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Abstract: Infrared ship-target detection for sea surveillance from the coast is very challenging because
of strong background clutter, such as cloud and sea glint. Conventional approaches utilize either
spatial or temporal information to reduce false positives. This paper proposes a completely different
approach, called carbon dioxide-double spike (CO2-DS) detection in midwave spectral imaging.
The proposed CO2-DS is based on the spectral feature where a hot CO2 emission band is broader
than that which is absorbed by normal atmospheric CO2, which generates CO2-double spikes.
A directional-mean subtraction filter (D-MSF) detects each CO2 spike, and final targets are detected
by joint analysis of both types of detection. The most important property of CO2-DS detection is that
it generates an extremely low number of false positive caused by background clutter. Only the hot
CO2 spike of a ship plume can penetrate atmosphere, and furthermore, there are only ship CO2 plume
signatures in the double spikes of different spectral bands. Experimental results using midwave
Fourier transform infrared (FTIR) in a remote sea environment validate the extreme robustness of the
proposed ship-target detection.

Keywords: ship detection; false alarm; farbon dioxide peaks; midwave infrared; FTIR

1. Introduction

Remote-ship detection is important in various applications, such as maritime navigation [1],
coast guard searches [2], and homeland security procedures [3]. Infrared images are frequently adopted,
especially due to their operational capability, day or night.

The key issue is how to reduce the high number of false detections caused by cloud clutter
and sea surface glint while maintaining an acceptable detection rate [4,5]. Cloud edges produce
false detections, and sea glint is similar to small infrared targets, both of which degrade detection
performance. Since the 1990s, a lot of methods have been proposed to reduce the false positives by
using either spatial information or temporal information from infrared images.

Spatial information processing, such as background subtraction, can be a feasible approach
to reducing background clutter. Background images are estimated by spatial filters, such as the
mean filter [6], the least mean square filter [7,8], the median filter [9], and the morphological
filter [10]. These filters use neighboring pixels to estimate background pixel values, but with different
strategies. In particular, mean subtraction filter (MSF)-based target detection is the most simple,
but is weak when it comes to cloud edges. Non-linear filters, such as max-median, morphology,
and data-fitting, show better cloud clutter suppression capabilities [11,12]. Local directional
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Laplacian-of-Gaussian filtering can remove false positives from cloud edges [13]. In the spatial
information approach, classification with a spatial shape feature can discriminate clutter. Hysteresis
thresholding [14], statistics-based adaptive thresholding [15], the Bayesian classifier [16], and support
vector machines [17] are well-known methods. Voting by various classifiers can enhance dim-target
detection rates [18]. Spatial frequency information can be used to remove low-frequency clutter, such
as the three-dimensional fast Fourier transform (3D-FFT) spectrum [19]. The wavelet transform is
effective against sea glint [20], and low pass filter can also deal with sea glint [21]. An adaptive
high-pass filter can reduce cloud and sea glint clutter [22], while spatial target-background contextual
information enhances the target signature and reduces background clutter, which is effective for sea
glint reduction [23]. Spatial multi-feature fusion can increase the clutter discrimination capability [24].

Temporal information processing, such as track-before-detection, can remove slowly moving
cloud clutter and fast-blinking sea glint [25]. Temporal profiles are useful to discriminate between
a fast-moving target and slow-moving cloud [26–28]. The temporal contrast filter is suitable for
detecting small, supersonic, infrared targets [29], and a 3D matched filter for wide-to-exact searches
can remove cloud clutter very fast [30]. A power-law detector for image frames is effective for target
detection in dense clutter [31]. Since a previous frame can be regarded as background, a weighted
autocorrelation matrix update using the recursive technique can be useful in order to eliminate sea
glint [32]. An advanced adaptive spatial-temporal filter can achieve tremendous gain [33], and principal
component analysis in multi-frames can alleviate false positives from sun glint [34].

Synthetic aperture radar (SAR) with deep learning can be a useful approach for remote ship
detection application [35–37]. Faster R-CNN [35], DRBox [36], and Contextual CNN [37] can provide
improved detection performance but these approaches require huge number of training dataset to
reduce false positives.

