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Abstract

Background

Dialysis patients have high cardiovascular mortality risk. This study aimed to investigate the

association between SNPs of genes involved in vascular processes and mortality in dialysis

patients.

Methods

Forty two SNPs in 25 genes involved in endothelial function, vascular remodeling, cell prolif-

eration, inflammation, coagulation and calcium/phosphate metabolism were genotyped in

1330 incident dialysis patients. The effect of SNPs on 5-years cardiovascular and non-car-

diovascular mortality was investigated.

Results

The mortality rate was 114/1000 person-years and 49.4% of total mortality was cardiovas-

cular. After correction for multiple testing, VEGF rs699947 was associated with all-cause

mortality (HR1.48, 95% CI 1.14–1.92). The other SNPs were not associated with mortality.

Conclusions

This study provides further evidence that a SNP in the VEGF gene may contribute to the

comorbid conditions of dialysis patients. Future studies should unravel the underlying

mechanisms responsible for the increase in mortality in these patients.
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Introduction
Patients with end stage renal disease (ESRD) have a very high mortality risk as compared with
the general population. Cardiovascular disease is a major cause of death in these patients,
accounting for 40–50% of total mortality[1,2]. Recently, a large study showed that patients on
chronic dialysis had an 8.8-times increased cardiovascular mortality risk as compared with the
general population[3]. In addition to cardiovascular disease, declined kidney function and
chronic kidney disease (CKD) are associated with increased hospitalization[4], infection[3,5,6],
malignancies[7–9] and frailty[10] resulting in an 8.1-fold increased risk of non-cardiovascular
mortality[3]. The latter illustrates the very high risk of both cardiovascular and non-cardiovas-
cular death in these patients[3,3,6,11].

These increased mortality rates in ESRD patients are only in part explained by traditional
risk factors, suggesting a role for CKD-related factors. CKD specific risk factors include chronic
inflammatory state[12] and altered levels of circulating growth factors[13], the presence of ure-
mic toxins[14], disturbed calcium/phosphate metabolism and coagulation[15] as well as endo-
thelial dysfunction[16]. Alterations in the genetic profile of these processes in ESRD patients
may further increase this dysbalance and enhance morbidity and mortality.

Interestingly, single nucleotide polymorphisms (SNPs) that influence the above mentioned
processes have already been related to coronary restenosis[17–24] and vascular aneurysm for-
mation[25,26] in the general population and to hemodialysis arteriovenous access failure[27–
29] by changing vascular function through processes related to endothelial function and vascu-
lar remodeling, growth factors, inflammation, coagulation, and calcium/phosphate metabolism
[20,24–31]. Thus far, the association between these SNPs and cardiovascular mortality has not
been investigated in dialysis patients. Despite their strong cardiovascular link, these SNPs may
not be exclusively related to cardiovascular morbidity and mortality. Indeed, the genes affected
by these SNPs mediate a plethora of processes, and thus may also affect non-cardiovascular
morbidity and mortality. Therefore, we hypothesized that SNPs involved in processes related
to endothelial function, vascular remodeling, cell proliferation, inflammation, coagulation, and
calcium/phosphate metabolism could influence cardiovascular and non-cardiovascular mortal-
ity in patients on dialysis. This study was performed in a large population of incident dialysis
patients.

Subjects and Methods

Patients
The Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD) is a prospective
multicenter cohort study in which incident adult ESRD patients from 38 dialysis centers in the
Netherlands were included[32]. The study was performed in accordance with the Declaration
of Helsinki. The Medical Review Ethics Committee of the Leiden University Medical Center
approved the study. All patients gave written informed consent. Adult patients that did not
receive any prior renal replacement therapy were eligible. Patients were followed from January
1997 until death or censoring, i.e. transfer to a nonparticipating dialysis center, withdrawal
from the study, transplantation or end of the follow-up period (June 2009). Data on dialysis
modality, age, sex, and primary kidney disease were collected at the start of dialysis treatment.
Primary kidney disease was classified according to the codes of the European Renal Associa-
tion-European Dialysis and Transplant Association (ERA-EDTA)[33]. Patients were grouped
into four classes of primary kidney disease: glomerulonephritis, diabetes mellitus, renal vascu-
lar disease and other kidney diseases. Other kidney diseases consisted of patients with intersti-
tial nephritis, polycystic kidney diseases and kidney failure due to multisystem diseases. All-
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cause mortality was further subdivided in cardiovascular and non-cardiovascular mortality.
Cardiovascular death was defined as death due to heart failure, myocardial infarction, ischemic
or hemorrhagic stroke, sudden death without obvious non-cardiovascular cause, and death due
to other cardiovascular causes. Non-cardiovascular death included all other causes of death.

