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Bone loss associated with estrogen deficiency indicates a fundamental role of these
hormones in skeletal growth and bone remodeling. In the last decades, growing recent
evidence demonstrated that estrogens can also affect the immune compartment of the
bone. In this review, we summarize the impacts of estrogens on bone immune cells and
their consequences on bone homeostasis, metastasis settlement into the bone and tumor
progression. We also addressed the role of an orphan nuclear receptor ERRalpha
(“Estrogen-receptor Related Receptor alpha”) on macrophages and T lymphocytes,
and as an immunomodulator in bone metastases. Hence, this review links estrogens to
bone immune cells in osteo-oncology.
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INTRODUCTION

Estrogens family of steroid hormones composed of estradiol, estrone, estriol and estetrol. Estradiol
(E2) is the most prevalent and the most potent estrogen. Though ovaries are the main producers of
estrogens, fat tissues, testes, the adrenal cortex, and the liver also contribute to their production (1).
Estrogens are major players in both skeletal growth, particularly during puberty, and skeletal
maintenance, including normal bone mineral density and trabecular bone mass, during adult life.
Reduced estrogen levels at menopause for women and later in life for men lead to decreased bone
density and microarchitecture deterioration resulting in a high risk of fracture (1).

Estrogens exert their actions through genotropic and non-genotropic signaling pathways. They
can bind to two nuclear receptor isoforms, estrogen receptor-a (ERa) and ERb which, once their
ligand pocket is occupied, migrate to the nucleus and fulfil their roles as transcription factors by
binding to dedicated DNA sequences (2). ERa can also activate kinases (MEK, ERK, JNK) and
modulates several transcription factor activities (c-jun, Elk-1) (3). More recently, a G Protein-
Coupled Estrogen Receptor (GPER1) has been discovered. Unlike ERa/b, GPER1 binds estrogens
org May 2022 | Volume 13 | Article 8991041
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with lower affinity (4). In addition, based on a strong similarity
with ERa DNA binding domain (68%) but a moderate similarity
(36%) with the ligand pocket of ER, precluding estrogen binding,
three orphan nuclear receptors referred to as Estrogen receptor-
Related Receptors (ERRs) ERRa, ERRb and ERRg have been
described (5). Despite the identification of putative ligands, many
data support the fact that ERRa impinges on the estrogen
signaling pathway in numerous tissues including the bone (6–8).

Skeletal metastases are frequent complications of many
cancers of which prostate (PCa) and breast (BCa) cancers are
the most frequent with a 73% and 68% incidence of bone
metastases (BMet) (9). BMet development requires first cancer
cell extravasation and homing to the bone marrow through
interactions with endothelial cells and with osteoblasts (bone-
forming cells). Once in the bone, cancer cells can then disrupt the
osteoblast/osteoclast balance; in favor of osteoclasts (bone-
resorbing cells) or osteoblasts inducing osteolysis or
osteoblastic/mixed lesions. Aside from bone cells, immune cells
in the bone marrow (BM) also strongly influence BMet (10). In
pre-clinical models, estrogen deficiency (OVX) has been shown
to fuel BMet, since the declining production of the sex steroid by
the ovaries and inflammatory tone associated with estrogen
deficiency modified the bone microenvironment, mainly the
osteoclasts, in such a way that cancer cell anchorage, survival
and osteolytic phenotype were stimulated (11). Conversely in
clinical studies, incidence of BM disseminated tumor cells (DTC)
was reported to be slightly higher in pre-menopausal women
(32.7%) versus postmenopausal (29.5%), suggesting that the BM
of post-menopausal women is less attractive to metastasis (12).
Of note, all immune cells present in the bone express the ERs
(13), and growing evidence suggests a role for estrogens in BMet
through their action on bone immune cells. Moreover, regarding
basic science, it is important to keep in mind that a large part of
the cultures of hematopoietic cells are carried out with media
containing phenol red, known to have estrogenic activity. This
review aims at presenting our current knowledge and our own
thoughts on the links between estrogen signaling in bone
immune cells and their impact on metastatic cell homing and
progression within the bone/BM microenvironment.
ESTROGEN AND MYELOID CELLS