As mentioned above, the conventional approaches in the spatial- or temporal-image domains
have their own pros and cons, depending on the situations and conditions. The spatial filter based
approach relies on target shapes and intensity distributions, which is ambiguous if targets are far
away. The temporal filter based approach assumes fast target motion with stationary sensors. If this
assumption is not satisfied, it will generate many false positives in the maritime environment.

This paper proposes a novel spectral–spatial signature analysis-based ship detection method in
midwave hyperspectral images, instead of the conventional spatial or temporal methods. Based on the
combustion process, CO2 emissions show a double-spike signature at around 4.16 µm (2400 cm−1)
and 4.34 µm (2300 cm−1). The hot CO2 emission band is broader than that which is absorbed by
normal atmospheric CO2, which generates CO2-double spikes. The directional-mean subtraction filter
(D-MSF) detects each CO2 spike, and final targets are detected by joint analysis of the detection of both
spikes. So, we call the proposed method carbon dioxide-double spike (CO2-DS) detection.

The contributions from this paper can be summarized as follows. First, the phenomenon of
the CO2-double spike emission in the midwave band is analyzed systematically. Second, a novel
spectral–spatial analysis is proposed to detect remote ships in the maritime environment based on
this analysis. Third, CO2-DS detection can suppress background clutter (cloud, sea glints) completely,
which leads to an extremely low false positive rate in remote-ship detection. Finally, the performance
of CO2-DS detection is demonstrated in a real sea environment with real ships.

The remainder of this paper is organized as follows. Section 2 explains the proposed CO2-DS
method, including analysis of carbon dioxide-double spike radiation. Section 3 evaluates the clutter
suppression performance of the CO2-DS method in the maritime environment. The paper concludes in
Section 4.
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2. Proposed Ship CO2 Plume Detection

2.1. Signature Analysis of Carbon Dioxide-Double Spikes

Before explaining the details of the proposed CO2-DS, the double-spike phenomenon in
midwave spectral bands should be introduced [38,39]. Figure 1 summarizes the overall mechanism of
CO2-double spikes in received spectral radiance from ship plumes. Hot CO2 emits thermal energy
in wider spectral band than that of normal air CO2, as shown in Figure 1a. Atmospheric spectral
transmittance shows strong absorption at 2300–2380 cm−1 by normal CO2 in the atmosphere, as
shown in Figure 1b. Therefore, the received spectral radiance in a TELOPS Fourier transform infrared
(FTIR) camera [40] shows a double-spike signature: the first spike is around 2276 cm−1 (4.39 µm), and
the second spike is around 2393 cm−1 (4.18 µm).

Peak 1

Peak 2

(a)

(b)

(c)

CO2 (hot) 

emission

CO2 (air) 

absorption

Sea

Air

Figure 1. Operational concept of remote ship detection and the double spike-signature generation
mechanism of hot carbon dioxide: (a) spectrum of a hot CO2 emission by a ship, (b) spectral atmospheric
transmittance, and (c) received spectral radiance of hot CO2 from a ship’s plume.

The measurement of CO2-double spikes can be derived from radiative transfer calculated with
Equation (1). We adopted the radiative-transfer equation used in the Moderate-Resolution Atmospheric
Radiance and Transmittance (MODTRAN) [41]. In general, at-sensor received radiance in the midwave
infrared (MWIR) region consists of CO2-emitted radiance, transmitted background radiance, and total
atmospheric path radiance (thermal+solar components).

Ltarget(λ) = τ(λ)
[
ε(λ)BCO2(λ, TCO2) + (1− ε(λ))Lbg(λ)

]
+ L↑s (λ) + L↑atm(λ) (1)
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Ltarget(λ) is the observed at-sensor target radiance; λ is wavelenth; ε(λ) is spectral CO2 gas
emissivity; BCO2(λ, TCO2) is the spectral radiance of the hot CO2 gas, assuming a blackbody in the
Planck function with the combusted CO2 gas temperature (TCO2); τ(λ) is the spectral atmospheric
transmittance, and L↑s (λ) and L↑atm(λ) are the spectral upwelling solar and thermal path radiance,
respectively, reaching the sensor.

