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INTRODUCTION 
 

Heart failure (HF) is a chronic condition common to all 

types of heart disease [1]. In HF, which is essentially a 

pathophysiological state caused by abnormal heart 

functions, the heart cannot meet the pumping speed 

required for normal metabolism under normal heart 

pressure [2]. HF is categorized into two types of diseases: 

one is HF with reduced ejection fraction (HFrEF) and the 

other is HF with preserved ejection fraction (HFpEF). HF 

with mid-range ejection fraction is more contentious and 

not included in our current study. The mechanisms that 

are involved in the occurrence and development of these 

two types of HF are obviously different. 
 

HFrEF is mostly caused by initial myocardial damage and 

disease conditions that affect ventricular contraction. 

These disease conditions may originate from cardio-

vascular diseases themselves or may be secondary 

cardiovascular dysfunction caused by diseases related to 

other organ systems [3]. Approximately two-thirds of 

HFrEF cases are caused by coronary artery disease [3]. 

The occurrence and developmental process of HFrEF are 

complex and includes the following changes, as revealed 

by microscopic analyses: 1) changes in the structure of 

cardiomyocytes, such as glycogen deposition and 

sarcomere depletion; 2) abnormal sodium and potassium 

channels in cardiomyocytes; 3) abnormal energy 

metabolism in cardiomyocytes, such as increased glucose 

utilization and decreased oxidative phosphorylation; and 

4) other mechanisms, including oxidative stress, 

apoptosis, and autophagy [4]. From a pathophysiological 

perspective, initial myocardial damage causes stress 

reactions in undamaged myocardium, such as myocardial 

cell apoptosis, hypertrophy, and collagen fibril deposition, 

which lead to hypofunction of the cardiac pump, reduced 

cardiac output, and decreased blood perfusion in tissues 

and organs, and eventually cannot meet the metabolic 
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ABSTRACT 
 

Heart failure is a global health problem that affects approximately 26 million people worldwide. As 
conventional diagnostic techniques for heart failure have been in practice with various limitations, it is 
necessary to develop novel diagnostic models to supplement existing methods. With advances and 
improvements in gene sequencing technology in recent years, more heart failure-related genes have been 
identified. Using existing gene expression data in the Gene Expression Omnibus (GEO) database, we screened 
differentially expressed genes (DEGs) of heart failure and identified six key genes (HMOX2, SERPINA3, LCN6, 
CSDC2, FREM1, and ZMAT1) by random forest classifier. Of these genes, CSDC2, FREM1, and ZMAT1 have never 
been associated with heart failure. We also successfully constructed a new diagnostic model of heart failure 
using an artificial neural network and verified its diagnostic efficacy in public datasets. 
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needs of the body [3]. These pathophysiological processes 

result in activation of neurohumoral regulation 

mechanisms to maintain the pumping function of the 

heart, mainly via the sympathetic nervous system and the 

renin–angiotensin–aldosterone system. However, long-

term activation of the neurohumoral regulatory 

mechanism stimulates remodeling of the ventricles, 

endothelin secretion, and cytokine upregulation, which in 

turn causes vasoconstriction and cardiac overload, and 

results in a vicious circle [3]. 

 

HFpEF often occurs in pressure-overload hypertrophy 

diseases [5]. Compared with HFrEF, HFpEF is more 

likely to decrease in cardiac reserves [6]. Considering 

pathophysiological mechanisms, left ventricular 

diastolic dysfunction, especially increased left 

ventricular filling pressure (LVFP), is the most common 

early manifestation among these patients. In the early 

stage of the disease, increased LVFP may occur only 

during exercise. However, the increase in LVFP 

becomes persistent in the progression of HFpEF [6]. 

Persistent diastolic dysfunction of the left ventricle may 

impair left atrial function and cause pulmonary 

hypertension, which further leads to right heart 

insufficiency and eventually manifests as dysfunction of 

the systemic circulatory system [7]. In terms of the 

pathogenic mechanisms involved in the development of 

HFpEF, cardiomyocytes themselves undergo apoptosis 

to a lesser extent, whereas the characteristic changes are 

the proliferation of abnormal fibroblasts and the 

accumulation of cell matrix proteins [5]. This is the 

most prominent difference between HFpEF and HFrEF. 