Aside from erythrocytes, myeloid cells, including mainly
neutrophils, monocytes/macrophages and osteoclasts are the
most abundant hematopoietic cells in the bone (14). All of
these myeloid cells, the differentiation of which occurs in
partially or completely in the BM, express not only ERa/b but
also GPER1 (15). We will see that estrogens affect both their
differentiation and function in the bone with consequences on
BMet niche, cancer cell homing and progression in the bone.

Neutrophils
Neutrophils largely outnumber the rest of the myeloid cells in the
bone (16), where their numbers are influenced by estrogens. In
the 80’s, experiments based on the injection of estrogens to male
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mice revealed a profound neutropenia in the BM (17, 18). Since
then, it has been reported that estrogens impact both neutrophil
differentiation and functions. Neutrophil differentiation is largely
promoted by the Granulocyte-Colony-Stimulating Factor (GM-
CSF). In the absence of estrogen, B cells present in the BM secrete
more G-CSF, which can contribute to the neutrophilia observed
in estrogen-deficient patients (19). Neutropenia in the bone
associated with estrogens can also be explained by the ability
of estrogens to down-regulate the production of CXC chemokine
ligand (CXCL)12 by osteoblasts and BM stromal cells (20).
Indeed, if a large portion of mature neutrophils leave the BM,
the fraction expressing CXCR4, receptor of CXCL12, stays
within the bone (20). These BM-resident neutrophils secrete
Proteinase 3 (PR3), a serine protease which through its
interaction with Receptor for Advanced Glycation Endproducts
(RAGE) at the surface of metastatic PCa could enhance their
homing to the bone (21). Though only the depletion of
neutrophils in vivo will firmly validate this conclusion, this
observation strongly suggests that a large number of
neutrophils in the bone could contribute to BMet incidence
from PCa cells by encouraging PCa cell anchorage in the BM.
One feature of neutrophils is that they form NETs (Neutrophil
Extracellular Traps), which not only prevents pathogen
progression but also, as recently demonstrated, contributes to
the sequestring of liver and lung metastatic cells in the bone
promoting their implantation (22). Inhibition of ERa and ERb
signaling in neutrophils by using selective antagonist raloxifene
was associated with inhibition of NETs suggesting that estrogen
promote NETs formation into the bone (23). It is noteworthy
that NET fails to attract primary cancer cells from breast to bone.
This difference depending on metastases origin was associated
with the ability of metastasis to express or not CCD25, which
recognizes DNA chromatin filaments composing the NET (22).
Once settled in the bone, BMets originating from PCa DTC
stimulate oxidative bursts in neutrophils, increasing NET
formation. In turn, neutrophils induce apoptosis of PCa cells
by inhibiting STAT5 signaling in cancer cells in a manner that
remains to be understood (24). Interestingly, this cytotoxic
property of neutrophils decreases with time and in late-stage
bone tumors. High levels of E2 also lead to a decrease in
degranulation of b-glucuronidase and lysozyme, as well as in
the intracellular concentration of reactive oxygen species (ROS)
in neutrophils known to stimulate osteoclasts and osteoblast
apoptosis (25–27). Hence, by controlling both neutrophil
homeostasis and functions in the bone, estrogens repress the
trapping of disseminated cells in the bone, but diminish the anti-
tumor activity at an early stage and decrease the osteogenic
feature associated with neutrophils once the tumor is settled
within the bone (Figure 1).

