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Abstract

Subcellular localization of a protein is important to understand proteins’ functions and interactions. There are many
techniques based on computational methods to predict protein subcellular locations, but it has been shown that many
prediction tasks have a training data shortage problem. This paper introduces a new method to mine proteins with non-
experimental annotations, which are labeled by non-experimental evidences of protein databases to overcome the training
data shortage problem. A novel active sample selection strategy is designed, taking advantage of active learning
technology, to actively find useful samples from the entire data pool of candidate proteins with non-experimental
annotations. This approach can adequately estimate the ‘‘value’’ of each sample, automatically select the most valuable
samples and add them into the original training set, to help to retrain the classifiers. Numerical experiments with for four
popular multi-label classifiers on three benchmark datasets show that the proposed method can effectively select the
valuable samples to supplement the original training set and significantly improve the performances of predicting
classifiers.
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Introduction

A good understanding of protein subcellular location is a key for

deducing protein functions, revealing disease pathogenesis, and

identifying drag targets. In the last ten years, the rapid growth of

protein data has made it faster and more economical to predict

subcellular localization via computational methods. Since the first

protein location prediction system emerged [1], many prediction

approaches and predictors have been proposed. These methods

are mostly based on classification algorithms, e.g. k-nearest

neighbor (KNN) [2–5], support vector machine (SVM) [6–8],

Bayesian methods [9,10], and neural network [11,12], etc. A

comprehensive review [13] provides the process to establish a

robust predictor of protein subcellular localization, with following

aspects: (a) selecting or constructing an effective benchmark

dataset to train and test the predictor; (b) formulating the protein

samples with a valid mathematical expression; (c) proposing a

powerful algorithm (classifier) for prediction tasks; and (d)

performing proper tests to objectively evaluate the performance

of the predictor. Among these aspects, one key factor of building a

high-accuracy prediction method is to obtain a valid dataset with

sufficient useful information to train a powerful classifier.

Normally, the training data of a subcellular localization

predictor are acquired from the ‘‘proteins with experimental

annotations (referred as PEAs hereafter)’’ in protein databases,

which are labeled by sufficient experimental evidences. However,

as we know, experimental methods require a long time to obtain

conclusive evidence to assign an annotation. Therefore, these

experimental protein sequences are just a small part of the overall

sequences. According to the record (version 2012_05) of the

central protein databank UniProtKB/Swiss-Prot, the PEAs only

occupy 13.22% of the total reviewed protein contained therein. In

this study, we also counted the number of the protein sequences

over the past ten years in UniProtKB/Swiss-Prot and summarized

the statistics in Table 1. Over the last decade, there was a tenfold

increase in the amount of all protein sequences, but the growth of

the experimental sequences was less than doubled. While more

PEAs of all types are needed to provide useful information for

increasing undetermined proteins, the gap between the amount of

PEAs and the entire protein data are becoming larger and larger.

In addition, for computational prediction methods, excess of

homologous or similar protein data will cause the over-fitting

problem and these data are redundant for training, consequently,

most of these PEAs have to be abandoned in practice. Besides,

some special subcellular locations are correlated with very few

PEAs and it also restricts the number of data used for learning.

Therefore, there are often insufficient PEAs when constructing a

proper dataset for a prediction task. For instance, the virus

benchmark dataset in paper [14] merely consists of 207 proteins,

and there are only eight proteins located in ‘‘viral capsid’’. The
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problem of lacking high-quality training data nearly occurs within

each species and it has been a major problem in many

bioinformatics researches because the prediction with sparse data

would mostly obtain disappointing results [15].

To overcome this shortage of training data, seeking extra

protein training data becomes a very natural idea. Besides the

PEAs, we recently find that we can take advantage of the huge

number of ‘‘proteins with non-experimental annotations (referred

as PNEAs hereafter)’’ in the central protein database UniProtKB/

Swiss-Prot. Since the observations are not marked from direct

experiments, non-experimental annotations are labeled based on

non-experimentally proven findings such as logical or conclusive

evidences, sequence analysis results, biological events and charac-

teristics [16]. A PNEA has at least one non-experimental label in

its ‘‘Subcellular location’’ item, and a non-experimental label

corresponds to one of the following three types [17]: ‘‘Probable’’ -

from non-direct experimental evidences; ‘‘Potential’’ - from

computer prediction, logical or conclusive evidences; ‘‘By similar-

ity’’ - from experimental evidences in a close member of the

family. The details of the three non-experimental labels can be

found in the UniProtKB/Swiss-Prot manual at http://www.

uniprot.org/manual. For protein subcellular location prediction

based on computational methods, the PNEAs who are being

ignored are important and valuable. Unlike unknown protein

data, the PNEAs provide a lot of high reliable reference location

information. Additionally, as shown in Table 1, PNEAs have a

much larger number and grow much faster than PEAs. If such

abundant PNEAs can be effectively exploited, they would provide

a huge supplement to PEAs for training more powerful predictors.

