their cognitive limitations (Otte, 1977; Tuttle
and Ryan, 1982). In this way, males may benefit from a
reduced per-capita rate of predation by signaling in groups
(Lack, 1968; Wiley, 1991; Alem et al., 2011; Brunel-Pons et al.,
2011).

The “rhythm conservation” hypothesis and the “beacon
effect” hypothesis are not mutually exclusive in that they both
explain the evolution of chorus synchrony in male assemblages
as a result of inter-male cooperation. The first hypothesis
assumes a low amount of variability in the signal period on a
species level and suggests that this signal parameter includes
important information about species identity, whereas the
temporal pattern of syllables that make up chirps is considered
to be less relevant. This assumption was recently tested using
the katydid species M. elongata from Malaysia, males of which
synchronize their periodic signals with a period of about 2 s
in small choruses (Sismondo, 1990). Calling songs in this
species consist of regular chirps that are made up of about
10 syllables increasing in amplitude. When individual males
were allowed to synchronize with periodic white noise signals
that lacked any fine-temporal pattern, about 80% of males
succeeded as long as the signal period was limited to about 2 s
(Hartbauer et al., 2012a). Similarly, males synchronized with
a periodic stimulus that consisted of only three syllables. In
another experiment, individual males were allowed to either
signal in synchrony with a conspecific signal or an artificial,
unstructured white noise signal, both of which were presented
at 2 s intervals and of equal intensity. Interestingly, 65% of
the males generated chirps in synchrony with the conspecific
signal, whereas only 35% synchronized with the unstructured
signal (see example in Figure 2). However, after introducing a
phase transition by delaying the stimulus for 1 s, only 56% of
chirps were produced in synchrony with the conspecific stimulus.
These results demonstrate that males of this species responded
primarily to the signal period and more or less ignored the fine
temporal signal patterns. This may be adaptive when considering
the potential masking of the fine syllable pattern during
transmission.

Evidence for rhythm as an important signal parameter
for species recognition was provided in the same species in
female choice experiments. When given a choice between
conspecific signals broadcast at different periods, females showed
a preference for a fixed signal period of 2 s (Hartbauer et al.,
2014). However, in choice tests with song models of periods
<1.5 s, females rarely approached any speaker. This is remarkable
because the solo signal rate positively correlates with the energetic
costs associated with song production (Hartbauer et al., 2012a).

FIGURE 2 | Representative example of a M. elongata male being

offered the choice to produce chirps either in synchrony with periodic

conspecific chirps (higher peak amplitude in the upper trace) or white

noise pulses (lower peak amplitude), presented in alternation. Note that

both signals exhibited the same acoustic energy. Middle panel: song initiation.

Lower panel: stable entrainment. Note the phase-locking to the chirp that was

observed at the onset of the song (indicated by red-dotted lines), but was

thereafter observed in synchrony with the artificial pulse (indicated by

blue-dotted lines). Modified from Hartbauer et al. (2012b).

That is, if females selected males with higher signal rates they
would thereby select males that invest more energy in mating
displays. Their low rate of positive phonotaxis toward speakers
with higher signal rates suggests stabilizing selection for the
conspecific signal period.

FEMALE CHOICE AND THE EVOLUTION
OF CHORUS SYNCHRONY

As noted above, chorus synchrony can be a by-product of species
recognition if signalers in a group preserve a species-specific
temporal pattern (Greenfield, 1994a). The “rhythm conservation
hypothesis” is exemplified by Neoconocephalus nebrascensis,
where the male song requires strong amplitude modulations
in order to elicit a phonotactic response in females (Deily and
Schul, 2009). Thus, males are forced to synchronize the amplitude
modulations of their signals when in male assemblages. A similar
argument for the cooperative, synchronous display of mating
signals has been put forward for the synchronously-flashing
firefly Photinus carolinus. In this case, synchrony presumably
reduces the visual “clutter” caused by randomly-timed, flashing
signals (Copeland and Moiseff, 2010).