 

There are several limitations associated with the 

diagnostic techniques for HF commonly used in clinics. 

The levels of brain natriuretic peptide/N-terminal-proB-

type natriuretic peptide may also be elevated in various 

non-HF diseases, such as pulmonary hypertension, 

cirrhotic ascites, acute or chronic renal failure, 

infection, and inflammation [8], but normal in patients 

with HFpEF [7]. Echocardiography, which is another 

commonly used technique for the evaluation of cardiac 

function, relies more on the individual operation 

proficiency and diagnostic experience of specialists, 

making the examination poorly reproducible. Moreover, 

it is difficult to identify patients with HFpEF by simply 

measuring the EF value [7]. Therefore, it is necessary to 

develop new diagnostic models to supplement these 

current methods. The rapid development of second 

generation sequencing in recent years facilitates the 

identification of marker genes associated with a variety 

of diseases, providing a solid basis for establishing new 

gene-related diagnostic models of HF. In this study, we 

screened differentially expressed genes (DEGs) 

between HF and normal myocardium samples in the 

Gene Expression Omnibus (GEO) database. On the 

basis of these DEG data, we used the random forest 

algorithm to identify the key genes expressed in HF. We 

then input these key genes in artificial neural networks 

to construct a genetic diagnostic model of HF (See 

analysis process in Figure 1). 

 

RESULTS 
 

Differential expression analysis 

 

Differential expression analysis was performed based on 

the chip dataset GSE57345 to screen for DEGs. The 

GSE57345 dataset contained 313 samples, including 136 

normal and 177 HF disease samples. Next, the limma 

package was used to identify DEGs between the HF 

samples of this chip dataset and the normal control 

samples through the Bayesian test. The results of the 

DEGs are shown in the volcano graph (Figure 2A) and 

heatmap (Figure 2B). Based on fold change values of 

>1.5 and significance threshold of P <0.05, we identified 

281 significant DEGs related to HF diseases by the 

screen (Supplementary File 1). 

 

GO/Kyoto encyclopedia of genes and genomes 

(KEGG) enrichment analysis 

 

GO enrichment analysis was performed on the 281 

significant DEGs using the clusterProfiler package. The 

Benjamini–Hochberg correction method was used, with 

the thresholds set at a P value of <0.01 and a Q value of 

<0.01. To avoid redundancy in the GO enrichment 

results, we performed deduplication on the GO 

enrichment terms and eliminated terms with a gene 

overlap of >0.75 (Supplementary File 2). Figure 3 shows 

the analysis results of three aspects of GO enrichment, 

including biological processes, cellular components, and 

molecular function. Figure 3A shows the GO enrichment 

results of all three classifications (only the GO term 

results of –log10(adj P)>5 are shown). Among the 

results, the related biological processes involved in HF 

include extracellular matrix organization, heart 

contraction, macrophage activation, and cell–substrate 

adhesion. The cellular components involved include 

collagen-containing extracellular matrix. The molecular 

functions included integral binding and other important 

functions. Figure 3B shows part of the GO enriched 

terms and the significant DEGs involved. We also 

performed KEGG pathway enrichment analysis on the 

DEGs, as shown in Supplementary Figure 1, which 

shows the results of significant enriched biological 

pathways involved and the corresponding DEGs. 

 

Random forest screening for DEGs 
 

Next, we input the 281 DEGs into the random forest 

classifier. To find the optimal parameter mtry (i.e., to 
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Figure 1. Flowchart. 
 