Despite the big advantage of PNEAs, not all of them can be

indiscriminately used as supplementary training data. The reason

is that the non-experimental evidence is still weaker than the

experimental proof, so some portion of PNEAs may have

inaccurate non-experimental labels. Therefore, a feasible rule is

needed to select the useful members of the PNEAs with a low risk

and high quality for training a classifier.

In order to develop a proper rule for the active selection process,

a machine learning technique named ‘‘active learning’’ is adopted

in our study. This active learning method is a paradigm for using

unlabeled data to complement labeled data, as it can actively select

and learn from the most informative unlabeled data. The idea of

actively selecting new samples is suitable for our work. However,

there are some issues with the active learning process that need to

be resolved before it can be properly used in this study. The active

learner always actively asks the user to label the unlabeled data so

that it can learn a good classifier with as few manual labeled

samples as possible [18]; while in our study, the candidate PNEA

samples are not unlabeled but rather have special non-experi-

mental labels, and the proposed algorithm should automatically

pick out enough but not redundant samples from the whole PNEA

dataset. Therefore, inspired by an active learning algorithm [19],

this paper proposes such a novel active sample selection strategy

for PNEAs to increase the amount of training data available. For

the weak basic classifiers learned via only the original data, this

strategy measures the usefulness of all candidate PNEAs, and picks

out these most useful PNEAs as supplementary training data. The

weak classifiers are then retrained on the new training set to obtain

improved prediction performances.

The effectiveness of the proposed approach is tested on three

protein benchmark datasets from virus, plant and gram-negative

bacteria cells, by four popular multi-label learning classification

algorithms which are based on KNN, SVM, Bayesian method and

neural network. The results show that the proposed method can

effectively pick out the useful PNEAs and there are obvious

enhancements for the prediction performances of each basic

classifier.

Materials and Methods

The Datasets
Three existing benchmark experimental datasets of different

species are used for cross-validation tests, which include a virus

dataset [14] consisting of 207 proteins and 6 different subcellular

location classifications, a plant dataset [20] consisting of 978

proteins and 12 different subcellular location classifications, and a

Gram-negative bacteria (referred as Gneg hereafter) dataset [21]

consisting of 1392 proteins and 8 different subcellular location

classifications. In order to obtain effective candidates for supple-

mentary training data, we extracted numerous PNEAs of the three

species by parsing the ‘‘Subcellular location’’ section of the

‘‘Comments’’ field in UniProtKB/Swiss-Prot database (release

2012_05). Protein fragments and those containing less than 50

amino acid residues were discarded. Similarly, we also collected

several new PEAs which were not included in the above-

mentioned benchmark datasets for an independent test. In order

to reduce the redundancy and avoid homology bias, we used a

public server PISCES [22] based on PSI-BLAST alignments to

identify and cull protein sequences from all the sequence data

extracted to ensure that none of these proteins have a $25%

sequence similarity to one another as well as any sequence in the

benchmark dataset for the same species.

After culling, we created three supplementary training sample

pools as candidates for active selection, which consist of 238 virus

PNEAs, 758 plant PNEAs and 248 Gneg PNEAs. We also

constructed three additional independent test sets, consisting of 69

virus PEAs, 261 plant PEAs and 207 Gneg PEAs. Note that,

because some proteins occur in more than one location, the

concept of ‘‘locative protein’’ in the literature [21] is employed to

compute performance indexes of the classifiers. This concept

means that a protein coexisting at N (Nw1) different location sites

will be counted as N locative proteins even if they have an identical

sequence. The amounts of active/locative proteins in the three

groups of datasets are shown in Table 2. More details about the

datasets can be found in Table S1–S3 in Material S1. The new

Table 1. Number of protein sequences over the past ten
years (2003–2012) in the UniProtKB/Swiss-Prot protein
knowledgebase.

Release
date

Database
version Total PEAs PNEAs

2003-12-15 1.0 135938 38903 45391

2004-07-05 2.0 148277 41031 50806

2005-05-10 5.0 178998 45606 65084

2006-10-31 9.0 239174 53510 94897

2007-07-24 12.0 274311 57490 113135

2008-07-22 14.0 390787 64733 167972

2009-09-01 15.7 495368 68029 220091

2010-07-13 2010_08 516934 70180 232546

2011-07-27 2011_08 531326 70552 241226

2012-05-16 2012_05 536029 70868 245342

The statistics is only from the UniProtKB/Swiss-Prot manually reviewed entries,
and the unreviewed entries in the UniProtKB/TrEMBL are not included.
doi:10.1371/journal.pone.0067343.t001
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PNEAs and new PEAs used in our research are all listed in

Material S2 (Supplementary Dataset S1–S6).

Active Sample Selection Strategy
In this study, because some proteins have multiple subcellular

localization sites, the final prediction task is also a multi-label

learning problem. Accordingly, the active sample selection strategy

should have the ability to deal with the multi-label cases. Let

Dl~ xk,ykð ÞD1ƒkƒnlf g denote the original training data set

consisting of nl PEAs classified in m different subcellular locations,

where each protein xk can be represented by a feature vector

of d dimensions as xk1,xk2, � � � ,xkd½ �T, and the label set

yk~ yk1,yk2, � � � ,ykm½ �T denotes the protein subcellular locations

of xk. For each protein xk, if it inhabits the ith subcellular location,

mark yki~1, otherwise yki~{1. The basic classifier f : Rd?2m

is trained by Dl to output a set of labels for each unseen protein.