SNP selection and genotyping
SNPs of interest were selected that could influence mortality risk by changing vascular pro-
cesses in dialysis patients. Therefore, SNPs previously associated with vascular disease such as
coronary restenosis, arteriovenous (AV) access failure and vascular aneurysm formation were
selected after a systematic search of literature. Searching MEDLINE using keywords including
‘hemodialysis’, ‘single nucleotide polymorphism’, ‘arteriovenous access failure’, ‘coronary
restenosis’, ‘percutaneous coronary intervention’ and ‘aortic aneurysm’ 42 SNPs in 25 candi-
date genes were identified[17–29,31,34–55]. Only SNPs with a minor allele frequency higher
than 1% were included. The complete list of these candidate genes with associated outcomes is
described elsewhere[32]. Two multiplex assays were designed using Assay designer software.
When a SNP did not fit the multiplex, a proxy of that SNP was selected with the highest R2

value. The final set included 42 SNPs in 25 genes related to growth factors[18,24,26,34–36,38–
42] (S1 Table), inflammation[20,21,23,28,43–46] (S2 Table), endothelial function and vascular
remodeling[17,27,55] (S3 Table), calcium/phosphate metabolism[22,24,29,47,48] (S4 Table)
and coagulation[24,31,50,51,53,54] (S5 Table). All SNPs were genotyped by MALDI-TOF
mass spectrometry, using the MassARRAYtm methodology (Sequenom Inc., San Diego, CA,
USA), following manufacturer's instructions. As quality control, 5% of the samples were geno-
typed in duplicate. No inconsistencies were observed. All the negative controls (2%) were
negative.

Statistical analysis
Continuous variables are presented as median and interquartile range (IQR). Categorical vari-
ables are presented as number with percentages. Minor allele frequencies were calculated and a
chi-squared test with 1 degree freedom was used to determine if observed and expected geno-
types were in Hardy Weinberg equilibrium (HWE), using a p-value cut-off of<0.01, to reduce
the likelihood of false positivity[32]. The hazard ratios (HRs) with 95% confidence intervals
(95% CIs) were calculated using Cox regression analysis for heterozygote genotypes and homo-
zygous mutant genotypes as compared with wild-type genotypes for five-year mortality for the
42 SNPs. All analyses were performed using SPSS statistical software version 20.0 (SPSS, Chi-
cago, Ill, USA). To adjust for multiple testing, the false discovery rate (FDR) was calculated
using the method of Benjamini and Hochberg[56]. Although no universal FDR significance
threshold has been defined, a cut-point of 0.20 has been suggested for candidate gene associa-
tion studies, meaning that one should expect at most 20% of declared discoveries to be false
[57]. Therefore a cutoff-point of 0.20 was chosen which resulted in a corrected level of signifi-
cance of p = 0.0048 instead of p = 0.05.

Results
A total of 1330 dialysis patients were genotyped for the 42 SNPs. Baseline characteristics of the
patients are shown in Table 1. The median age was 62.2 years, 39.0% was female, and 14.3%
had diabetes mellitus as their primary kidney disease. In addition, approximately 8% of the
patients had diabetes as co-morbidity. Of the 1330 patients, 474 (35.6%) died within five years
of dialysis treatment. The overall mortality rate was 114 per 1000 person-years. Cardiovascular
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mortality accounted for 234 of these deaths (49.4%), whereas 50.6% of total mortality was due
to non-cardiovascular causes (Table 2).

Minor allele frequencies and HWE p-values are summarized in S6 Table. Three SNPs were
not in equilibrium: vitamin D receptor (VDR) rs4516035, interleukin-10 rs1800896 and TGF-β
receptor1 rs1626340. Notably, none of these SNPs were significantly associated with mortality
after correction for multiple testing.

SNPs and mortality
In total, 42 SNPs in 25 genes involved in vascular processes (endothelial function and vascular
remodeling, growth factors, inflammation, coagulation, and calcium/phosphate metabolism)
were genotyped. Without correction for multiple testing, three SNPs were associated with car-
diovascular mortality. Vascular endothelial growth factor (VEGF) rs2010963 (HR0.62; 95% CI
0.38–1.00) and tumor necrosis factor rs1799964 (HR0.27; 95% CI 0.10–0.73) were associated
with a decreased cardiovascular mortality, while VEGF rs699947 (HR1.52; 95% CI 1.07–2.17)
resulted in an increased risk. In addition, without correction for multiple testing,matrix metal-
loproteinase-1 rs11292517 (HR0.67; 95% CI0.46–0.99) and VDR rs2238135 (HR0.33; 95%
CI0.13–0.80) were associated with decreased risk of non-cardiovascular mortality, while
rs9804922 (HR3.14; 95% CI1.17–8.46) in an intergenic region on 12q23.2, CD180 rs5744478
(HR3.25; 95% CI1.34–7.91) and interleukin-6 rs1800795 (HR1.52; 95% CI1.02–2.25) were asso-
ciated with an increased non-cardiovascular mortality risk.