Darwin (1871) noted that female preference may promote
the evolution of exaggerated mating displays. The evolution
of such traits could be the result of a Fisherian process in
which stronger preferences and more exaggerated traits coevolve
(Fisher, 1915, 1930). In most communication systems, females
prefer males that advertise themselves by producing conspicuous
signals that are energetically expensive to produce. This is called
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“Zahavi’s handicap principle” after Zahavi (1975), who explained
the existence of such a preference by claiming that signals are
reliable indicators of male quality when their production is
expensive for the signaler, and that prolonged signaling lowers
the fitness of the sender (reviewed in Johnstone, 1995). The
energetic costs associated with the production of acoustic signals
are usually determined by at least three signal parameters:
duration, amplitude, and signal rate (Prestwich, 1994; Reinhold
et al., 1998; McLister, 2001; Robinson and Hall, 2002). In the
context of mate choice, these signal parameters are regarded as
“condition-dependent handicaps,” which indicate the quality of
a sender (West-Eberhard, 1979; Andersson, 1994). Furthermore,
signal traits that provide true information about the phenotypic
and genetic qualities of the senders and exclude the possibility
of cheating are known as “revealing handicaps” (Maynard Smith,
1985, 1991).

On the other hand, preferences for certain signal traits may be
the outcome of a sensory bias in receivers that already existed
before signalers evolved the traits to exploit it. In a mating
context, this hypothesis suggests that, when confronted with a
choice situation, females do not necessarily select males on the
basis of their acoustic signal traits (indicative of male quality).
Instead, certain signals can more strongly stimulate the sensory
system in receivers, increasing the likelihood of mating (Ryan,
1990; Ryan et al., 1990; Kirkpatrick and Ryan, 1991; Ryan and
Keddy-Hector, 1992; Arak and Enquist, 1993). For example,
males of lebinthine crickets generate unusually high-frequency
calls that elicit a startle response in females. In response to
these calls, females generate vibratory signals that allow males to
locate them (ter Hofstede et al., 2015). Arak and Enquist (1995)
provided some examples in which the sensory bias in receivers
creates competition between senders, with the result of more
conspicuous and costly signals.

In male aggregations of anurans and katydids, females often
select males on the basis of relative signal timing rather than other
signal features (Greenfield, 1994b; Gerhardt and Huber, 2002).
Such mating systems are especially interesting for evolutionary
biologists since, by choosing males on this basis, there are no
obvious direct or indirect fitness benefits for females (Alexander,
1975; Greenfield, 1994b). Any preference for a certain temporal
relationship between competing signals drives the evolution of
mechanisms that enable the exact timing of signals generated in
a group. This “receiver bias” hypothesis suggests that synchrony
or alternation has emerged as a consequence of inter-male
rivalry due to inter-sexual selection (e.g., Alexander, 1975; Arak
and Enquist, 1993; Greenfield, 1994a,b, 1997; Greenfield et al.,
1997; Snedden and Greenfield, 1998; Gerhardt and Huber, 2002;
Copeland and Moiseff, 2010). Therefore, by studying signal
interactions among males in a chorus and their evaluation by
receivers, one can study traits and selection at different levels.
In feedback loops, traits emerge at the group level and influence
the evolution of signal timing mechanisms at the individual level
(Greenfield, 2015; Party et al., 2015).