Let Du~ x’s,y’sð ÞD1ƒsƒnuf g denote the supplementary training

sample pool containing nu PNEAs, where a protein

x’s~ x’s1,x’s2, � � � ,x’sd½ �T has the label set

y’s~ y’s1,y’s2, � � � ,y’sm½ �T. For each protein x’s, if it has the jth
subcellular location labeled by experimental/non-experimental

evidences, we mark that y’sj~1e=y’sj~1ne, otherwise y’sj~{1.

Note that, both y’sj~1e and y’sj~1ne mean y’sj~1, and the

subscripts are merely used for recognizing that this positive label is

obtained by corresponding experimental or non-experimental

annotations.

In order to actively pick out the useful samples from the

supplementary training sample pool, the key is to create a feasible

evaluation function to measure the usefulness of a non-experi-

mental sample and decide which samples should be added into the

original training set. In this paper, the classification risk of a

sample is used for reflecting the sample’s usefulness, where a lower

risk means a higher usefulness. For a sample x’s,y’sð Þ in Du, let

R f ,Dl ,x’s,y’sð Þ be the classification risk which is brought by adding

x’s into the original training set, and the evaluation function

E f ,Dl ,x’s,y’sð Þ of x’s,y’sð Þ is defined by its maximum risk. Our

motivation is to evaluate the risks, and pick out the optimal

x’s,y’sð Þ� by minimizing the maximum risk, that leads to the

following min-max combinatorial optimization problem:

x’s,y’sð Þ�~ arg min
x’s ,y’sð Þ[Du

E f ,Dl ,x’s,y’sð Þ

~ arg min
x’s ,y’sð Þ[Du

Rmax f ,Dl ,x’s,y’sð Þ
ð1Þ

E f ,Dl ,x’s,y’sð Þ~ max
~yys[ +1f gm

min
f [H

1

2
Df D2Hz

X
xk ,ykð Þ[Dl

L1 yk,f xkð Þð ÞzL2 y’s,~yys,f x’sð Þð Þ

0
B@

1
CA ð2Þ

where, ~yys~ ~yys1,~yys2, � � � ,~yysm½ �T[ +1f gm
represents the unknown

actual label set for x’s, where, for each label ~yysj , ~yysj~1 if y’sj~1e,

~yysj~{1 if y’sj~{1, but if y’sj~1ne then ~yysj may be 1 or 21.

Df D2H is the regularization item which measures the model

complexity of the classifier, here H is a reproducing kernel

Hilbert space endowed with kernel function Kf :,:ð Þ : Rd|Rd?R.

L1 zð Þ is a quadratic loss function and L2 zð Þ is a weighted

quadratic loss function, i.e.,

X
xk ,ykð Þ[Dl

L1 yk,f xkð Þð Þ~ 1

2

Xnl

k~1

Xm

i~1

yki{fi xkð Þð Þ2 ð3Þ

L2 y’s,~yys,f x’sð Þð Þ~ 1

2

Xm

j~1

w x’s,~yysj ,y’sj

� �
~yysj{fj x’sð Þ
� �2

ð4Þ

where, w x’s,~yysj ,y’sj

� �
is the weight function. For a PNEA, its

associated label set is uncertain because its non-experimental label

may not be the active label, and it is hard to directly calculate its

loss. Therefore, the weight function w x’s,~yysj ,y’sj

� �
is added to

reflect the probability that a non-experimental label is the active

label, which can be written as:

Table 2. Number of active/locative proteins in the three groups of datasets.

Dataset Number of classes benchmark datasets [14,20,21] Supplementary training sample pool Independent test set

Virus 6 207/252 238/289 69/93

Plant 12 978/1055 758/813 261/301

Gneg 8 1392/1456 248/271 207/225

doi:10.1371/journal.pone.0067343.t002

Figure 1. The work process of the proposed active sample
selection strategy.
doi:10.1371/journal.pone.0067343.g001
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w x’s,~yysj ,y’sj

� �
~

p ~yysj~y’sj Dx’s,y’sj

� �
, ~yysj:y’sj

1{p ~yysj~y’sj Dx’s,y’sj

� �
, ~yysj=y’sj

8><
>: ð5Þ

here p ~yysj~y’sj Dx’s,y’sj

� �
1ƒjƒmð Þ is the posterior probability of

the event that ~yysj just equals y’sj when x’s has a non-experimental

label y’sj . According to the previous description of ~yysj , it can be

deduced that p ~yysj~y’sj Dx’s,y’sj

� �
~1 when y’sj~1e or y’sj~{1.

