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Abstract: Hypertension is a chronic disease that kills 7.6 million people worldwide annually. A
continuous blood pressure monitoring system is required to accurately diagnose hypertension. Here,
a chair-shaped ballistocardiogram (BCG)-based blood pressure estimation system was developed
with no sensors attached to users. Two experimental sessions were conducted with 30 subjects. In the
first session, two-channel BCG and blood pressure data were recorded for each subject. In the second
session, the two-channel BCG and blood pressure data were recorded after running on a treadmill
and then resting on the newly developed system. The empirical mode decomposition algorithm
was used to remove noise in the two-channel BCG, and the instantaneous phase was calculated by
applying a Hilbert transform to the first intrinsic mode functions. After training a convolutional
neural network regression model that predicts the systolic and diastolic blood pressures (SBP and
DBP) from the two-channel BCG phase, the results of the first session (rest) and second session
(recovery) were compared. The results confirmed that the proposed model accurately estimates
the rapidly rising blood pressure in the recovery state. Results from the rest sessions satisfied the
Association for the Advancement of Medical Instrumentation (AAMI) international standards. The
standard deviation of the SBP results in the recovery session exceeded 0.7.

Keywords: cuffless blood pressure monitoring system; hypertension; ballistocardiogram (BCG);
convolutional neural network (CNN)

1. Introduction

Hypertension is a chronic disease that kills 7.6 million people worldwide every year [1].
It is challenging to accurately diagnose this disease due to masked hypertension, white
coat hypertension, and nocturnal hypertension [2,3]. Continuous blood pressure (BP)
monitoring systems are required to accurately diagnose hypertension to help prevent
various diseases [4]. Ambulatory BP monitoring has been found to be more helpful than
clinical BP measurements in predicting various cardiovascular diseases [5].

Most methods to measure BP in non-clinical settings, including ambulatory BP moni-
toring, require a cuff to be worn around the upper arm; however, because this method is
inconvenient, many people fail to measure their BP regularly. A non-intrusive BP monitor-
ing system and BP estimation technologies were developed to replace the conventional
cuff method [6].

The most frequently used cuffless methods of estimating BP use electrocardiograms
(ECGs), photoplethysmograms (PPGs) [7], or dual PPG [8] signals. The pulse transit
time (PTT) and pulse wave velocity (PWV) extracted from these signals are known to
be highly correlated with BP [4,9]. Conventional methods of measuring PPG and ECG
signals attach sensors to fingers (PPG) or electrodes to the body (ECG). However, many
non-intrusive signal measurement methods have been developed recently, providing a
convenient method for users to measure signals [10,11]. Ballistocardiogram (BCG) signals
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are bio-signals, which can be used to determine the heart rate and respiratory rate of users
non-intrusively [12]. BCG signals are difficult to analyze because they have non-linear and
non-stationary characteristics; however, the BCG-based PTTs are highly correlated with
BP [12,13].

It is important to estimate the normal BP, but it is also essential to make accurate
estimates even during rapid increases in BP due to factors such as exercise and stress. In a
previous study [14], we estimated subjects’ BP using the instantaneous phase difference
(IPD) extracted from the BCG signals. In this study, to examine the performance of the
proposed model for estimating the BPs of subjects during rapid increases, we induced
an increase in the BP of the subjects and measured their BP until it returned to normal.
There are two major differences between this study and the previous one. First, the BP
of the subjects was increased rapidly by having them run on a treadmill, which showed
a significant difference from the BP measured in the previous study. Second, whereas
the subjects’ BP in the previous study was estimated using the IPD and calculated from
the BCG, in this study, the BCG phase was calculated, and the BP was estimated using a
convolutional neural network (CNN) regression model.

Related studies on BP estimation extracted ECG, PPG, and BCG peaks and measured
the distance between the peaks to calculate the PTT and PWV to estimate BP. One disadvan-
tage of this PTT based method is that if the peak detection is not performed correctly, the
BP estimation performance may decrease. This method is highly feature-dependent, as the
BP estimation model performs a regression analysis on the previously extracted features
rather than learning the patterns in the signals. In our previous study, we also determined
the IPD by calculating the difference between the phases of the two-channel BCG.