Leader Preference
In male assemblages, the synchronicity of calls is usually limited
in precision, with some signals leading others. Relative signal

timing can enhance or reduce male attractiveness if the females
exhibit a preference for a certain temporal relationship between
signals displayed in imperfect synchrony. Indeed, some anurans
prefer signals that are timed in advance to others (leader
signals) (reviewed in Klump and Gerhardt, 1992) which was also
observed in many Orthopteran species (Shelly and Greenfield,
1991; Greenfield and Roizen, 1993; Minckley and Greenfield,
1995; Galliart and Shaw, 1996; Greenfield et al., 1997; Snedden
and Greenfield, 1998). Such a preference constitutes a precedence
effect, which is defined as the preference for the leading signal
when two closely-timed, identical signals are presented from
different directions [humans (Zurek, 1987; Litovsky et al., 1999),
Mammals, birds, frogs, and insects (Cranford, 1982; Wyttenbach
and Hoy, 1993; Greenfield et al., 1997; Dent and Dooling, 2004;
Lee et al., 2009; Marshall and Gerhardt, 2010)]. This preference
may be due to the fact that the leading signal suppresses the
echo (reverberation) of subsequent signals that reach the receiver
in a complex acoustic environment and, thus, improves sound
localization.

Neoconocephalus spiza is a well-studied example of a
synchronizing katydid species in which females display a strong
leader preference. As a consequence, individual males compete in
an attempt to jam one other’s signals, with synchrony emerging as
an epiphenomenon (Greenfield and Roizen, 1993; Snedden and
Greenfield, 1998). The observation that males regularly switch
between leader and follower roles in duets, exhibiting similar
“free-running” chirp periods, provides support for the hypothesis
that an ongoing competition for leadership exists (Greenfield and
Roizen, 1993). In this species, males stop producing unattractive
follower signals within a certain critical period of time after
perceiving the signals from competitors (the so-called “forbidden
interval”). Unlike N. spiza males, males of M. elongata establish
mostly fixed temporal relationships for their signals over long
periods of time, so that individual males assume either leader
or follower roles during the duet (Hartbauer et al., 2005). Even
in small four-male choruses, individuals often maintain either
the leader or follower role over long periods of time (Hartbauer
et al., 2014). The relative timing of synchronized chirps of
different males strongly influences female choice. In two-choice
experiments,M. elongata females showed a strong preference for
those chirps leading by only 70–140ms (Fertschai et al., 2007;
Hartbauer et al., 2014). There is also a trade-off between time
and intensity: the advantage of a signal leading by 140ms can
be compensated by an increase in loudness of follower signals
by 8 dB (for similar trade-offs in other synchronizing insects and
some anuran species, see Klump and Gerhardt, 1992; Greenfield,
1994b; Howard and Palmer, 1995; Grafe, 1996; Greenfield et al.,
1997; Snedden and Greenfield, 1998; Höbel, 2010). The relatively
high intensity value that is necessary for leader compensation
implies that females must be in close proximity to the follower
to prefer this male from a chorus. As a consequence, males who
persistently signal as followers in a chorus should have a reduced
fitness, posing an intriguing question about the evolutionary
stability of follower roles. Before discussing hypotheses that may
provide an answer to this question (see Section Cooperation,
Competition, and a Trade-Off between Natural and Sexual
Selection), we describe an oscillator property that favors the
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ability of males to attain call leadership in a chorus, and results
obtained from a realistic computer model of a M. elongata
chorus.

An Oscillator Property Responsible for
Attaining Leadership
Sismondo (1990) demonstrated that synchrony and alternation
in M. elongata are consequences of song oscillator properties,
which can be illustrated in the form of phase response curves. In
entrainment experiments and using realistic computer models,
we demonstrated that males could establish stable synchrony and
bi-stable alternation of signals over a broad range of stimulus
periods, covering the whole spectrum of solo chirp periods found
in a male population (1.7–2.4 s; Hartbauer et al., 2005). However,
the synchrony observed was not perfect, and males tended to
produce their chirps as a leader only if interacting with a male
that exhibited a slower intrinsic signal rate. The member of the
duet with the shorter chirp period (i.e., a difference of more
than 150 ms in the intrinsic signal period duration) had an
increased probability of attaining leadership (Hartbauer et al.,
2005). This correlation between the intrinsic signal period and
lead probability has also been described in the firefly P. cribellata
(e.g., Buck et al., 1981) and two other katydid species (Meixner
and Shaw, 1986; Greenfield and Roizen, 1993).