Monocytes-Macrophages
In addition to neutropenia, estrogens also repress the
differentiation of mononuclear phagocytic cells. Indeed,
estrogens reduce the levels of Macrophage-Colony-Stimulating
Factors (M-CSF), mainly produced by osteocytes, osteoblasts,
and osteoblast precursors as well as Granulocyte-Macrophage
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Marie and Bonnelye Estrogens in Osteoimmunology
Colony-Stimulating Factor (GM-CSF), this latter being secreted
by multiple cell types in the bone mainly in response to danger
stimuli (28–31). Bone macrophages, mostly arise through the
differentiation of monocytes returning to the bone. In addition to
repressing monocyte/macrophage lineage differentiation,
estrogens also reduce concentrations of CCL2 (C-C Motif
Chemokine Ligand 2) produced by osteoblasts and osteocytes,
and thus the recruitment to the bone of monocytes and
macrophage-precursors which expressed CCR2 (32). Estrogens
also directly inhibit the production of CCL2 by monocyte/
macrophage and thus the positive loop of macrophage
recruitment to the bone (31). Interestingly, depending on the
ER engaged, estrogens can have different direct effects on
monocyte/macrophage functions. In monocytes/macrophages,
E2/ERa inhibits the production of pro-inflammatory cytokines,
such as IL-1b, TNF-a, IL-6, documented to reduce osteoclast
differentiation (31–33). Conversely, E2/ERb represses CD16
surface expression and thus ADCC (antigen-dependent cellular
cytotoxicity) (34). Whether different stages of macrophage
maturation are more strongly associated with the expression of
one type of ER than another remains to be addressed. ERRa,
whose expression is up-regulated by estrogens in several tissues
Frontiers in Immunology | www.frontiersin.org 3
including the bone (8, 35, 36), is involved in macrophage
functions. More precisely, it can regulate macrophage response
to TLR4 and IFNg as well as ROS production (37–39). Through
their potent phagocytic activity, macrophages represent powerful
cells to eliminate metastatic cells reaching the bone, albeit they
can also influence BMet through other mechanisms that can be
targeted by estrogens. “Indeed, estrogens strongly influence
macrophage polarization by promoting M2 (pro-osteoblastic)
and suppressing M1 (pro-osteoclastic) (34, 40). Therefore, by
promoting M1 macrophages estrogen deficiency inhibits BMP2
production by M2 and stimulate pro-osteoclastic molecules
production ROS, nitric oxide, and pro-inflammatory cytokines
by M1, promoting bone resorption (41). If this balance in favor
of M2 contributes to preventing the establishment of the
metastatic niche in bone, once metastasis is implanted, M2-like
macrophages promote metastasis angiogenesis and tumor
progression through their production of VEGF-A (10). In the
bone, a peculiar subset of macrophages named osteal
macrophages, or osteomacs, has been described (42). Osteal
macrophages (TRAP- F4/80+, CD68+, Mac3+) are present at
the bone surface in the close vicinity of mature osteoblasts
where they support osteoblastic function and bone anabolism
FIGURE 1 | Overview of estrogens regulating immune landscape on the bone marrow cells: consequences on cancer cells anchorage and tumor progression in
bone. Estrogens influence BM cells at different steps. They modulate both their development and functions with direct consequences on bone osteogenesis, cancer
cell implantation and tumor growth in the bone.
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(43). Data have connected estrogen levels and osteal macrophage
functions, since the number of osteal macrophages increased on
both trabecular and endocortical bone post-ovariectomy.
Interestingly, in this condition, osteal macrophages contain
TRAP+ intracellular vesicles, attesting to their “clean up” role
of exocytosed post-resorption vesicles released by osteoclast
(TRAP+) activity (44). PCa-derived BMet increases osteoblast
functions through osteoblastic production of CCL2, which favors
osteal macrophage positioning (45). Tumor-associated
macrophages (TAM) have been proposed potentiate BCa and
PCa BMet. Increased numbers of CD206+ M2-like macrophages
have also been found in PCa BMet (46, 47). CCL2 expression by
cancer cells promotes the recruitment of TAM expressing CCR2
to facilitate cancer cell anchorage in the bone (33). In the same
line, the expression of Parathyroid Hormone-Related Protein
(PTHRP) by BCa and PCa cells up-regulates the production of
CCL2 in osteoblasts that contribute to macrophage recruitment
to the bone, bone remodeling and BMet progression (48, 49).
Moreover, the clearance of tumor apoptotic cells by efferocytosis
promotes CXCL5 production by macrophages and an
inflammatory bone microenvironment supporting BMet
development (50). Thus, estrogens repress the number of
monocytes/macrophages in the bone including osteal
macrophages and affect their functions. Estrogens enhance
their non-inflammatory cytokine production and repress bone
remodeling, preventing formation of a fertile soil for BMet
anchorage. However, once BMet manage to settle in the bone,
estrogens provide through their action on macrophages a
microenvironment facilitating tumor progression (Figure 1).