According to the spectral emissivity of combusted CO2 gas [38], ε(λ) is relatively high. Therefore,
the term Lbg can be removed. According to MWIR radiometric characteristics [42], the contribution of

solar radiance, L↑s (λCO2), from air scattering is very small, even for very dry conditions (less than 2%
at 5 µm) [42]. Ignoring the solar term, we can simplify Equation (1) to Equation(2):

Ltarget(λ) = τ(λ)
[
ε(λ)BCO2(λ, TCO2)

]
+ (1− τ(λ))Batm(λ, Tatm) (2)

where the definition of thermal upwelling, L↑atm(λ), is replaced by the multiplication of blackbody
radiation of the atmosphere, Batm(λ, Tatm) and 1− τ(λ). The observed target spectral radiance, Ltarget,
directly depends on both emissivity ε(λ) of hot CO2, and atmospheric transmittance, τ(λ), that should
be analyzed specifically.

In addition, neighboring pixels to target hot CO2 has only atmospheric spectral path radiance at
wavelenth λ. Therefore, the received background signal can be expressed with Equation (3):

Lneighbor(λ) = (1− τ(λ))Batm(λ, Tatm) (3)

If we apply center-surround difference by subtracting Equation (3) from Equation (2), which is
the same as a mean subtraction filter (MSF) operation for a specific band image, the target-only signal
can be extracted with Equation (4). This physical property is used in the D-MSF to extract the target
(hot CO2) signature:

LtargetOnly(λ) = Ltarget(λ)− Lneighbor(λ) = τ(λ)
[
ε(λ)BCO2(λ, TCO2)

]
(4)

Conventional ships are powered by diesel engines, and the corresponding hydrocarbon
combustion produces water vapor, H2O) and CO2 as expressed in Equation (5) [39,43]:

Cn H2n+2 + (3n + 1)O2 → (n + 1)H2O + nCO2 (5)

The first important parameter is spectral emissivity ε(λ) in Equation (2). The normal temperature
of combusted CO2 gas from ships is approximately 600 K by infrared signature suppression (IRSS) [44].
The emission band-width of CO2 gas is proportional to the temperature of the CO2 gas [39]. Figure 2
demonstrates this phenomenon by changing CO2 temperature using the high-resolution transmission
molecular absorption database (HITRAN) simulation on the web (http://hitran.iao.ru/molecule/).
As the CO2 temperature increases, the absorption band range is broader. The absorption band range of
normal atmospheric temperature (300 K) is 2300–2380 cm−1 (or 4.20–4.35 µm), where the inverse acts
as atmospheric transmittance. The spectral unit can be either the wavelength (λ) [µm] or wavenumber
(k) [cm−1] by unit selection (k = 10,000/λ). For hot CO2, the spectral absorption coefficient is the same
as the spectral emission coefficient , ε(λ), in Equation (2).

http://hitran.iao.ru/molecule/
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Figure 2. Spectral absorption coefficient variations of carbon dioxide according to different gas
temperatures.

The second important parameter is spectral atmospheric transmittance τ(λ) in Equation (2). In the
MODTRAN simulation in the MWIR band, the spectral transmittance of the CO2 band (2320–2375 cm−1

or 4.21–4.31 µm) decreases abruptly with distance, as shown in Figure 3. The average transmittance
in the CO2 band is 0.13, 0.005, and 0 at 5, 20, and 100 m, respectively. Note that the atmospheric
transmittance band of zero value coincides with the spectral absorption coefficient of CO2 at 300 K in
the top part of Figure 2. In addition, it remains only the atmospheric path radiance in Equation (2) in
the CO2 absorption band, τ(λ) = 0), where there is no target or background signals.
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Figure 3. Spectral transmittance according to ship-camera distance in the MWIR band: (a) 5, (b) 20,
and (c) 100 m.
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Multiplication of the spectral emissivity of hot CO2 and atmospheric transmittance produces
double spikes, as shown in the bottom portion of Figure 1. The spectral feature where a hot CO2