A REALISTIC MODEL OF A M. ELONGATA

CHORUS

Once a realistic model of male duets had been established
(Hartbauer et al., 2005), the model was extended to simulate a
chorus that consisted of 15 artificial males (Hartbauer, 2008).
A major advantage of this approach is that manipulations of
receiver properties and chorus composition could be performed
that greatly exceeded those possible in behavioral experiments. In
particular, parameters such as chorus density, selective attention
paid to a neighbor subset, and temporal variability of synchrony
due to males joining or leaving a chorus could be modified.

The results of chorus simulations revealed that synchrony
in M. elongata is the outcome of an ongoing phase resetting
process that propels song oscillators forward and backward
during every cycle. Therefore, synchrony in M. elongata seems
to be maintained on a chirp-to-chirp basis and does not depend
on the mutual adjustment of intrinsic signal periods, as in
a firefly (Ermentrout, 1991) or a katydid species (Murphy
et al., 2016). Even in rather complex chorus situations, in
which the signal oscillators and inter-male distances between
nearest neighbors varied, agents that signaled at faster intrinsic
rates established the leadership position more often than other
chorus members. These simulation results were confirmed in
real M. elongata choruses that consisted of 3–4 equally spaced
males. In this situation, a single male led more than 50% of
all signal interactions in 68% of choruses (Hartbauer et al.,
2014). A correlation could also be drawn between the intrinsic
signal period and the likelihood of producing leader signals
in an Indian Mecopoda species (Nityananda and Balakrishnan,
2007). Unlike the Malaysian M. elongata species, males of the

Indian species also altered their intrinsic signal period to match
that of their competitors, a behavior that did not allow for the
establishment of consistent leader and follower roles (Nityananda
and Balakrishnan, 2008).

Manipulation of Chorus Density
An analysis of data from computer simulations also revealed
that removing two or three agents from a synchronous chorus
had only a minor effect on chorus synchrony, whereas adding
agents who initially signaled at random phases greatly disturbed
synchrony (Hartbauer, 2008). Therefore, in order to avoid a
temporal loss of synchrony, males joining a synchronous chorus
should already be phase-locked with other chorus members.
Empirical evidence for such synchronous initiation of songs has
recently been provided for Neoconocephalus ensiger (Murphy
et al., 2016). Males of this katydid species seem to adjust the
intrinsic signal period of their song oscillators prior to initiating
the song in order to match the rate of periodic signals. Phase-
locked song initiation behavior was also observed in males that
were stimulated with a periodic pacer (Hartbauer, 2008). This
behavior may be regarded as an adaptation to counteract the
vulnerability of a synchronous chorus.

Selective Attention
Based on the results of computer simulations, Greenfield et al.
(1997) argued that selective attention must be paid to a subset of
males before synchrony and, especially, alternation can become
a evolutionarily-stable signaling strategy. Selective attention can
be gained at the neuronal, behavioral and ecological level
and restricts the receivers’ attention to signals broadcast by
neighbors. Evidence for selective attention at the behavioral
level has been provided from playback experiments conducted
with alternating grasshopper and katydid species (Greenfield
and Snedden, 2003). Individuals of these species need to pay
selective attention to close neighbors when alternating in a
chorus because, in principle, strict signal alternation is limited
to only two acoustically interacting males. Evidence for selective
attention at the neuronal level has been found by studying the
membrane properties of individual interneurons; when signals
that differ in loudness compete, the representation of the softer
signal is suppressed (Pollack, 1988; Römer and Krusch, 2000).
This enables receivers in a chorus to pay selective attention
to the loudest signaler. Similarly, inhibitory mechanisms may
result in a stronger representation of leader signals in imperfect
synchrony (Nityananda et al., 2007). Despite the neuronal
evidence for selective attention to leading signals, field studies
indicate that the spacing of males appears to play a more
important role in restricting the attention of a receiver to close
neighbors (Nityananda and Balakrishnan, 2008). Simulating
selective attention to only three nearest neighbors in a chorus
model did not alter the likelihood of males with higher intrinsic
signal rates to attain call leadership, but waves of synchronized
signaling spread out among the agents (Hartbauer, 2008). This
phenomenon, which is known as “wave-synchrony,” has also
been observed in fireflies that flash in synchrony. It has inspired
the development of aMecopoda-based controller that enables the
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navigation of a swarm of autonomous micro-robots (Hartbauer
and Römer, 2007).