Therefore, it only needs to estimate the posterior probability for a

non-experimental label y’sj~1ne. We use the Parzen-window

estimation with the Gaussian kernel [23] to estimate the posterior

probability of x’s,y’sj~1ne

� �
as:

p ~yysj Dx’s,y’sj

� �

~
p x’sD~yysj ,y’sj

� �
p ~yysj Dy’sj

� �
p x’sD~yysj ,y’sj

� �
p ~yysj Dy’sj

� �
zp x’sD�yysj ,y’sj

� �
p �yysj Dy’sj

� � ð6Þ

where, the prior probability p ~yysj Dy’sj

� �
is the confidence of the

event that if y’sj~1ne then ~yysj~y’sj , and it is set as the parameter

related to the type of the corresponding non-experimental label

y’sj , p �yysj Dy’sj

� �
~1{p ~yysj Dy’sj

� �
is the complementary set of

p ~yysj Dy’sj

� �
, p ~yysj Dx’s,y’sj

� �
and p �yysj Dx’s,y’sj

� �
are short for

p ~yysj~y’sj Dx’s,y’sj

� �
and p ~yysj=y’sj Dx’s,y’sj

� �
respectively, which

are defined as:

p x’sD~yysj,y’sj

� �

~
1

N1j

X
x’p[D1j

1ffiffiffiffiffiffi
2p
p exp {

1

2
x’s{x’p
� �T

x’s{x’p
� �� � ð7Þ

p x’sD�yysj,y’sj

� �

~
1

N2j

X
x’q[D2j

1ffiffiffiffiffiffi
2p
p exp {

1

2
x’s{x’q
� �T

x’s{x’q
� �� � ð8Þ

where, D1j~ x’pDx’p[Du,y’pj~{1
n o [

x’pDx’p[Du,y’pj~1e

n o
consisting of N1j samples is the set of all samples with certain

labels; D2j~ x’qDx’q[Du,y’qj~1ne

n o
consisting of N2j samples

defined as the set of all samples with non-experimental labels

because a PNEA sample will get the maximum loss when all the

actual label are opposite to the corresponding non-experimental

positive label, i.e. ~yysj~{1 and y’sj~1ne.

Plugging equations (3)-(5) into equation (2), this active sample

selection can be written as following the min-max optimization

problem:

arg min
x’s ,y’sð Þ[Du

max
~yys[ +1f gm

min
f [H

1

2
Df D2Hz

Xnl

k~1

Xm

i~1

yki{fi xkð Þð Þ2
 

z
Xm

j~1

w x’s,~yysj ,y’sj

� �
~yysj{fj x’sð Þ
� �2

! ð9Þ

From the derivation, we have:

min
f [H

1

2
Df D2Hz

Xnl

k~1

Xm

i~1

yki{fi xkð Þð Þ2
 

z
Xm

j~1

w x’s,~yysj ,y’sj

� �
~yysj{fj x’sð Þ
� �2

!
~

1

2
Y TLY

ð10Þ

where, Df D2H~f TK{1f , K~Kf
6I , Kf is the kernel matrix of size

nlz1ð Þ| nlz1ð Þ, I is an m|m identity matrix, 6 is the

Kronecker product, Y~ y1,y2, � � � ,ynl
,~yys

h iT

~ Yl ,~yys½ �T,

L~ l{1KzL{1
� �{1

, and

L~

I

P

I

W

2
6664

3
7775 ð11Þ

W~

w ~yys1Dx’s,y’s1ð Þ
w ~yys2Dx’s,y’s2ð Þ

P

w ~yysmDx’s,y’smð Þ

2
6664

3
7775 ð12Þ

Thus, the evaluation function E f ,Dl ,x’s,y’sð Þ is simplified as:

E f ,Dl ,x’s,y’sð Þ~ max
~yys[ +1f gm

Y TLY ð13Þ

Let L~
Lll Lls

Lsl Lss

	 

, then

Y TLY~Yl
TLllYlz~yyT

s Lss~yysz~yyT
s LslYlzYl

TLls~yys ð14Þ

Except for ~yys, all other parts in Eq.(14) can be determined and

the min-max optimization problem described as Eq.(8) can be

solved through using all feasible values of ~yys to find the optimal

x’s,y’sð Þ� with the smallest E f ,Dl ,x’s,y’sð Þ. Similarly, we can pick

out other PNEA samples one by one.

Since the usefulness of all the PNEAs are being measured, the

algorithm needs to decide how many samples in Du should be

added to Dl to help to retrain the classifier. We observe that there

is a high correlation between the usefulness of PNEA samples in

Dr and the change rates of the evaluation values. If the change

becomes stable, it means the latest added supplementary training

samples have little or no effect. Based on this point, this paper

presents a simple algorithm, which can output a proper proportion

Mining Non-Experimental Proteins
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of all samples in the supplementary training sample pool. First,

rank all the samples within Du in ascending order according to

their evaluation to compose a new ordered set Dr. Next, denote

the evaluation value of a sample x’i,y’ið Þ in Dr by Ei 1ƒiƒnuð Þ.
Then the change rate of its evaluation value Ri can be written as:

Ri~

Eiz1{Ei

Ei

, 1ƒiƒnu{1

0 , i~nu

8<
: ð15Þ

For a given step of proportion a and the corresponding number

of intervals T~1=a, the algorithm needs to decide which

proportion is preferred for helping to retrain the basic classifier

(e.g. a~10%, then T~10, where the preferred proportion is one

of following percentages: 10%, 20%, 30%, …, and 100%). Let

Numt 1ƒtƒTð Þ be the number of the samples in the t-th interval,

and the preferred proportion h can be calculated as:

h~a: arg min
t~1,2,���,T

1

Numt

XG tð Þ

i~G t{1ð Þz1

Ri ð16Þ

G(t)~

Pt
j~1

Numj ,tw0

0 ,t~0

8><
>: ð17Þ

Note that, it is hard to theoretically prove whether the output

proportion h is the global optimum or not, but it can be seen that h
can indeed provide excellent results in subsequent simulation

experiments.

After selecting the top h of the samples in Dr and adding them

into the original training set, the initial classifier is updated

according to the new training set and its performance is improved.

An illustration of the work process of the proposed active example

selection strategy is shown in Fig. 1.

Evaluation Metrics
In order to comprehensively evaluate the active sample selection

method and compare the classifier performances with/without the

proposed approach, some common evaluation metrics are used.

Here, D~ xi,yið ÞD1ƒiƒnf g denotes a test set, g xið Þ returns a set

of proper labels of xi; h xi,yð Þ returns a probability indicating the

confidence for y to be a proper label of xi; rankh xi,yð Þ is the rank

of y derived from h xi,yð Þ. Let �yyi and �gg xið Þ represent the

Table 3. Results for different basic classifiers (mean6SD) by using varied numbers of supplementary training data, trained and
tested in 10-fold cross-validation on the virus dataset.

Classifier Ealuation metrics Number of supplementary training data

None Top 40% All

IMKNN Accuq 0.775360.0257 0.8041±0.0252 0.794460.0369

MCCq 0.279660.0515 0.3889±0.0478 0.360060.0484

F1-scoreq 0.413160.0674 0.5179±0.0539 0.488660.0584

Avgprecq 0.597860.0596 0.6559±0.0507 0.650260.0541

RlossQ 0.612660.0147 0.5036±0.0149 0.527660.0161

CoverageQ 1.659160.3007 1.5269±0.2550 1.555560.2919

SVM Accuq 0.785560.0199 0.8059±0.0218 0.788760.0381

MCCq 0.343260.0581 0.3952±0.0471 0.373960.0426

F1-scoreq 0.475860.0457 0.5160±0.0526 0.507060.0676

Avgprecq 0.638560.0436 0.6752±0.0481 0.655360.0419

RlossQ 0.537660.0222 0.4915±0.0268 0.511260.0224

CoverageQ 1.537660.1366 1.4795±0.2242 1.538460.2237

Gaussian process Accuq 0.797960.0224 0.8220±0.0127 0.799160.0286

MCCq 0.338260.0520 0.4026±0.0359 0.343060.0437

F1-scoreq 0.454360.0548 0.5816±00390 0.461660.0481

Avgprecq 0.614760.0228 0.6477±0.0230 0.633260.0233

RlossQ 0.598960.0298 0.5508±0.0295 0.568860.0201

CoverageQ 1.591760.1892 1.5404±0.1588 1.565160.1946

ML-RBF Accuq 0.678360.0224 0.7517±0.0213 0.742160.0208

MCCq 0.274960.0269 0.3505±0.0161 0.337860.0239

F1-scoreq 0.372060.0400 0.4436±0.0203 0.410360.0369

Avgprecq 0.575160.0595 0.6215±0.0453 0.593860.0469

RlossQ 0.396860.0135 0.3194±0.0208 0.376060.0189

CoverageQ 2.248760.3568 1.8906±0.2886 2.172160.3477

doi:10.1371/journal.pone.0067343.t003
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complementary sets of yi and g xið Þ , respectively. Therefore, we

have:

N True Positives: TP~
Pn

i~1 Dyi

T
g xið ÞD

N False Positives: FP~
Pn

i~1 D�yyi

T
g xið ÞD

N True Negatives: TN~
Pn

i~1 D�yyi

T
�gg xið ÞD

N False Negatives: FN~
Pn

i~1 Dyi

T
�gg xið ÞD

Based on the above, three global indices: accuracy (Accu),

Matthews correlation coefficient (MCC) and F1-scroe, and three

multi-label evaluation metrics: average precision (Avgprec),

ranking loss (Rloss) and coverage are computed as follows:

Accu~
TPzTN

TPzFPzTNzFN
ð18Þ

MCC~
TP:TN{FP:FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ: TPzFNð Þ: TNzFPð Þ: TNzFNð Þ
p ð19Þ

F1{score~
2:Rec:Pre

ReczPre
, where Pre~

TP

TPzFP
and

Rec~
TP

TPzFN

ð20Þ

Avgprec

~
1

n

Xn

i~1

1

Dyi D

X
y[yi

D y’Drankh xi,y’ð Þƒrankh xi,yð Þ,y’[yif gD
rankh xi,yð Þ

ð21Þ

Rloss

~
1

n

Xn

i~1

1

Dyi DD�yyi D
D y,y’ð ÞDh xi,yð Þƒh xi,y’ð Þ, y,y’ð Þ[yi|�yyif gD

ð22Þ

Coverage~
1

n

Xn

i~1

max
y[yi

rankh xi,yð Þ{1

� �
ð23Þ

Table 4. Results for different basic classifiers (mean6SD) by using varied numbers of supplementary training data, trained and
tested in 10-fold cross-validation on the plant dataset.