emission band is broader than that which is absorbed by normal atmospheric CO2 generates CO2

double spikes. The midwave spectral information is acquired via TELOPS MWIR hyperspectral
camera [40]. It can provide calibrated spectral radiance images with a high spatial and spectral
resolution from a Michelson interferometer in the short-wave to midwave bands (1.5–5.6 µm).

2.2. CO2-DS-Based Ship Plume Detection

Motivated by the double-spike phenomenon of hot CO2, a novel ship-detection method is
proposed, as shown in Figure 4. The proposed method is called CO2-DS because it is based on the
carbon dioxide-double spike feature. The proposed CO2-DS approach consists of three steps: spectral
band selection, spatial small-target detection, and the final ship detection. The spectral band selection
sets the search range in the spectral domain focusing on the CO2 absorption band. Then, each CO2

spike is detected by a carefully designed spatial filter (the directional-mean subtraction filter). Finally,
the target ship is confirmed using a joint detection operation.

2341 (4 2714)

6,659cm-1

(1.5 m)

1,807cm-1

(5.5 m)

Step 1. Spectral band selection

Step 2. Spatial small target

detection (D-MSF)

Spike 1 detection

Spike 2 detection

Step 3. Final ship plume detection

(Joint detection) 

Figure 4. Overall processing flow of remote-ship detection using spectral–spatial information of hot
CO2 plumes.

In Step 1, the specific spectral band range should be defined to attain successful remote-ship
detection with extremely few false positives. The proposed CO2-DS method is based on the atmospheric
CO2 absorption band (2320–2375 cm−1 or 4.21–4.31 µm) that should be included. In addition,
double-spike bands emitted by hot CO2 should be included. The first spike range is below 2300 cm−1,
and the second spike range is above 2380 cm−1.
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The details of Step 2 and Step 3 in Figure 4 are described in Figure 5. Each spike signal is detected
by a parallel search algorithm: the first spike detection and the second spike detection.

2nd Spike Detection
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If detected in 1st spike & 2nd spike

1st : [x1,y1,w1,h1,score1]

2nd : [x2,y2,w2,h2,score2]

Then

Final:[(x1+x2)/2,(y1+y2)/2,

(w1+w2)/2,(h1+h2)/2,

(score1+score2) ]

Joint Detection

1st Spike 2nd Spike

Figure 5. Details of the proposed CO2-DS: first spike detection, second spike detection, and joint
detection.

The starting wavenumbers are 2300 cm−1 and 2380 cm−1 because there is no signal at all except for
atmospheric path radiance. Given a wavenumber, a test image of this band is probed by D-MSF-based
small infrared target detection [4]. D-MSF is adopted in this paper because it is a well-proven method
and robust against thermal noise in the maritime environment. Figure 6 summarizes the detailed flow
of the D-MSF graphically. Given a hypothesized spectral band image, Iλ(x, y), a mean subtraction
filter, h(x, y), is used to enhance the signal-to-clutter ratio (1). Then, directional local median ID

λ (x, y)
is used to estimate row directional background (2) from the MSF result, IMSF

λ (x, y). Subtracting (2)
from (1) in Figure 6 produces a clearer signature image. The region of interest (ROI) is generated by
an initial thresholding (th1) and eight-nearest neighbor-based clustering. Final detection is achieved
by applying adaptive thresholding th2 in constant false alarm rate (CFAR) detector to the subtracted
image with the given ROI. It can provide a signal-to-clutter ratio (SCR) as well as the ROI of the target.

If there is no detection, the wavenumber (k1) of the first spike is decreased by ∆, and that of the
second spike is increased by ∆, the value of which is 13 cm−1 in this paper. If there is a detection,
each neighboring band image is probed additionally to obtain a maximum signal score.
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Figure 6. Operational flow of the directional-mean subtraction filter (D-MSF) for small-target detection
in a band image.