 
 

Figure 2. (A) Volcano plot of differential expression analysis results. The abscissa is logFC and the ordinate is –log10 P value. The upper right 
part has a P value less than 0.01 and a fold change greater than 1.5, indicating significant DEGs with higher expression levels. The upper left 
part has a P value less than 0.01 and a fold change less than −1.5, indicating significant DEGs with reduced expression. The green dots 
represent the remaining stable genes. (B) Heatmap of DEGs. The colors in the graph from red to green indicate high to low expression. On the 
upper part of the heatmap, the red band indicates the disease samples and the blue band indicates the normal samples. 
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specify the optimal number of variables for the binary 

trees in the nodes), we performed a recurrent random 

forest classification for all possible numbers among the 

1–281 variables and calculated the average error rate of 

the model. Figure 4A shows the average error rate when 

all variables were selected. Finally, we chose 6 as the 

parameter of variable number. The number of variables 

was as small as possible, and the out-of-band error was 

 

 
 

Figure 3. Graph showing the enrichment analysis results. (A) Bubble plot of GO enrichment results. Biological processes are shown on 
the left, cellular components are shown in the middle, and molecular function is shown on the right. The x-axis represents the z-score, and 
the y-axis indicates the −log10(adj P) values. A bubble represents a GO term, with the size of the bubble indicating the number of genes in the 
GO term. The results after deduplication of the GO enrichment results are shown, and the threshold is 75% coverage. The GO terms with –
log10(adj P) > 5 are marked and shown in the table. (B) Ring plot showing GO enrichment. The left side indicates the DEGs, the red gene band 
indicates upregulation, and blue indicates downregulation. The band on the right with different colors represents different GO terms. The 
connecting line indicates that the gene is included in the GO term. 
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as low as possible. Referring to the relationship plot 

between the model error and the number of decision 

trees (Figure 4B), we selected 2000 trees as the 

parameter of the final model, which showed a stable 

error in the model. In the process of constructing the 

random forest model, the variable importance of the 

output results (Gini coefficient method) was measured 

from the perspective of decreasing accuracy and 

decreasing mean square error (see Supplementary File 3 

for the importance output results). We then identified 

six DEGs with an importance greater than 2 as the 

candidate genes for subsequent analysis. Figure 4C 

shows that among the six variables, HMOX2 and 

CSDC2 were the most important, followed by ZMAT1, 

 

 
 

Figure 4. (A) Scatter plot of the effect of variable number selection on the average error rate. The x-axis represents the number of variables, 
and the y-axis indicates the out-of-band error rate. The point in the lower left represents the number of variables (i.e., six). (B) The influence 
of the number of decision trees on the error rate. The x-axis represents the number of decision trees, and the y-axis indicates the error rate. 
When the number of decision trees is approximately2000, the error rate is relatively stable. (C) Results of the Gini coefficient method in 
random forest classifier. The x-axis indicates the genetic variable, and the y-axis represents the importance index. (D) Heatmap of 
unsupervised clustering showing the results of the hierarchical clustering produced by the six important genes generated by random forest in 
GSE57345. Red color indicates genes with high expression in the samples, blue color indicates genes with low expression in the samples, the 
red band on the upper side of the heatmap indicates normal samples, and the blue band indicates HF disease samples. 
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SERPINA3, FREM1, and LCN6. Based on these six 

important variables, we performed k-means 

unsupervised clustering of the GSE57345 dataset. 

Figure 4D shows that the six genes could be used to 

distinguish between the disease and normal samples in 

313 samples of the GSE57345 dataset. Among them, 

ZMAT1 and FREM1 genes are a cluster with low 

expression in the normal samples and high expression in 

the disease samples. On the other hand, SERPINA3, 

LCN6, HMOX2, and CSDC2 belong to another cluster 

with high expression in the normal samples and low 

expression in the disease samples. 