Classifier Ealuation metrics Number of supplementary training data

None Top 50% All

IMKNN Accuq 0.855760.0058 0.8917±0.0035 0.888160.0045

MCCq 0.136260.0254 0.1636±0.0277 0.149860.0285

F1-scoreq 0.185860.0210 0.2124±0.0245 0.190360.0253

Avgprecq 0.294360.0153 0.3103±0.0168 0.293460.0175

RlossQ 0.852360.0178 0.8333±0.0152 0.854660.0123

CoverageQ 5.992060.2188 5.7544±0.2598 5.970360.2037

SVM Accuq 0.874260.0050 0.8820±0.0057 0.880460.0081

MCCq 0.221560.0288 0.2649±0.0221 0.252960.0232

F1-scoreq 0.290460.0261 0.3294±0.0292 0.318360.0288

Avgprecq 0.404960.0151 0.4331±0.0246 0.427160.0439

RlossQ 0.711460.0262 0.6777±0.0336 0.687160.0383

CoverageQ 4.994560.2491 4.7985±0.2170 4.857460.2372

Gaussian process Accuq 0.890960.0013 0.9116±0.0045 0.909660.0031

MCCq 0.208460.0287 0.2421±0.0178 0.213260.0135

F1-scoreq 0.179660.0284 0.2218±0.0153 0.196360.0211

Avgprecq 0.288460.0227 0.3125±0.0184 0.293460.0135

RlossQ 0.887860.0216 0.8559±0.0279 0.876960.0141

CoverageQ 5.880060.2047 5.7248±0.2623 5.894760.2497

ML-RBF Accuq 0.880360.0084 0.8994±0.0046 0.889860.0031

MCCq 0.266360.0177 0.2705±0.0200 0.265660.0234

F1-scoreq 0.321160.0161 0.3332±0.0162 0.323060.0230

Avgprecq 0.551160.0261 0.5682±0.0159 0.552660.0192

RlossQ 0.235660.0160 0.2211±0.0216 0.230160.0164

CoverageQ 2.759160.1611 2.5926±0.2111 2.683960.1984

doi:10.1371/journal.pone.0067343.t004
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Results and Discussion

We performed several simulation experiments to evaluate the

performance of the proposed approach through both the sub-

sampling (10-fold cross validation) and independent dataset test

methods using the three groups of datasets mentioned in section

‘‘Material and Methods’’. In the sub-sampling tests, we performed

multiple rounds of randomizations of the original training and

testing data on each benchmark dataset. In the independent

dataset tests, the benchmark datasets were directly used as the

original training sets, and the new independent test sets were

adopted for testing. The amphiphilic pseudo amino acid

composition [24] was employed as the feature extraction

technology to represent a protein sequence. The protein sequences

were formulated with a valid mathematical expression by this

method through a public online server named PseAAC at: http://

www.csbio.sjtu.edu.cn/bioinf/PseAA/. The details of PseAAC

can be found in reference [25]. In this study, amino acid

characters were empirically chosen to be Hydrophobicity,

Hydrophilicity and Mass; the weight factor was 0.4, and the

lambda parameter was 5. Four different types of multi-label

classification models including IMKNN [5], SVM [26], Gaussian

process [10] and ML-RBF [27], were used as basic classifiers to

test our algorithm. The parameters of these classifiers were

assigned the same values as the original papers and all these

parameters were fixed in the whole experiments for an objective

comparison.

The overall performances of the above classification algorithms

following three kinds of conditions were compared. These

conditions were: not using the proposed active sample selection

(using no supplementary training samples), using the proposed

active sample selection with a preferred proportion (top h) of the

supplementary training samples, and directly using the whole

PNEA samples in the supplementary training sample pool. In the

experiments, the kernel function of Kf was the same Gaussian

kernel used for estimating the posterior probability in Eq.(6). The

prior probabilities of the three levels of non-experimental labels

were set according to the strength of the evidences of the three

non-experimental label types: the prior probability with ‘‘Proba-

ble’’ label was set to be the largest, the value of ‘‘Potential’ was

medium and ‘‘By Similarity’’ was the smallest. We tested several

values for the prior probabilities and finally choose a group of

values with the best results as: 0.85 for ‘‘Probable’’, 0.8 for

‘‘Potential’’ and 0.75 for ‘‘By Similarity’’. The step of proportion a
was set to 10% and the number of intervals T was 10.