IS CHORUS SYNCHRONY IN
M. ELONGATA THE OUTCOME OF A
SENSORY BIAS?

One proximate explanation for the preference of females for
leading signals in behavior is based on a sensory bias in receivers.
In the auditory system of insects, like in other vertebrates and
mammals, direction-sensitive interneurons receive excitatory
and inhibitory input from opposite auditory sides (review
in Hedwig and Pollack, 2008). Thus, for a female receiver
located between two acoustically interacting males, the signals
of leader and follower males are asymmetrically represented
in the auditory pathway, depending on the timed interaction
of excitation and inhibition (Römer et al., 2002). Given that
the leader signal has a temporal advantage, it may effectively
suppress the representation of the follower signal, and the
different representation of otherwise identical signals may bias
the orientation of the female to the leader. The interaction of
excitatory and inhibitory input may also explain quantitative
values in time-intensity trading (Römer et al., 2002; Fertschai
et al., 2007). In the auditory system of katydids, two interneurons
that have properties favoring leading signals in a choice situation
have been examined and may convey leader-biased bilateral
information (Römer et al., 2002; Siegert et al., 2011). Depending
on the strength of inhibition, the response to lagging signals
was almost completely suppressed during the presentation of
leading signals. Time-intensity-trading experiments revealed that
follower signals needed a 15–20 dB advantage to compensate
for the follower role, depending on the magnitude of the time
difference.

However, the crucial question in the context of a possible
sensory bias is whether the leader-biased response of auditory
neurons evolved before or after male synchrony. It has been
commonly accepted that a sensory bias can be the by-product
of a sensory mechanism that evolved in a non-sexual context
(Endler and McLellan, 1988; Ryan, 1990; Ryan et al., 1990;
Kirkpatrick and Ryan, 1991; Ryan and Keddy-Hector, 1992;
Arak and Enquist, 1993; Boughman, 2002; Arnqvist, 2006) and,
therefore, that it already existed before signalers evolved traits to
exploit it (“sensory exploitation” hypothesis) (Ryan and Rand,
1990, 1993; Ryan et al., 1990; Ryan, 1999). Ultimately, any bias
in sensory processing with respect to closely timed signals has
the potential to drive the evolution of communal signal displays
toward synchrony or alternation (Greenfield, 1994a).

Strong support for the “sensory bias” hypothesis inMecopoda
would be the demonstration that in distantly-related orthopteran
species, where synchrony does not occur, the responses
to lagging signals in directionally-sensitive interneurons are
also suppressed. The results of experiments conducted with
locusts and field crickets have, thus far, been ambiguous
(Figure 3). A recent phylogenetic study conducted in the
genus Neconocephalus, in which—with the exception of one
species—discontinuously-calling species synchronize their calls

FIGURE 3 | Summary of the bilateral AN1 responses to a Mecopoda

chirp in Schistocerca gregaria and G. bimaculatus. The chirp of a

solo-singing Mecopoda was presented individually from both sides (left and

right) or as a leader–follower presentation with a time lag of 70ms. (A) The

mean bilateral AN1 response of five S. gregaria individuals indicated a

significantly stronger excitation on the leader side (p < 0.01; Mann–Whitney

Rank Sum Test, Bonferroni corrected). (B) No significant differences at three

different time delays were observed in G. bimaculatus (average responses

obtained from 5 individuals).