 

Construction of the artificial neural network model 

 

We used another dataset of GSE141910 to construct 

an artificial neural network model based on the 

neuralnet package. The first step was data 

preprocessing, which was performed to normalize the 

data. Next, the min-max method was selected [0,1], 

and was pressed to separate the zoom data before 

training the neural network. Before starting the 

calculation, the maximum and minimum data values 

were standardized and the number of hidden layers 

was set as 5. In the choice of parameters, there was no 

fixed rule on how many layers and neurons were to be 

used. The number of neurons should be between the 

input layer size and the output layer size, usually two-

thirds of the input size. Thus, the parameter of number 

of neurons was set as 6. To more effectively evaluate 

the results of the neural network model, we selected a 

5-fold cross-validation method. The dataset was 

randomly divided into a training set and a verification 

set. The purpose of the training set was to determine 

the weights of candidate DEGs. The verification set 

was used to verify the classification efficiency of the 

model score constructed with gene expression and 

gene weight. The calculation formula of the 

classification score of the obtained disease neural 

network model is as follows: 

 

 

neuraHF

Gene Expression Neural Network Weight




 

 

The 5-time cross-validation results display the model 

classification performance using the receiver operating 

characteristic (ROC) curve (Figure 5A). In addition, a 

confusion matrix was used to evaluate the predicted 

performance (Table 1). The areas under the ROC 

curves (AUC) of the five-time cross-validation  

results were close to 1 (average AUC > 0.99), which 

shows the robustness of the model. Therefore, we next 

used all the data to construct the neural network 

model. 

From the output results of the neural network model 

(Supplementary File 4 and Figure 5B), it can be seen 

that the entire training was performed in 1423 steps. 

The termination condition was that the absolute partial 

derivative of the error function was <0.01 (reaching the 

threshold). The output results show that the weights of 

the model ranged from −4.67 to 4.53. The weight 

predictions were 4.527373 (HMOX2), −4.7670777 

(CSDC2), 1.478590 (ZMAT1), 2.332519 (SERPINA3), 

−4.522891 (FREM1), and 1.940819 (LCN6). 

 

Evaluation of AUC 
 

Using the three independent verification datasets of 

GSE116250, GSE42955, and GSE84796, after the 

maximum and minimum standardized data processing, 

the three scores were calculated and their classification 

efficiency was evaluated, and the AUC were compared. 

The three scores were as follows: 1) neuraHF, the 

scores obtained by summing the DEGs identified in this 

study multiplied by the weights obtained in the neural 

network; 2) CD8K [9], and 3) TP53 [10], which are 

reported characteristic genes associated with HF 

diseases in the literature. 

 
Figure 6 shows a comparison of the three scores of the 

three independent verification datasets. In the 

GSE116250 dataset (Figure 6A), the AUC of neuraHF, 

CD8K, and TP53 was 0.991, 0.683, and 0.597, 

respectively. neuraHF had a sensitivity of 100% and a 

specificity of 96%. In the GSE42955 dataset (Figure 

6B), the AUC of neuraHF, CD8K, and TP53 was 0.858, 

0.517, and 0.65, respectively. neuraHF had a sensitivity 

of 80% and a specificity of 95.8%. In the verification 

results of GSE84796 (Figure 6C), the AUC of neuraHF, 

CD8K, and TP53 was 0.871, 0.586, and 0.486, 

respectively. The sensitivity and specificity of neuraHF 

were 85.7% and 80%, respectively. 

 

DISCUSSION 
 

In this study, we calculated DEGs related to HF for the 

first time, and obtained six important candidate DEGs 

through the random forest classifier. We used a neural 

network model to determine the predicted weights of 

related genes, construct the classification model score 

neuraHF related to HF diseases, and evaluate the 

classification efficiency of the model score in three 

independent sample datasets. The AUC efficiency was 

excellent, and neuraHF was found to have a better 

classification efficiency compared with the other two 

HF-related biomarkers. However, because the weight 

predicted by RNA-seq used in constructing the neural 

network model was theoretically more suitable for 

disease classification of RNA-seq data, the GSE116250 

dataset showed the best performance in the verification 
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results. Meanwhile, because of the lack of the gene data 

for HFpEF in the GEO database, the genetic 

characteristics of HFpEF were not included in the 

construction of the diagnostic model, thereby 

compromising the diagnostic effectiveness of the model 

for HFpEF. 