Through the numerical experiments, we observe the preferred

proportions of active sample selection for various datasets are

different. The preferred proportion of virus PNEA samples is

h~40%, h~70% for plant, and h~50% for Gram-negative

bacteria. The comparisons of the performances of these classifi-

cation models by using none, preferred proportion and all of the

Table 5. Results for different basic classifiers (mean6SD) by using varied numbers of supplementary training data, trained and
tested in 10-fold cross-validation on the Gram-negative bacteria dataset.

Classifier Ealuation metrics Number of supplementary training data

None Top 70% All

IMKNN Accuq 0.869960.0073 0.8819±0.0063 0.868860.0073

MCCq 0.543760.0233 0.5527±0.0290 0.545260.0225

F1-scoreq 0.609260.0193 0.6170±0.0184 0.607960.0227

Avgprecq 0.689460.0152 0.7269±0.0183 0.715260.0198

RlossQ 0.291060.0243 0.2792±0.0299 0.305560.0254

CoverageQ 1.471760.1886 1.4345±0.1331 1.482860.1173

SVM Accuq 0.902660.0067 0.9062±0.0013 0.905660.0034

MCCq 0.569860.0281 0.5847±0.0147 0.582860.0119

F1-scoreq 0.625860.0242 0.6390±0.0128 0.636660.0156

Avgprecq 0.719360.0157 0.7210±0.0143 0.719960.0117

RlossQ 0.370060.0191 0.3575±0.0132 0.363160.0164

CoverageQ 1.767260.0698 1.7003±0.0665 1.711560.0672

Gaussian process Accuq 0.933260.0035 0.9384±0.0042 0.930060.0057

MCCq 0.667860.0106 0.6878±0.0142 0.666660.0171

F1-scoreq 0.699060.0263 0.7096±0.0203 0.698460.0156

Avgprecq 0.730760.0256 0.7417±0.0220 0.726460.0189

RlossQ 0.372260.0248 0.3682±0.0238 0.372860.0207

CoverageQ 1.768960.0581 1.7191±0.0635 1.798960.0732

ML-RBF Accuq 0.915960.0035 0.9319±0.0071 0.912760.0015

MCCq 0.614460.0187 0.6328±0.0183 0.602060.0117

F1-scoreq 0.667260.0168 0.6945±0.0128 0.650760.0113

Avgprecq 0.805760.0145 0.8295±0.0153 0.798460.0086

RlossQ 0.114760.0120 0.1044±0.0178 0.111060.0067

CoverageQ 0.878660.0503 0.8499±0.0580 0.868760.0538

doi:10.1371/journal.pone.0067343.t005
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samples in the supplementary training sample pool are shown in

Table 3, Table 4, Table 5, Table 6. Table 3, Table    4  and
Table 5 show the average values of 10 randomizations, 10-fold

cross-validation measures and their standard deviations, and

Table 6 shows the results of the independent dataset test. For

each evaluation metric, ‘‘q’’ means the bigger the metric value

the better the performance, and ‘‘Q’’ means the smaller the metric

value the better the performance. It can be seen, for each case, the

classifier using the supplementary training data selected by the

proposed approach always performs better than the basic classifier

using no supplementary training sample. Additionally, the results

under the proposed approach are superior to that of indiscrim-

inately using the whole data in the supplementary training data

pool. From the simulation results, it can be concluded that, on one

hand, the improvements to the original prediction indicates that

the selected PNEA samples are useful and indeed provide helpful

information for prediction; on the other hand, the better

performance of the active sample selection over directly using all

the samples in the supplementary training sample pool indicates

that a part of the PNEA samples disrupts the prediction because

they may have some inaccurate information. Therefore, an

effective active sample selection is important to select a proper

amount of valuable PNEA samples and reduce the possibility of

prediction disturbance brought by the redundant supplementary

training data. We also observed that the performance improve-

ments of all the classification models are related to the size of the

original training set. For the virus cases with the least original

training data, each classifier’s performance improvement is

superior to that of the other two datasets. On the contrary, for

the Gneg cases with the most original training data, the

improvement effect is the smallest. We attribute this fact to the

original training set with less data having a greater data shortage,

so the basic classifiers are better improved by incrementally adding

useful supplementary training data. Without dependence on the

original classification model, the experiment results show that the

proposed active sample selection strategy provides a generic

approach for the existing prediction algorithms.