Table 1. Baseline characteristics.

N = 1330

Age (years, IQR) 62.2 50.0–71.8

Sex, female (n, %) 515 39.0%

Race, white (n, %) 1130 91.4%

Dialysis modality, hemodialysis (n, %) 812 64.2%

Primary kidney disease (n, %)

Diabetes mellitus 189 14.3%

Glomerulonephritis 149 11.3%

Renal vascular disease 206 15.6%

Others 776 58.8%

doi:10.1371/journal.pone.0143079.t001

Table 2. Cardiovascular and non-cardiovascular mortality.

N %

Cardiovascular Myocardial infarction 41 8.7

Heart failure 29 6.1

Cerebrovascular accident 28 3.8

Sudden death 41 8.7

Other 105 22.1

Total cardiovascular 234 49.4

Non-cardiovascular Infection 56 11.8

Withdrawal 33 7.0

Suicide/refusal treatment 59 12.4

Malignancy 31 6.5

Other 61 12.9

Total non-cardiovascular 240 50.6

doi:10.1371/journal.pone.0143079.t002
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However, after correction for multiple testing, VEGF rs699947 only remained significantly
associated with all-cause mortality (HR1.48, 95% CI 1.14–1.92, p = 0.003). Kaplan Meier curves
for VEGF rs699947 are depicted in Fig 1. The results of all other SNPs are summarized in S1–
S5 Tables.

Discussion
Although it is widely recognized that patients on dialysis have substantially higher cardiovascu-
lar and non-cardiovascular mortality rates compared with the general population, little is
known about the genetic predisposition to mortality of these vulnerable patients. In the present
study, we investigated the association between mortality of chronic dialysis patients and 42
SNPs in 25 genes that have previously been linked to cardiovascular disease. We showed that,
after correction for multiple testing, VEGF rs699947 was associated with an increased all-cause
mortality risk. This emphasizes that this SNP is not exclusively associated with cardiovascular
mortality, but also influences non-cardiovascular mortality. In concordance with previous
studies[3,6,58], we observed that the burden of cardiovascular mortality was comparable with
non-cardiovascular mortality in our cohort.

The VEGFA gene is located on chromosome 6 and is composed of a 14kb coding region
with 8 exons and 7 introns[59]. VEGF rs699947 is situated in the promoter region and can

Fig 1. Kaplan Meier survival curve for all-cause, cardiovascular and non-cardiovascular mortality for VEGF rs699947.

doi:10.1371/journal.pone.0143079.g001
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thereby influence VEGF expression levels. Although we did not measure VEGF levels in our
study, the effect of the rs699947 SNP in the VEGF gene on VEGF protein levels is reported in
other studies. Indeed, carriers of the mutant A-allele of rs699947 on peritoneal dialysis have
reduced serum VEGF levels[41]. Additional support for a detrimental effect of rs699947 SNP
of the VEGF gene comes from in vitro studies which revealed that peripheral blood mononu-
clear cells isolated from healthy controls produced significantly more VEGF when compared
to mononuclear cells from subjects with the AA genotype[60]. In our study the mutant AA
genotype was associated with all-cause mortality, suggesting this can be attributed to both car-
diovascular and non-cardiovascular causes. VEGF is involved in angiogenesis, arteriogenesis,
vascular permeability, and endothelial cell migration and proliferation[61]. As such, VEGF
plays a pivotal role in cardiovascular homeostasis and dysregulation can result in cardiovascu-
lar disease. VEGF mediated angiogenesis is important in hypoxic situations such as myocardial
infarction since adequate vascular collaterals can preserve the myocardium during ischemia
[62] and decrease cardiovascular events[63]. Indeed, carriers of the AA genotype of rs699947,
associated with low levels of VEGF, were shown to have an increased risk of developing coro-
nary artery atherosclerosis[64,65]. In addition to cardiovascular disease, the rs699947 SNP has
also been associated to non-cardiovascular disease and mortality. AA carriers were shown to
have an increased risk for thyroid cancer[66] and prostate cancer[67]. Moreover, patients with
non-small cell lung cancer and AA genotype had poorer survival[68]. In addition to malignan-
cies, VEGF rs699947 is also associated to other non-cardiovascular pathophysiology. Despite
low systemic levels of VEGF, patients on peritoneal dialysis with the AA genotype expressed
high mRNA VEGF levels in their peritoneal dialysis effluent as compared to the CC genotype,
which was associated with progressive increase in peritoneal transport and even increased mor-
tality[41].

Additional support for the detrimental effects of low VEGF levels comes from non-genetic
studies, which revealed that reduced VEGF levels are associated with renal podocyte loss in dia-
betic nephropathy and progression of renal disease[69]. In addition, selective inhibition of
VEGF with bevacuzimab, a monoclonal antibody against VEGF used in oncology, can induce
hypertension and proteinuria[70]. Furthermore, females with were shown to have elevated lev-
els of soluble VEGF receptor-1, an endogenous VEGF antagonist [71].