To overcome the drawbacks of feature-based methods, deep learning methods are
frequently utilized. An increasing number of studies have created an end-to-end model
by applying deep learning to analyze bio-signals, such as EEG, ECG, PPG, and BCG,
instead of manually extracting features. In a related study, CNNs and gated recurrent
units (GRUs) were utilized for bio-signal analysis, which resulted in superior feature-based
methods [15,16].

In the present study, a CNN was used to improve upon the currently available feature-
dependent methods. We propose a CNN regression model that learns the patterns within
the signal of the two-channel BCG phase without extracting the IPD.

2. Materials and Methods
2.1. System Summary

A sofa-style experimental chair was fabricated to provide an environment where
the BCG of the subjects could be measured while they are seated freely. The seat was
constructed by inserting a polyvinylidene fluoride resin (PVDF) film between the cushions
of the chair and natural leather to measure the BCG signals from the subject’s back and
thighs. A PPG sensor (RP520, Laxtha, Daejeon, Korea) attached to the subject’s fingers
was designed to take measurements simultaneously with the BCG sensor. The PPG and
BCG signals were sent from a proprietary board with a sampling frequency of 100 Hz,
using the Atmega256 MCU (Atmel Corporation, San Jose, CA, USA). The BCG signals were
transmitted wirelessly to a computer via Bluetooth (Parani ESD-200, Sena Technologies,
Seoul, Korea) (Figure 1A). Noise removal, preprocessing of the PPG and BCG signals, and
creation of the BP estimation model were performed in Python 3.7.1 (Python Software
Foundation, Fredericksburg, VA, USA) [17] and Tensorflow 2.3.1 (Google, Mountain View,
CA, USA) [18] (Figure 1B). The overall system structure is presented in Figure 1.
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approved by the Public Organization Bioethics Committee designated by the Ministry of 
Health and Welfare of South Korea (IRB P01-2018012-11-001). 

All subjects started the experiment at 2 PM, and the experiment consisted of two 
sessions. In the first session (rest session), the reference BP was measured with a cuff-
type BP gauge (HEM-7121, Omron, Kyoto, Japan), and the BCG signals were 
simultaneously measured five times per minute. In the second session (recovery 
session), the subjects ran on a treadmill (Radon, Drax, Anyang, Korea) where the speed 
and slope were electronically controlled based on the Balke incremental treadmill test 
[19]. The subject’s maximum heart rate was calculated as “220-age,” and the treadmill 
was stopped when 80% of their maximum heart rate was reached [20]. The average 
exercise intensity given to the subjects was 79.5 ± 8.2%. After running on the treadmill, 
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During recovery, their BP and heart rate were measured 10 times per minute with the 
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Figure 1. The overall workflow of the chair-shaped ballistocardiogram (BCG)-based blood pressure
estimation system; (A) BCG signal measurement; (B) Blood pressure estimation model.

2.2. Experimental Procedure

The experiment in this study was conducted with a total of 30 subjects (14 males and
16 females), including subjects from a wide range of ages (20–50s). Patient averages were
as follows: age: 35.3 ± 12.5 years, height: 166.1 ± 9.4 cm, weight: 63.3 ± 12.8 kg. Healthy
subjects without hypertension were selected for this study. This study was approved by
the Public Organization Bioethics Committee designated by the Ministry of Health and
Welfare of South Korea (IRB P01-2018012-11-001).

All subjects started the experiment at 2 PM, and the experiment consisted of two
sessions. In the first session (rest session), the reference BP was measured with a cuff-type
BP gauge (HEM-7121, Omron, Kyoto, Japan), and the BCG signals were simultaneously
measured five times per minute. In the second session (recovery session), the subjects ran
on a treadmill (Radon, Drax, Anyang, Korea) where the speed and slope were electronically
controlled based on the Balke incremental treadmill test [19]. The subject’s maximum
heart rate was calculated as “220-age,” and the treadmill was stopped when 80% of their
maximum heart rate was reached [20]. The average exercise intensity given to the subjects
was 79.5 ± 8.2%. After running on the treadmill, the subjects rested by sitting on the chair-
shaped blood pressure estimation system. During recovery, their BP and heart rate were
measured 10 times per minute with the chair-shaped blood pressure estimation system
and the cuff-type blood pressure gauge simultaneously.