 

Of these six genes, HMOX2 encodes heme oxygenase-2 

(Hmox2), which is mainly expressed in the brain and 

testes [11–13]. Compared with heme oxygenase-1 

(Hmox1), which has long been a focus of 

cardiovascular research, the study of Hmox2 is still in 

its infancy. It has been reported that Hmox2 plays an 

important role in oxygen sensing through the BKCa
2+

 

channel in the carotid artery [14]. Meanwhile, Hmox2 

also influences multiple biological processes by 

regulating the heme concentration in cells and the levels 

of CO and H2S. As an activator of soluble guanylyl 

cyclase, CO can activate the cGMP signaling pathway. 

In addition, the effect of CO on vascular relaxation also 

depends on the arrangement of the anatomical structure 

of the blood vessels and the relative ratios of heme 

 

 
 

Figure 5. (A) Verification of the ROC curve results by the five-time cross-validation model. (B) Results of neural network visualization. 
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Table 1. Five-time cross-validation results. 

 
AUC Accuracy 

FoldValidation 1 1 0.986301 

FoldValidation 2 0.987256 0.946667 

FoldValidation 3 0.99095 0.958904 

FoldValidation 4 0.990676 0.958333 

FoldValidation 5 0.996246 0.972603 

 

oxygenase/CO and eNOS/NO. In addition, CO inhibits 

the production of the strong vasoconstrictor endothelin-

1. Related studies have shown that CO can modulate 

cerebral blood flow by regulating the H2S pathway. 

However, most of these biological processes are 

achieved through first sensing of the O2 concentration 

by Hmox2 [15]. It is speculated that Hmox2 inhibits the 

systemic reactions in hypoxic diseases, but the specific 

mechanism remains unclear [15]. In general, oxidative 

stress is present in most cardiovascular diseases [16]. 

The specific mechanism is that a large number of 

cardiac cells (cardiomyocytes, endothelial cells, and 

neutrophils) can produce reactive oxygen species 

(ROS). Under normal physiological conditions, the 

heart exerts a defensive antioxidant function to maintain 

a dynamic balance with ROS generation. However, 

under the stimulation of pathological factors, this 

balance is quickly altered, and a large amount of ROS is 

released, causing peroxidation of functional proteins 

and lipids, and DNA damage, which leads to impaired 

myocardial contractile function and extracellular matrix 

remodeling [17]. Although Hmox2 is important to 

remove intracellular ROS, it plays an essential role in 

protecting cells from ROS-induced damage [18]. 

SERPINA3 encodes serine protease inhibitor A3 

(serpinA3), which is also known as α1 

antichymotrypsin and is a member of the serpin 

superfamily. It plays an important role in the 

pathogenesis of various diseases [19, 20]. It activates 

immune cell functions mainly through influencing 

cathepsin G and elastase [21]. Interestingly, cathepsin 

G is present in large amounts in neutrophil granules 

and is mostly released during inflammation. However, 

long-term excessive release of cathepsin G can cause 

adverse reactions [22]. Inhibition of neutrophil 

accumulation in ischemic myocardium and continuous 

infusion of recombinant human α1 antichymotrypsin 

can significantly reduce the incidence of myocardial 

ischemia and reperfusion injury [23]. A proteomics 

analysis reveals that the serpinA3 level is elevated in 

the epicardial fat tissue of patients with HF and 

positively correlated with those of brain natriuretic 

peptide and C-reactive protein [22]. Furthermore, 

heart tissue of patients with HF can secrete a  

large amount of serpinA3 by itself, further  

increasing the intestinal tumor burden in mice [24]. 

These results implicate a role of serpinA3 in the 

development of HF. 

 

 
 

Figure 6. Plot showing AUC verification results. (A) AUC verification results in the GSE116250 dataset. (B) AUC verification results in the 

GSE42955 dataset. (C) AUC verification results in the GSE84796 dataset. The points marked on the ROC curve are the optimal threshold 
points, and the values in parentheses represent sensitivity and specificity. The AUC value is the area under the ROC curve. 
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The structurally conserved ligand-binding hydrophobic 

proteins of the lipocalin (LCN) family are widely 

represented in prokaryotes and eukaryotes [25]. 

Although LCN6 is highly enriched in human heart 

tissue [26] its function seems to maintain normal 

reproduction in male. However, there has been no 

relevant research exploring its role in the pathogenesis 

of HF. 