Finally, in Step 3, the joint detection process is performed from the first and second spike detections:
[x1, y1, w1, h1, SCR1], [x2, y2, w2, h2, SCR2], where [·] denotes [column, row, width, height, SCR] of the
detected target. If two detections exist, then the final target information is merged with Equation (6).
If the merged SCR is larger than a predefined threshold (th3), then it is declared a final target.

Final target in f o =

[
x1 + x2

2
,

y1 + y2

2
,

w1 + w2

2
,

h1 + h2

2
, (SCR1 + SCR2)

]
(6)

Figure 7 shows the spectral profile of a remote ship’s plume and an enlarged view focusing on
the atmospheric CO2 absorption band. The numbers (1), (2), (3), and (4) represent the probing band
locations of the proposed CO2-DS method; (1) and (2) belong to the first spike band, and (3) and (4)
belong to the second spike band. Note that the first spike is not clear in remote cases but it does not
matter in our CO2-DS method since D-MSF is used. Figure 8 shows the corresponding band images,
and the max SCR is used to select a band image for each spike: (2) and (3) are selected. The bottom
image in Figure 8 represents the result of joint detection from the detection results of the first spike
and the second spike.
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Figure 7. Spectral profile of a remote ship’s plume with the probed band positions: first spike: (1) and
(2); second spike: (3) and(4).
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Figure 8. Probed band images of first and second spikes corresponding to (1) and (2), and (3) and
(4), respectively. The final target is detected via joint detection from the selected max signature for
each spike.
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3. Experimental Results

3.1. Experiment 1: Analysis of Signature Variation

MWIR hyperspectral images of remote ships were acquired with the open path TELOPS
Hyper-Cam Mid-Wave Extended (MWE) model [40]. It could provide calibrated spectral radiance
images with a high spatial and spectral resolution from a Michelson interferometer in the shortwave to
midwave band (1.5–5.6 µm). The spatial image resolution was 320 ×256, and the spectral resolution
was up to 0.25 cm−1. The noise-equivalent spectral radiance (NESR) was 7 [nW/(cm2 · sr · cm−1)],
and the radiometric accuracy was approximately 2 K. The field of view was 6.5 × 5.1 degrees.
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Figure 9. Comparison of CO2 signatures in terms of distance: (left) near CO2 (78 m), (right) remote
CO2 (2 km).

In the first experiment, the effect of signature variation was compared, depending on target
distance. Figure 9 shows the spectral profiles of hot CO2 plumes, both near (78 m) and remote (2 km).
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A strong double-spike phenomenon can be observed for near CO2, as shown in Figure 9 (left side)
due to relatively weak signal attenuation. However, a remote target does not show such a distinctive
double-spike pattern as seen in Figure 9 (right side), which makes it clear that only the spectral
profile-based approach was not effective at detecting targets. This conclusion was confirmed through
a real experiment applying the well-known spectral angle mapper-based detector [45] to the spectral
profiles. Figure 10 shows the spectral profile-based detection results. The left column is the training
region; the middle column is a representative spectral profile after training (just the mean of spectral
profiles); and the right column is SAM-based detection results indicated by red dots. For the near target,
the hot CO2 plume region could be detected correctly with a similarity threshold of 0.8, as shown in
Figure 10a. On the other hand, the remote target signature was unclear, which led to false positive
detections with a similarity threshold of 0.98, as shown in Figure 10b.

(a)

(b)

Figure 10. Spectral profile-based target detection results: (a) near CO2, (b) remote CO2.