Osteoclasts
Osteoclasts are also derived from the monocyte/macrophage
lineage. However, on inflammatory conditions, osteoclasts can
arise from either dendritic cells or erythromyeloid progenitors
(51–54). In addition to the indirect effects described above of
estrogens on osteoclast lineage differentiation, selective ablation
of ERa in osteoclasts was reported to induce trabecular bone loss
in female mice due to decreased FasL expression and autocrine
regulation, leading to the inhibition of osteoclast apoptosis (55).
As for macrophages/monocytes, osteoclasts are also antigen-
presenting cells able to activate CD4+T cells and CD8+ T cells,
and are endowed with a unique ability to induce Foxp3+

regulatory T cells (Treg) (56, 57). Moreover, osteoclasts
produce a number of chemokines (Cc13, Cc14, Ccl5, Cxcl5,
Cxl10, Cxcl11) attracting multiple immune cells e.g. monocytes-
macrophages, T-cells, NK and DC cells (58). PCa-derived BMet
increase osteoblast functions and facilitate their growth in bone
by activating osteoclastogenesis through osteoblastic production
of the Receptor Activator of Nuclear factor Kappa-B ligand
(RANKL), a key factor for osteoclast differentiation (45). ERRa
is also a strong regulator of osteoclast differentiation (59–61).
Interestingly, depending on the metastasis origin, overexpression
of ERRa in cancer cells either inhibits or stimulates osteoclasts
by stimulating the expression of either the decoy receptor of
RANKL, OPG (osteoprotegerin), a major inhibitor of osteoclast
activity in BCa cells, or VEGF-A and WNT5a in PCa cells (62,
Frontiers in Immunology | www.frontiersin.org 4
63). Now the impact of estrogens on ERRa in oncology and their
role on BMet modulation remains to be determined. Through
their action on osteoclasts, estrogens repress bone resorption but
also modify the ability of osteoclasts to interact and recruit other
immune cells to the bone with direct consequences on the
development of a pro-inflammatory microenvironment in
favor of BMet (Figure 1).

ESTROGEN AND LYMPHOID CELLS

T Cells
T lymphocytes present in the BM account for less than 5% of
CD45+ cells and have a reduced CD4/CD8 ratio compared to the
blood. The BM T cell compartment is almost exclusively
composed of a,b T lymphocytes (64). A large part of the T
cells present in the BM are memory cells, which either circulate
or permanently inhabit the BM, suggesting that in the context of
BMet, BM T cells could compose a pool of T cells with specificity
against antigens bared by cancer cells (65). The entry of T cells
into the BM is largely supported by CXCL12 produced by
osteoblasts and stromal cells, and down-regulated by estrogens
(20). In the absence of intravital/in situ labeling data, there is so
far no direct evidence that estrogens affect T cell retention within
the bone. However, this phenomenon is largely dictated by the
interaction between a4b1 integrin, present at the surface of T
cells, and VCAM-1 expressed by stromal cells and endothelial
cells and depicted to be down-regulated by estrogens (66, 67).
One of the main roles of estrogens on BM T cells is to repress
their osteoclastogenic ability. Evidence of this function emerged
more than 20 years ago, after the observation that in contrast to
wild type mice, nude mice are protected from trabecular bone
loss induced by ovariectomy (68, 69). Later, CD4 T cells
producing IL-17 and RANK-L in the bone were identified as
potent stimulators of osteoclastogenesis (70). More recently a
Th17 osteoclastogenic T cell subset expressing high amounts of
TNF-a, and established in the gut, was proposed to reach the
bone in both mice and humans (71, 72), in a CCL2-dependent
manner (73). Thanks to their osteoclastogenic ability Th17 cells
have been suggested to establish a bone pre-metastatic niche,
which facilitates cancer cell implantation in the bone (74) (75). In
addition, Th17 cells were suggested to preclude BMet control
anti-PD1 treatment (76). Estrogens directly control the Th17 cell
pool since ERa binds the promoter of RORc inhibiting Rorgt
expression (77, 78).