(Greenfield, 1990; Greenfield and Schul, 2008; Deily and Schul,
2009) revealed that females do not always show a strong
leader preference, which does not support the “sensory bias”
hypothesis (Greenfield and Schul, 2008). The most parsimonious
explanation for imperfect synchronous chorusing inM. elongata
is that the phase change mechanism in males enables them to
synchronize their chirps, and females choose leading males as
a passive consequence of the precedence effect in the auditory
system (see also Party et al., 2014). However, it is also possible
that a feedback loop, which originated from a sensory bias, exists
that gradually strengthened the leader preference once imperfect
chorus synchrony had been established.

The Adaptive Nature of a Sensory Bias
Whether a sensory bias can be adaptive or not is still a matter
of debate. Female choice based on a sensory bias may provide
the females with fitness benefits due to lower search costs,
even if the choice does not result in offspring with superior
genes that are associated with positive fitness consequences
(Kirkpatrick, 1987; Guilford and Dawkins, 1991; Hill, 1994;
Dawkins and Guilford, 1996). This seems to hold true for
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M. elongata females, since positive phonotaxis lasted three times
longer when identical chirps were presented in strict alternation,
as compared to a leader-follower situation (Fertschai et al., 2007).
Such delayed responses to alternating chirps can be explained at
the neuronal level, since alternating chirps elicit identical—and,
thus, ambiguous—neuronal excitation on both sides, whereas
leading signals cause asymmetrical responses in favor of the
leader, which would allow females to reliably choose between two
similar, alternative signals. Therefore, females that quickly choose
from amongmales may enjoy fitness benefits by reducing the risk
of predation that is associated with a prolonged search for mates
(e.g., Belwood and Morris, 1987; Siemers and Güttinger, 2006).

The solo chirp rate of M. elongata is an important predictor
for leadership in acoustic interactions between males. If this
parameter were correlated with traits that indicated male quality
such as body size or fertility, females would gain fitness benefits
by choosing the leader from among a group of males. However,
neither male age, body size, spermatophore volume, or the
number of living offspring correlated with the solo chirp period
of individual males (Hartbauer et al., 2015), corroborating the
results of a nutritional study in which the solo chirp rate was
shown to be a poor predictor of nutritional status (Hartbauer
et al., 2006). Similarly, in the European tree frog Hyla arborea,
the quality of males did not correlate with signal timing, although
females preferentially oriented toward the first of two identical
calls that overlapped in time (Richardson et al., 2008). In
this frog species and in the katydid Ephippiger ephippiger, call
leadership and overall energetic investment in acoustic signals
correlated positively (Berg and Greenfield, 2005). In this respect,
the systems in H. arborea and E. ephippiger are analogous
to that of M. elongata where the probability of producing
leader signals depends on a trait (intrinsic signal period) that
is associated with calling energetics (Hartbauer et al., 2006),
but does not correlate with indicators of male fitness. In the
same way, female E. diurnus do not gain any obvious benefits
by preferring leading calls although males are able to adjust
the song oscillator phase to establish leadership (Party et al.,
2014).

COOPERATION, COMPETITION, AND A
TRADE-OFF BETWEEN NATURAL AND
SEXUAL SELECTION

Why do someM. elongatamales participate in a chorus although
they are less attractive for females as followers and probably
would be more successful singing in isolation? One possible
explanation may be that, in some species, females prefer signals
that emerge from group displays over signals produced by lone
singing males, which forces males to congregate [insects (Morris
et al., 1978; Cade, 1981; Doolan and Mac Nally, 1981; Shelly
and Greenfield, 1991), Hyla microcephala (Schwartz, 1994);
but see Party et al., 2015]. Choice tests performed with M.
elongata females confirmed their preference for conspicuous
group displays (Hartbauer et al., 2014). However, this result does
not explain why leader and follower roles were maintained by
individuals in M. elongata choruses, where followers were at

a disadvantage due to the strong female preference for signals
from leaders (Fertschai et al., 2007). Below, several alternative,
although not mutually exclusive, hypotheses are presented to
explain why persistent followers still exist inM. elongata:

(1) Signaling as a follower may be beneficial when resulting
from inter-male cooperation because overlapping chirps in
a chorus may amplify the peak amplitude of the signals
that are displayed synchronously (Figure 4A), and the
resulting “beacon effect” may help distant receivers detect
communal displays (see Figure 4B). In this case, females
seem to evaluate the peak signal amplitude of communal
displays, rather than average acoustic power. Interestingly,
sound recordings revealed an elevated sound pressure
level in the order of 6 dB in a chorus consisting of 3–
4 acoustically-interacting M. elongata males (2m nearest-
neighbor distance; Hartbauer et al., 2014). Despite imperfect
synchrony, the high degree of signal overlap found in
this chorus situation resulted in an average increase of
the root-mean-square amplitude that is almost identical
to that found during the simultaneous playback of four
identical, conspecific signals that perfectly overlapped in
time. Given the fact that syllables comprising male chirps

FIGURE 4 | Signal overlap in M. elongata and model of the extension of

acoustic space as the result of chorus synchrony. Four males singing in

synchrony overlapped their periodic signals to a high degree. This led to a

strong increase in signal amplitude (A) and to the enlargement of acoustic

space (B). In this way, a group of synchronized males can attract females from

a greater distance as compared to lone singing males. In the case of signal

alternation, the area in which a single male signals at higher amplitude as

compared to its competitors is strongly reduced (shown as areas with different

colors).
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are interrupted by brief pauses, this result is surprising and
may be attributed to signal plasticity, which is known to
increase the probability of temporal overlap among the loud
syllables of leader and follower signals (Hartbauer et al.,
2012a). As a result, signal overlap in “four male choruses”
is so high that the average duration of jointly produced
signals is only 1.4 times longer (343ms) as compared to the
average signal duration of solo singing males (250ms). It is
also interesting to note that the increased signal amplitude
of communal signal displays was a prerequisite for the
successful simulation of the evolution of chorus synchrony
in an IndianMecopoda chirper, where females also preferred
“leader males” (Nityananda and Balakrishnan, 2009). This
observation is in contrast to results gathered for Achroia
grisella (wax moth) leks, for which such a prerequisite does
not exist (Alem et al., 2011).
An inherent problem encountered when interpreting many
group effects is the dilution of per capita mating success
as compared to that of lone singing males. However, the
increased amplitudes of group displays may enhance the
mating probabilities of individual males if one considers the
noisy background against which acoustic communication
often takes place. Given these complex acoustic conditions,
overlapping signals may allow individuals to increase the
conspicuousness of their rhythmic signals in a group.
Additionally, enhanced group signals were more attractive
for females as compared to the solo song of a male
(Hartbauer et al., 2014). These data suggest that chorus
synchrony in M. elongata is the outcome of inter-male
cooperation, whereby even follower males may benefit
from higher mating opportunities (but see the next
argument).

(2) Inter-male competition for attractive leading signals may
explain the high degree of signal overlap in a Mecopoda
chorus. If chorus synchrony in M. elongata is the outcome
of such competition, males that intrinsically produce signals
more rapidly are expected to maintain similar or even
slightly higher signal rates in a chorus compared to solo
singing, although reduced signal rates in a chorus would
facilitate signal overlap with competitors. Results obtained in
small choruses consisting of 3–4 males seem to support this
“competitive hypothesis” because consistent leader males
increased their signal rate by 4% on average in choruses
as compared to when they sang in isolation (Hartbauer
et al., 2014). Therefore, the observed “beacon effect” is likely
the by-product of inter-male competition for the attractive
leader role rather than a cooperative effort to increase
the peak signal amplitude of rhythmic communal mating
displays.