 

More interestingly, during the analysis process of 

constructing a diagnostic model of HF, we identified for 

the first time that three key genes (CSDC2, FREM1, and 

ZMAT1) probably play a role in the pathogenesis of HF. 

Cold shock domain-containing C2 (CSDC2) is highly 

enriched in the human ovary, heart, adrenal gland, 

brain, and other tissues. The CSDC2 protein encoded by 

this gene is an RNA-binding protein. Accumulating 

evidence shows that CSDC2 is involved in the 

development of pyramidal neurons and maintaining 

normal decidualization in early pregnancy [27, 28]. 

FRAS1-related extracellular matrix 1 (FREM1) that 

encodes a basement membrane protein is highly 

expressed in the human endometrium and kidney. A. 

Mutation of FREM1 causes nasal fissure with or 

without anorectal and kidney development 

abnormalities, suggesting a role in craniofacial and 

kidney development [29, 30]. Interestingly, after 

alternative splicing, the gene precursor encode and 

synthesize TILRR, an IL-1RI co-receptor that can 

enhance the recruitment of My88 and regulate Ras-

dependent nuclear factor-κB amplification and immune 

inflammation [31]. Because of the significant activation 

of inflammation in the development of HF, this gene is 

likely to impact the pathogenesis of HF. Zinc finger 

matrin-type 1 (ZMAT1) is significantly enriched in 

human thyroid and ovary tissues and also expressed to 

some extent in heart tissues. There have been no reports 

on the function of this gene, but recent gastric cancer-

related studies indicate that its long-chain non-coding 

RNA transcript variant 2 is associated with the poor 

prognosis of gastric cancer [32]. However, this study 

does not specify the biological function of the gene 

involved in the poor prognosis of gastric cancer.  

 

The difficulty in obtaining heart specimens may reduce 

the potential application for HF. However, our present 

study does not intend to completely replace the existing 

diagnostic and treatment methods, but rather aim to 

supplement these methods. Generally, the current 

diagnostic criteria and procedures are based on data 

from patients with HFrEF. However, it remains unclear 

whether these are fully applicable to patients with 

HFpEF. For instance, it is difficult to diagnose mild 

symptoms of HFpEF using these noninvasive methods. 

However, the diagnostic model derived from our study 

can be applied to determine the possibility of heart 

failure by a timely cardiac biopsy. Therefore, our 

approach has a certain clinical value. Clearly, the 

accuracy of the model needs to be investigated further 

in light of our present results. 

 

MATERIALS AND METHODS 
 

Data download and processing 

 

The GEOquery [33] package was used for downloading 

data to obtain the expression profile and clinical 

phenotype data of chip datasets GSE57345, GSE42955, 

and GSE84796 and RNA-seq datasets GSE141910 and 

GSE116250, which are shown in Table 2. The 

respective annotation information of the chip probes of 

the corresponding platforms was obtained from the 

GEO database. During the conversion of chip probe ID 

and gene symbol, multiple probes were found to 

correspond to 1 gene symbol. In this case, the average 

probe expression was used as the gene expression level. 

The org.Hs.eg.db package (version 3.7.0) was used to 

perform gene ID conversion on the RNA-seq expression 

profile. 

 

Differential expression and enrichment analysis 

 

The R software package limma [34] was used to 

conduct differential analysis on 136 normal and 177 HF 

samples of GSE57345. The limma software package 

uses the classic Bayesian data analysis to screen DEGs. 

The significance criteria for DEGs were set at a P value 

of less than 0.05 and logFoldChang (logFC) greater 

than 1.5. The pheatmap software package was used to 

draw the heat map of DEGs, and the R package 

clusterProfiler [35] was used to perform GO function 

enrichment analysis and KEGG enrichment analysis on 

related genes to identify three types of significantly 

enriched GO terms (P < 0.05) and significantly enriched 

pathways (P < 0.05). 

 

Random forest screening for important genes 

 

The randomForest software package was used to 

construct a random forest model for the DEGs [36]. 