In addition to Th17 cell differentiation, estrogens repress the
Th1 cell program (79). In the BM, estrogen deficiency impairs
the production of TGF-b by stromal cells, a cytokine that plays a
key role in the repression of T-Bet and IFN-g/TNF-a expression
in T cells (80) and thus in osteoclastogenesis (81). Given the
potent role of TGF-b in repressing the expression of granzyme-
A,-B, and FasL in CD8+ T cells (82), the ability of estrogens to
sustain TGF-b levels in the BM impairs CD8+ T cell cytotoxic
functions, and promotes BMet progression (83). However, the
control by estrogens/estrogen signaling of TGF-b levels in bone
and in BMet is more complex. Indeed, bone contains a large
source of TGF-b stored in its mineralized matrix, which is
May 2022 | Volume 13 | Article 899104
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released and activated by osteoclast activity. In addition, BMet
can also contribute to increasing the levels of TGF-b (84). ERRa
is also clearly involved in effector T cell activation (85, 86). In
BCa BMet, ERRa expression restrains TGF-b production by
cancer cells, leading to exacerbated cytotoxic features in CD8+ T
cells in the bone and efficient BMet control (87). TGF-b has been
associated with an increase in the generation and stability of
Tregs (88). In the BM, the proportion of Tregs among CD4+ T
cells is much higher than in the lymph nodes, likely due to high
levels of CXCR4 expression on Tregs (89) largely promoted by
estrogens (90). Once the cancer cell is anchored, Tregs produce
high amounts of RANKL promoting osteolysis associated with a
feedback loop of TGF-b release in BCa BMet (91).

Hence, in the bone, the effects of estrogens on T cells are dual:
by contributing to an immune-suppressive environment
associated with reduced activity of CD8+ T cells and increased
number of Tregs which can favor tumor growth and by limiting
osteolysis due to inhibition of RANKL production by Th1 and
Th17 cells (Figure 1).

B Cells
BM is the main site of B lymphopoiesis and maturation. In mice,
estrogen treatment was linked to a decrease in the numbers of
pro/pre- (B220low/IgM−) and immature (B220low/IgM+) B
subpopulations, whereas the mature (B220high/IgM+)
subpopulation increased in the BM (92). This modification of
B cell precursor homeostasis does not seems to be associated with
a loss of survival of pro/pre- and immature B cells since estrogens
induce an increase in the anti-apoptotic factor Bcl2 in these cells
(93). The exact mechanism of action of estrogens on B
lymphopoiesis in vivo remains unknown. However, co-culture
approaches suggested that estrogens modify the ability of BM
stromal cells to support efficient B lymphopoiesis (94). Estrogens
promote the production of soluble Frizzled-related protein 1 by
BM stromal cells, which in turn stabilizes b-catenin and blocks
early B lymphoid progression (95). Of note, B cell interactions
with other immune cells in the BM conditions bone homeostasis.
Through CD40/CD40L interaction, B cells and T cells cooperate
to sustain normal bone mass and mineral density. Signals
delivered by CD40 engagement stimulates in B cells the
production of OPG and consequently reduce osteoclast
differentiation. Interestingly, in post-menopausal women, a
switch from OPG to RANK-L production is observed in B cells
emphasizing bone loss (96, 97). The role of B cells in the direct
control of BMet seems elusive, since in mice with BMet, as in
humans, mature B cells are scattered over the BM close to
osteoclasts rather than metastasis (98). However, by controlling
B lymphopoiesis, and modifying mature B cell profile in the BM,
estrogen levels modify bone homeostasis by reducing osteolysis
and thus may limit cancer cell anchorage and progression in
the bone.