(3) Although inter-male competition for attractive leader signals
may explain chorus synchrony, it fails to explain the
evolutionary stability of followers in a M. elongata chorus.
An alternative hypothesis suggests that sustained signaling
as a follower is an evolutionary stable signaling strategy if a
trade-off exists betweenmate attraction and conspicuousness
to predators/parasitoids. In field studies, we observed a
tachinid fly homing in on M. elongata males (Figure 5).

FIGURE 5 | Habitus (left) and hearing organ (right) of a female tachinid

fly of an unknown Tachinid species homing in on M. elongata males.

Arrow indicates the position of the fly’s ear. This fly belongs to the tribe Ormiini

of an unknown genus (potentially Therobia, Phasioormia, or Homotrixa).

This fly belongs to one of 13 different species of Ormiin
parasitoid flies that parasitize crickets and katydids in Asia
(Lehmann, 2003). Lee et al. (2009) showed that Ormia
ochracea (Diptera, Tachinidae), a tachinid fly that parasitizes
field crickets, selectively orients toward the leading of two—
otherwise identical—sound sources, while the lagging source
had a minimal influence on the orientation of the fly.
Therefore, the parasitoid fly homing in on M. elongata
males may exhibit a similar leader preference as Mecopoda
females, and these males would consequently suffer higher
costs when signaling as leaders (review in Zuk and Kolluru,
1998). Because parasitoids are detrimental to survival and
reproduction in crickets, katydids and cicada [Crickets
(Cade, 1975; Zuk et al., 1998), katydids (Lehmann and
Heller, 1998) and the cicada (Lakes-Harlan et al., 2000)],
this hypothesis requires further testing. Ultimately, the
existence of a leader preference in parasitoid flies suggests
that the maintenance of follower singing in M. elongata is
an evolutionary stable signaling strategy that trades lower
attractiveness against reduced parasitation risk. Apparently,
further studies are needed to quantify the selection
pressure of this parasitoid fly on the signaling system
ofM. elongata.

A summary of various selection pressures that favor chorus
synchrony in M. elongata is illustrated in Figure 6. Females
prefer males that signal at a conspecific period of about 2 s,
which forces males to synchronize their signals in a group in
order to maintain this species-specific rhythm. Since females
also prefer leading signals, males in a group compete for the
leader role, whereby chorus synchrony emerges as a by-product
(Hartbauer et al., 2014). However, chorus synchrony is imperfect
and leader and follower roles often remain stable for long
periods of time. The natural selection exerted by parasitoid
flies that infest singing leader males may stabilize persistent
follower roles. Signaling as a follower is disadvantageous in
terms of reproductive success, but results in a lower risk of
falling victim to a parasitoid fly (selfish strategy). Additionally,
followers that persistently signal can benefit from the “beacon
effect,” which extends the acoustic space in such a way as to allow
females to detect conspicuous group signals. Since females more
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FIGURE 6 | Selection pressures potentially involved in the evolution of chorus synchrony in M. elongata. For explanation, see text (Section Cooperation,

Competition, and a Trade-off between Natural and Sexual Selection). Parasitoid flies hatch from puparia (visible as the ball in the background).

frequently approached groups producing conspicuous group
signals in a choice situation as opposed to a lone singing male
producing a quieter song (Hartbauer et al., 2014), males that
join a synchronous chorus may increase both their mating
chances and the chances of all chorus members. Additionally,
computer simulations have been used to demonstrate an
increase in the per capita mating possibilities for chorus
members advertising themselves in a noisy acoustic environment
due to strongly-operating “beacon effects” (chorus size = 4
males, inter-male distance = 10m; Hartbauer et al., 2014).
Therefore, sexual selection favors synchronous group displays,
but follower roles are evolutionarily stabilized as a consequence
of emergent group properties (beacon effect) and natural
selection.
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