It is worth noting that, the inherent problem with PNEAs is that

they can only be experimentally validated. To validate that the

proposed strategy is more useful than conventional analysis based

simply on PEA, it is better to test it via additional biological

experiments. If we can show on PNEA data that the strategy finds

true positives and rejects true negatives validated against biological

observation of the characteristics of these proteins, the effective-

ness of this approach will be further verified. However, in our

work, it is difficult to directly conduct biological experiments to

validate PNEAs. In a different way, we tried to find true positive

and true negative PNEA samples which can be validated against a

biological observation in the Swiss-Prot databank. Unfortunately,

we found few true positives (e.g. the non-experimental annotation

‘‘Golgi apparatus’’ of the plant protein with entry number

‘‘Q9M2T1’’ has been verified experimentally) and no true

negatives. Although the true positives can be successfully found

using this strategy, we think the amount of samples identified is too

small to provide enough support for this study. Therefore, the

related results of these few protein samples are not included in this

paper. Moreover, the objective of this study is not to identify true

positive proteins, but to make protein subcellular localization

prediction tools with better performance in accuracy with the help

of non-experimental proteins. According to the results in Table

Table 3, Table 4, Table 5, Table 6, the increase in accuracy

over the conventional algorithms after training with these PNEAs

indicates the proposed strategy works. Therefore, the proposed

method could be thought of as potentially significant, even without

Table 6. Comparison of the prediction results of different basic classifiers by using varied numbers of supplementary training data.

Dataset
Ealuation
metrics Number of supplementary training data

IMKNN SVM Gaussian process ML-RBF

None Top h All None Top h All None Top h All None Top h All

Virus Accuq 0.7476 0.7696 0.7427 0.7476 0.7672 0.7451 0.7525 0.7784 0.7672 0.6397 0.7574 0.7328

MCCq 0.2518 0.3353 0.2604 0.2518 0.3257 0.2589 0.1318 0.2634 0.2095 0.1255 0.2919 0.1957

F1-scoreq 0.4114 0.4835 0.4262 0.4114 0.4751 0.4222 0.2406 0.3662 0.3166 0.3581 0.4469 0.3626

Avgprecq 0.5572 0.5982 0.5438 0.5572 0.5902 0.5431 0.4480 0.5217 0.5008 0.4994 0.6061 0.5757

RlossQ 0.6380 0.5654 0.6390 0.6380 0.5713 0.6419 0.8415 0.7245 0.7485 0.4931 0.3326 0.3622

CoverageQ 2.2059 2.0441 2.2941 2.2059 2.0735 2.3088 2.5735 2.5294 2.5441 3.0000 2.0147 2.2941

Plant Accuq 0.9061 0.9103 0.9074 0.9042 0.9087 0.9068 0.9081 0.9112 0.9090 0.7350 0.7982 0.7816

MCCq 0.3906 0.4107 0.3991 0.4220 0.4410 0.4325 0.2344 0.2924 0.2636 0.1428 0.1908 0.1531

F1-scoreq 0.4346 0.4501 0.4423 0.4737 0.4893 0.4823 0.1864 0.2527 0.2276 0.2441 0.2818 0.2516

Avgprecq 0.5099 0.5142 0.5121 0.5762 0.5819 0.5784 0.2971 0.3359 0.3222 0.4367 0.4622 0.4266

RlossQ 0.6040 0.5975 0.6001 0.5212 0.5136 0.5200 0.8819 0.8309 0.8478 0.3670 0.3372 0.3722

CoverageQ 4.4636 4.4291 4.4674 3.8867 3.8314 3.8812 6.2222 6.0153 6.0498 4.4598 4.0728 4.5402

Gneg Accuq 0.8374 0.8441 0.8386 0.8823 0.8829 0.8811 0.8950 0.8981 0.8932 0.8811 0.8932 0.8732

MCCq 0.4542 0.4683 0.4607 0.4913 0.4970 0.4918 0.4924 0.5100 0.4777 0.4399 0.4839 0.4008

F1-scoreq 0.5315 0.5429 0.5366 0.5591 0.5650 0.5605 0.5362 0.5532 0.5191 0.5000 0.5294 0.4655

Avgprecq 0.6291 0.6340 0.6218 0.6331 0.6402 0.6361 0.5722 0.5847 0.5572 0.6935 0.7267 0.7011

RlossQ 0.3891 0.3743 0.3812 0.4481 0.4342 0.4391 0.5503 0.5343 0.5707 0.1715 0.1555 0.1700

CoverageQ 2.3010 2.1893 2.2476 2.6165 2.5388 2.5680 3.0291 2.9417 3.1214 1.3204 1.2136 1.3155

doi:10.1371/journal.pone.0067343.t006
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the experimental biological validation. However, it is still worth to

perform a biological validation for our algorithm, and we hope to

cooperate with biochemists to improve this method in the future.

In summary, in order to overcome the shortage of experimental

training data in the prediction of protein subcellular location, we

mined the proteins with non-experimental annotations and

designed a novel active sample selection strategy to find useful

PNEA samples. As supplementary training data, these selected

samples helped retrain and improve the original basic classifiers.

This approach based on the min-max view provides a systematic

way for measuring the usefulness of a sample with multiple labels.

From the results, it can be clearly seen that the proposed algorithm

is significant and valid to increase the predicting performance of all

four types of classifiers. We believe that active sample selection

techniques in machine learning can be used as a powerful and

useful tool to alleviate the data shortage problem and it could be

extended to other real-world data mining applications. We also

expect that the information of a huge number of proteins with

non-experimental annotations can be applied to other biological

problems. Furthermore, in order to make the presented method

available to compare with the predictors by other interested users,

we will make efforts to provide an online prediction web-server

with practical value in our future work.
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