Innate Lymphoid Cells (ILCs)
In the adult, the BM is regarded as the main site for ILC-poiesis.
Several multipotent ILC precursors have been defined in mice
with different degrees of pluripotency that are still under debate
Frontiers in Immunology | www.frontiersin.org 5
(99). Among ILCs, ILC-1/Natural killer (NK) cells express both
ERa/b and are prevalent in the BM. In contrast, outside the
uterus ILC-2 fails to express ERs, and ILC-3 are endowed with a
clear tropism for the mucosa (100). If the effects of estrogen on
NK cell ontogeny in the BM are not well documented, there is
more evidence of a role, either direct or indirect, for estrogens on
NK functions in BM. Interestingly, both development and
activation of BM NK cells are dependent on IL-15, a cytokine
also important for osteoclast development (101) and abundantly
produced by a fraction of mesenchymal cells named CAR cells
(CXCL12-abundant reticular) (102, 103), the functions of which
are orchestrated by estrogens. Once NK cells have matured, the
down-regulation of CXCR4 and up-regulation of S1P5 drive
their egress from the CXCL12 enriched BM microenvironment
(104). A large population of resident CXCR6+CD69+ NK cells is
observed but seems to be endowed with a weak cytotoxic ability
against cancer cells, whereas the major anti-tumor activity of NK
is supported by recirculating mature NK cells (105). Estrogens
reduce the cytotoxic activity (production of granzymes and FasL)
of mature NK cells, likely through the down-regulation of their
activation receptors (NKp46, NKG2D/L) and the increased
expression of the inhibiting receptor CD94 (106). However in
the bone, no effect of NK on BMet progression has clearly been
documented (107). Hence, the reduced cytotoxic function of NK
cells in response to estrogens likely increases the number of
disseminated cells in the blood that could reach the bone, but do
not contribute to the metastasis immune escape once settled in
the bone. However activated NK cells can either promote or
inhibit osteoclastogenesis depending on the release of TNF-a or
IFN-g, respectively and this regulation is influenced by estrogens
which repress IFNg in NK cells (106, 108, 109). Activated NK
cells can also directly lyse mature osteoclasts (110). Conversely,
zoledronate treatment, the most potent bisphosphonate for the
treatment of BMet, protects osteoclasts from NK cell cytotoxicity
(110). Thus, estrogens induce a large repression of NK cell
functions in the bone, which in the light of the ability of NK
cells to regulate bone resorbing cells could impact bone
remodeling and BMet progression (Figure 1).

CONCLUSION

The last decades of works on estrogens and BM brought to light
the fact that estrogens affect the immune compartment of the
bone and possibly the global system. Therefore, this observation
may explain why adult females mount stronger immune
responses than males, and strongly questions the consequences
of modifications in estrogen levels on innate and adaptive
immune responses during aging and gender reassignment.
Moreover, the emergence of the immunomodulatory role of
estrogens suggests that anti-estrogenic drugs, or estrogen
administration, by injection or topical applications, may
influence the BM. Subsequently this treatment may have an
indirect anti-tumor effects by modulating the immune system
and may therefore participate to the modulation of pre-
metastatic niches and/or modulate the tumor immune
environment in the bone. Anti-estrogenic/and estrogenic
May 2022 | Volume 13 | Article 899104
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therapies may also modify the ability of patients to respond to
immunotherapy by affecting BM immune cell development and
function. This area needs to be particularly explored given the
increasing number of people either treated with anti-estrogenic
drugs or receiving estrogen.
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