Next to reduced levels of VEGF, very high VEGF levels have been reported to be detrimental
as well. Indeed, previous studies demonstrated that highly elevated VEGF levels increase all-
cause mortality risk in ESRD patients[13,72]. Besides its pro-angiogenic actions, VEGF can
exert pro-inflammatory effects[72] by enhancing vascular permeability and inducing leukocyte
adhesion molecules[73]. These data suggest that a dysbalance in VEGF levels, either decreased
or largely increased, may potentially be pathogenic.

Our study has several potential limitations. The collective term cardiovascular disease com-
prises a plethora of disorders elicited by even more underlying processes. We investigated
SNPs involved in endothelial function, vascular remodeling, cell proliferation, inflammation,
coagulation and calcium/phosphate metabolism, as these processes play an important role in
cardiovascular disease. Importantly, these processes are affected in CKD, and alterations in
their genetic profile may further increase this dysbalance and enhance morbidity and mortality.
Nonetheless, more mechanisms are involved in the broad scope of cardiovascular disease and
the selection of SNPs in this article is not exhaustive. For example, polymorphisms in iron
metabolism and vascular calcification are missing, while these could be relevant in a dialysis
population. Future studies could elaborate on the current selection. In addition, we primarily
selected the SNPs on their cardiovascular interactions. Because the genes affected by these
SNPs also exert important non-cardiovascular effects and dialysis patients also suffer from a
large burden of non-cardiovascular mortality[3], we did not want to neglect this and also
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investigated their influence on non-cardiovascular mortality. However, other SNPs that may
contribute to non-cardiovascular mortality were not appraised in this study. Considering the
increasing attention to non-cardiovascular mortality in ESRD patients[74], future studies
should investigate the effects of other SNPs primarily influencing non-cardiovascular disease.

Secondly, despite the large size of our cohort, in some SNPs there was a very small sample
size in especially the variant genotypes. These groups are likely insufficiently powered to detect
an association and this may lead to underestimation of the actual effect of the SNPs.

Furthermore, we did not measure plasma VEGF levels in this study. However, previous
studies convincingly demonstrated decreased VEGF levels in the rs699947 AA genotype in
both healthy individuals[60] and dialysis patients[41], thereby providing support for our
assumption that the increased mortality as observed in dialysis patients carrying the VEGF
rs699947 SNP, might be explained by decreased serum VEGF levels.

In conclusion, this study provides evidence that VEGF rs699947 AA genotype is associated
with all-cause mortality in a large cohort of dialysis patients, whereas there was no significant
association with the other 41 SNPs. These results may help clarify the involved pathways in the
increased mortality of these patients. Further studies should investigate the underlying mecha-
nisms in order to develop new therapies aimed to reduce the dramatic mortality rates in dialy-
sis patients. In addition, stratification of patients with genetic risk factors combined with
clinical risk factors could be used to predict mortality for specific subgroups of dialysis patients
and may facilitate tailored therapies.

Supporting Information
S1 Table. Polymorphisms in growth factor related genes and effect on five-years mortality.
GT, genotype; SNP, single nucleotide polymorphism; N, number of subjects; HR, hazard ratio;
CI confidence interval; NE, not estimable.
(DOC)

S2 Table. Polymorphisms related to inflammatory genes and effect on five-years mortality.
GT, genotype; SNP, single nucleotide polymorphism; N, number of subjects; HR, hazard ratio;
CI confidence interval; NE, not estimable.
(DOC)

S3 Table. Polymorphisms related to endothelial function and vascular remodeling and
effect on five-years mortality. GT, genotype; SNP, single nucleotide polymorphism; N, num-
ber of subjects; HR, hazard ratio; CI confidence interval; NE, not estimable.
(DOC)

S4 Table. Polymorphisms related to calcium/phosphate metabolism and effect on five-
years mortality. � rs397703 is a proxy for rs1207568 (R2 = 0.70). GT, genotype; SNP, single
nucleotide polymorphism; N, number of subjects; HR, hazard ratio; CI confidence interval;
NE, not estimable.
(DOC)

S5 Table. Polymorphisms related to coagulation and effect on five-years mortality. �

rs1800787 was a proxy for rs1800790 (R2 = 1.0). † rs1718711 was a proxy for rs5918 (R2 =
0.93). GT, genotype; SNP, single nucleotide polymorphism; N, number of subjects; HR, hazard
ratio; CI, confidence interval.
(DOC)
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S6 Table. MAFs and HWE p-values.MAF, minor allele frequency, HWE p-value, Hardy
Weinberg equilibrium χ2 test p-values. P-value<0.05 suggests a disequilibrium.
(DOC)
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