2.3. BCG Signal Processing Using Empirical Mode Decomposition

The BCG signals contain diverse health information such as heart rate, respiratory
rate, and body movements. A third-order Butterworth band-pass filter was used to isolate
the heart rate signals, with the cut-off frequency set between 0.5 Hz and 6 Hz. Figure 2
shows the results after filtering the two-channel BCG signals measured in the back and
bottom seat.
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Figure 2. Two-channel BCG signals measured in the back and bottom seat applied to the Butterworth
band-pass filter.

Even when a band-pass filter is applied, it is challenging to effectively extract car-
diorespiratory signals from the BCG signals. Empirical mode decomposition (EMD) is
generally utilized to handle BCG signals and is more appropriate than other signal process
algorithms. Therefore, an EMD algorithm was used to preprocess the BCG signals in
this study. The process of decomposing the signals using the EMD algorithm is called
the “sifting process.” The intrinsic mode functions (IMFs) are extracted from the signals
containing high-frequency domains, and IMF (1), IMF (2), . . . IMF (n) are extracted, where
n is the total number of IMFs. The EMD algorithm is constructed as follows [21]:

1. Find the maximum and minimum values of the raw signals x(t) and create upper and
lower envelopes using spline interpolation.

2. Calculate the difference between the upper and lower envelopes, and estimate the
average m(t) of the maximum and minimum envelopes.

3. Extract new signals hn(t), which is the raw signal x(t) minus the average m(t), that
become each IMF (n). Repeat steps 1–3.

4. Stop repeating when the new IMF signal has only a single extreme value and is
expressed as a monotone function.

The instantaneous phase was obtained by applying a Hilbert transform to the first IMF
extracted by the EMD algorithm. The resulting instantaneous phase is presented in Figure 3.
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2.4. 1-D CNN

A CNN regression model was implemented to estimate subjects’ BP. CNNs learn the
BCG signal patterns by utilizing the instantaneous phase, calculated from the two-channel
BCG, as an input. Our previous study performed a regression analysis with an artificial
neural network (ANN) using the IPD calculated from the differences in the two-channel
BCG phase. However, in this study, the CNN model learned the pattern of the two-channel
BCG phase and hence did not require IPD features.

The CNN model was implemented using Python 3.7.1 and Tensorflow 2.3.1. A single
CNN model was implemented to estimate the systolic and diastolic blood pressures (SBP
and DBP) in both the rest and recovery sessions. The architecture of the proposed CNN
model is presented in Figure 4.
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The input of the CNN regression model takes two channel BCG phases. The CNN
regression model estimated the BP with two 10 s channel BCG phases and was trained
separately to estimate the SBP and DBP.

The CNN model comprises three convolution layers, max-pooling layers, one global
average pooling layer, and one dense layer. The first 1-D convolution layer has 100 filters,
with a kernel size of 21 and one stride. Since the number of filters is usually a multiple of the
sampling rate when bio-signals such as PPG and ECG are applied to the 1-D CNN, it was set
to the BCG sampling frequency, that is, 100 Hz [22]. The second and third 1-D convolution
layers were set to 200 Hz and 300 Hz by multiplying the BCG sampling frequency by two
and three, respectively. The kernel size was decreased from 21 in the first convolutional
layer to five in the second and third layers. The input of each layer was normalized
through the batch normalization layer after passing through the convolutional layer. Then
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nonlinearity was added using the rectified linear unit (ReLU) activation function. The
max-pooling layers were placed after the first and second convolutional layers, which
decreases the sequence length through the CNN by half. After the final convolutional layer,
the global average pooling layer was replaced with the used flattened layer [23]. Only one
layer was used for the final dense layer because overfitting occurred when composed of
multiple fully connected layers. The final layer for regression used the identity activation
function, which outputs the input value as it is. This value is directly connected to BP. To
train the model, the mean squared error loss was used. The learning rate was set to 0.001,
and the Adam optimizer was used as the optimizer.

As the input consists of BP (SBP and DBP) and BCG signals every 10 s, a 10 s BCG
signal was used as a single epoch. The BCG and BP were measured five times for 10 s in
the rest session and 10 times for 10 s in the recovery session. The training and test sets were
divided by an 8:2 ratio. After separation, the training set was further partitioned into 10
equally sized segments to conduct 10-fold cross-validation.