3.2. Experiment 2: Detection Parameter Analysis

In the second experiment, key parameters of the proposed CO2-DS method were analyzed and
evaluated. There are four parameters; spectral band range for probing, initial threshold (th1) and CFAR
threshold (th2) in the D-MSF, and final threshold (th3) from joint detection. The spectral band range for
robust ship detection should be determined analytically based on Figure 11. Basically, the atmospheric
CO2 absorption band should be included. Since the air temperature is usually 300 K, this band is
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fixed at [2320–2380 cm−1] as shown in the bottom part of Figure 11. The first-spike band starts at
2300 cm−1 and ends at 2180 cm−1 considering band offset. The second-spike band starts at 2380 cm−1

and ends at 2450 cm−1 considering band offset. The band images below 2180 cm−1 or above 2450 cm−1

show background clutter with target information that should be excluded to ensure extremely few
false positives.

2,341 (4.2714) 4,461 (2.2416)2,224 (4.4962) 2,393 (4.1785)2,029 (4.9285)

2,3752,320 2,4502,3802,3002,180

Figure 11. Analysis of spectral band ranges for ship detection by visualizing corresponding
band images.

The selection of threshold1 (th1) is used to determine an ROI in order to investigate whether it
is a target or not, as shown in Figure 6. Figure 12 shows the image for IMSF

λ (x, y), where the bright
blob represents the hot CO2 target, and others are background pixels. The 3D surf views of the target
patch and background patch show the signal levels, and the lower left graph of Figure 6 displays the
signal intensity profile corresponding to the dotted red line in the image. Note that the max signal is
20× 10−5[W/m2,sr,cm−1] and the max background signal is 5× 10−5[W/m2, sr,cm−1]. Considering
the safety margin of factor 2, th1 was set at 1.0× 10−4[W/m2, sr,cm−1]. The threshold 2 parameter
(th2) can be set by analyzing the SCR values for different targets, as shown in Figure 13. Most SCRs of
a spike band image are larger than 12.8, so, th2 can be set at 10.0 for a safe detection capability. The last
threshold (th3) was varied to calculate the receiver operating characteristic (ROC) curve in order to
compare different target-detection methods.
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Figure 12. Parameter analysis of threshold 1 (th1) from directional mean subtraction image.
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Figure 13. Parameter analysis of threshold 2 (th2) from statistics of SCR values of different targets.

3.3. Experimental 3: Performance Evaluation

Based on these parameter analyses, the final detection performance was evaluated by comparing
the proposed CO2-DS, D-MSF [4], and the high-boost multi-scale contrast measure (MLCM) [46].
MLCM is based on the human visual system, and greatly improves the detection rate for small infrared
targets. The test images consist of 53 hypercubes acquired by a TELOPS MWIR hyperspectral camera.
Three different ships with distance ranges between 1.5 km and 4 km were considered. For the baseline
methods, test images were prepared by making broad band images in the spectral range of 3.5–5.6 µm.
The ROC metric was used for a fair detection performance based on false positives per image (FPPI).
Figure 14 summarizes detection performance. The proposed method (the red solid line) showed



Sensors 2020, 20, 2896 15 of 21

an ideal detection curve. MLCM ranked second, and D-MSF showed the worst result. Visual inspection
was conducted at the indicated FPPI (0.65/image). With a normal homogeneous background, the three
methods showed reasonable working performance, as seen in Figure 15. Magenta circles represent
ground truth, cyan rectangles are detection results from the proposed CO2-DS, and yellow rectangles
represent baseline detection results. If there was strong cloud clutter, D-MSF generated many false
alarms, as shown in Figure 16. In a strong sea-clutter environment, MLCM detected a lot of sea-glints,
as shown in Figure 17. Note that the proposed CO2-DS showed stable detection results without any
false positives from sky or sea clutter. In addition, the ship was located at 4 km (near the horizon) and
was detected successfully by our proposed method.

0 0.5 1 1.5

False Positives Per Image (FPPI)

0

20

40

60

80

100

Proposed CO2-DS

Baseline: D-MSF

Baseline: MLCM

Figure 14. Receiver operating characteristic (ROC)-based comparison of detection performance.

(a) (b) (c)

(d) (e) (f)

Figure 15. Comparative detection examples for a homogeneous background: (a–c) detection results,
(d–f) filtered maps.
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(a) (b) (c)

(d) (e) (f)

Figure 16. Comparative detection examples for cloud-clutter backgrounds: (a–c) detection results,
(d–f) filtered maps.