First, the average model miscalculation rate of all genes 

based on out-of-band data was calculated. The best 

variable number for the binary tree in the node was set 

as 6, and 2000 was chosen as the best number of trees 

contained in the random forest. Next, a random forest 

model was constructed and the dimensional importance 

value from the random forest model was obtained using 

the decreasing accuracy method (Gini coefficient 

method). The genes with an importance value greater 

than 2 and ranked in the top six were chosen as the 

disease specific genes for the subsequent model 

construction. The software package pheatmap was used 
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Table 2. Data download. 

Data Sample size Organization type Data type 

GSE57345 313(Normal: 136; Disease: 177) Non-Failing: 136 Microarray 

 Heart left ventricle, idiopathic dilated CMP: 82  

 Heart left ventricle, ischemic: 95  

GSE141910 399(Normal: 166; Disease: 233) Dilated cardiomyopathy (DCM): 166  RNA-Seq 

 Hypertrophic cardiomyopathy (HCM): 28  

 Non-Failing:166   

 Peripartum cardiomyopathy (PPCM):6  

GSE42955 29(Normal: 5; Disease: 24) Ischemic heart tissue: 12 Microarray 

 Dilated heart tissue: 12  

 Normal heart tissue: 5  

GSE84796 17(Normal: 7; Disease: 10) End-stage heart failure patients at the moment of heart 

transplantation: 10 

Microarray 

 Non-Failing: 7  

GSE116250 64(Normal: 14; Disease: 50) Dilated cardiomyopathy: 37 RNA-Seq 

 Ischemic cardiomyopathy: 13  

 Non-Failing: 14  

 

to reclassify the unsupervised hierarchical clusters of 

the six important genes in the GSE57345 dataset and 

draw a heat map. 

 
Neural network to build disease classification model 

 
Another dataset GSE141910 was selected for neural 

network model training. After the data was normalized 

to the maximum and minimum values, the R software 

package neuralnet (version 1.44.2) [37] was used to 

construct an artificial neural network model of the 

important variables. Four hidden layers were set as the 

model parameters to construct a classification model of 

HF diseases through the obtained gene weight 

information. In this model, the sum of the product of the 

weight scores multiplied by the expression levels of the 

important genes was used as the disease classification 

score. Caret (version 6.0) [38] was used to perform a 

five-fold cross-validation of the model results, the 

confusion matrix function was used to calculate the 

results of the five-fold cross-validation to obtain the 

model accuracy results, and pROC [39] software 

package was used to calculate the verification results of 

AUC classification performance. 

 

Additional data verification 
 

The classification score model for the constructed HF 

diseases and the normal samples was tested for 

effectiveness verification on three independent datasets 

(GSE116250, GSE42955, and GSE84796). The pROC 

software package was used to draw three ROC curves 

for each dataset, and the area under the ROC curve was 

calculated to verify the classification efficiency. This 

was then compared with the classification efficacy of 

another two reported biomarkers of HF diseases. 

Meanwhile, the optimal threshold in the ROC curve 

and the sensitivity and specificity in classifying 

diseases and normal samples under this threshold were 

calculated. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Graph showing the KEGG enrichment analysis results. (A) Bubble chart showing the KEGG pathway 

enrichment results. The x-axis indicates the z-score, and the y-axis represents the −log10(adj P) value. A bubble represents a KEGG pathway, 
with the size of the bubble indicating the number of genes in the pathway. The pathway enrichment results of −log10(adj P) > 1.3 (P<0.05) in 
the figure are marked and shown in the table. (B) Ring plot showing the KEGG pathway enrichment. The left side shows the DEGs, the red 
gene band indicates upregulation, and blue indicates downregulation. The band on the right side with different colors represents different 
pathways. The connecting line indicates that the gene is involved in the pathway. 
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1–4. 

 

Supplementary File 1. 281 significant DEGs related to HF diseases. 

Supplementary File 2. The GO enrichment results before and after deduplication. 

Supplementary File 3. The importance output results of the random forest model. 

Supplementary File 4. The output results of the neural network model. 

 