(a) (b) (c)

(d) (e) (f)

Figure 17. Comparative detection examples for sea-clutter backgrounds: (a–c) detection results,
(d–f) filtered maps.

3.4. Experiment 4: Detection Performance Analysis

It can be useful to analyze the effect of weather condition and target distance to the detection
performance. The proposed CO2-DS method is based on Equation (4), especially atmospheric
transmittance (τ(λ)). Therefore, if we use the MODTRAN-based atmospheric transmittance calculation
and measured background noise, we can conduct the Monte Carlo simulation. Figure 18 represents
the MODTRAN-based atmospheric transmittance calculation by changing distance at a specific
wavenumber (2390.16 cm−1) or wavelength (4.184 µm). The atmosphere model was selected either
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“MidLatitude Summer” or “MidLatitude Winter” to consider the effect of humidity and temperature.
The distance length changed from 0.1 km to 6.0 km with 0.1 km interval.

Figure 18. Moderate-Resolution Atmospheric Radiance and Transmittance (MODTRAN) environment
for atmospheric transmittance calculation.

The proposed CO2-MS detector uses target-background difference method (mean subtraction
filter). Therefore, the path radiance term can be removed. Figure 19 shows a filtered map
for the spectral band image at 2393 cm−1. The maximum target signal-background at 2 km
is 6.1742× 10−4[W/m2 · sr · cm−1]. If one uses transmittance of 0.18 at 2 km, the original
signal-background is 3.4× 10−3[W/m2 · sr · cm−1]. Background noise can be modeled as the rectified
Gaussian noise model with 0 mean and standard deviation of 1.3964 × 10−5[W/m2 · sr · cm−1].
Th2 (SCR) is set as 10 in this simulation. Figure 20 shows the atmospheric transmittance and Monte
Carlo simulation-based detection performance according to the target distance and weather conditions.
Normally, the transmittance in mid-latitude summer is lower than that in mid-latitude winter because
of higher water vapor contents (higher humidity), which leads to shorten the detection range as
Figure 20b. If we fix target distance at 5 km, the detection rate is reduced from 95.4% to 5.2%.

The proposed CO2-MS detection method shows extremely low false positives in ship detection.
In addition, CO2-MS is based on the thresholding and clustering. So, it can detect multiple targets.
Because the CO2-MS can use both the spectral and spatial information, the size of the ship (fishing boat,
military ship, or cargo ship) can be identified if each ship has different type of fuel, engine, gas volume,
and temperature. However, it has several limitations such as expensive spectral measurement device,
weak to weather condition such as high humidity.
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- Max signal-background: 

6.1742 10-4 [ W/m2  sr cm-1](@2km)

3.4 10-3 [W/m2  sr cm-1 ](@0km)

- Background noise model:

Rectified Gaussian:
s~N (0, 1.3964 10-5), x=max(0,s)

- Th2 (SCR): 10

Signal-Background

Background

Figure 19. MODTRAN environment for atmospheric transmittance calculation.
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Figure 20. (a) Atmospheric transmittance vs. distance, (b) Monte Carlo simulation-based detection results.

4. Conclusions

Remote-ship detection is important in various applications, such as navigation and surveillance.
Midwave infrared image-based ship detection is deployed due to its long-range detection capability
in the maritime environment. However, MWIR images show strong response to cloud clutter and
sea glint, which generate many false positives, even in state-of-the-art methods. This paper proposed
a completely different approach by fusing spectral and spatial information in the MWIR carbon
dioxide absorption band with the double-spike phenomenon. The atmospheric CO2 absorption band
(2320–2375 cm−1) can block all background radiance, and remote hot CO2 can penetrate through the
spectral double-spike band, which is detected by the proposed carbon dioxide-double spike algorithm.
Experimental results in a real cluttered sea environment with remote ships showed excellent detection
performance with extremely few false positives if the ships’ diesel engines are working.
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