3. Results
BP Estimation Model

After training with the 10-fold cross-validation, the optimal CNN regression model
estimated the BPs in the test set. Table 1 lists the mean error (ME) and standard deviation
(SD) of the SBP and DBP estimations by the CNN model for the rest and recovery sessions.

Table 1. Mean errors (ME) and standard deviations (SD) of systolic and diastolic blood pressures
(SBP and DBP) in the rest and recovery sessions.

SBP (mmHg) DBP (mmHg)

ME SD ME SD

Rest 0.93 6.24 0.21 5.42

Recovery −1.12 8.74 −0.728 4.87

As shown in Table 1, the ME and SD of the SBP and DBP in the rest sessions were
lower than the National Standards Institute/Association for the Advancement of Medical
Instrumentation/International Organization for Standardization (ANSI/AAMI/ISO) 2013
protocol (ME < 5 mmHg, SD < 8 mmHg) [24]. In the recovery session, the SD values slightly
exceeded the AAMI standard.

In the rest session, the ME and SD of the predicted and actual BP values of the
SBP prediction model were 0.93 and 6.24, respectively, while the ME and SD of the DBP
prediction model were 0.21 and 5.42, respectively. In the recovery session, the ME and
SD of the predicted and actual BP values of the SBP prediction model were −1.12 and
8.74, respectively, and the ME and SD of the DBP prediction model were −0.728 and 4.87,
respectively. Comparing the ME and SD between the rest and recovery sessions shows that
the proposed model performed better for the rest session than the recovery session except
DBP standard deviation. Figure 5 shows Bland–Altman plots for the SBP estimations made
by the CNN model in the rest session. Figure 6 shows the Bland–Altman plots for the DBP
estimations made by the CNN model in the rest session. Figure 7 shows the Bland–Altman
plots of the SBP estimations made by the CNN model in the recovery session. Figure 8
shows the Bland–Altman plots of the DBP estimations results made by the CNN model in
the recovery session.
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4. Discussion

In this study, we developed a chair-shaped BCG measurement system using two
PVDF films to non-intrusively estimate the BP of users. Previous studies have developed
chair-shaped blood pressure estimation systems, but they require users to keep touching
the hand-rest of the chair [25]. In contrast, the system developed in this study has the
advantage that BP can be measured while the user is seated in a chair.

A previous study calculated the difference between the 2-channel BCG phases using
the IPD in the rest session and found that the IPD is more strongly correlated to BP than the
PTT [14]. In this study, the recovery session was added to verify the system’s performance
at high BPs. Instead of merely measuring the high BP, it was measured over a 10 min
period while the heart rate of subjects returned to normal after exercising to 80% of their
maximum heart rate.

In our previous study, BP was estimated using data from a rest session. As a result,
the standard deviation was 6.74 in SBP and 5.83 in DBP. However, in the CNN model, the
standard deviation was 6.24 in SBP and 5.42 in DBP. The standard deviation difference
in SBP was about 0.5, and the CNN regression model result was better than that of the
IPD based ANN model. The standard deviation difference in DBP was about 0.41, and
the CNN model showed better results than IPD. The IPD feature is calculated when the
difference between BCG 2-channel phases becomes constant. It could not be used in the
recovery session due to the noise caused by the breathing and movements of subjects when
they exercised. Therefore, we could not compare the IPD and the CNN regression model
in the recovery session dataset. However, the CNN model learns the relationship between
BCG 2-channel phases without calculating IPD. Moreover, it can predict BP in a recovery
session with similar performance to a rest session.

While measuring the BP, many factors (gender, age, disease, BP measurement time,
etc.) have a significant influence on the BP estimation. Therefore, by increasing the BP
of the subjects through exercise, we tried to exclude the factors that interfere with BP
measurement. Despite the noise in the recovery session dataset the CNN regression model
exhibited good BP estimation performance. When we attempted to train the CNN model
with the rest and recovery sessions together, the model exhibited overfitting. Therefore, the
CNN regression model was trained separately for each session. As a result, it was possible
to estimate the BP in the recovery session.

One limitation of this study is that only 30 subjects were included, which is smaller
than the number of subjects (85 minimum) recommended by the AAMI for evaluating a
blood pressure gauge [26]. If 85 or more subjects can be secured in additional experiments,
the CNN model’s performance could be enhanced, and the BPs could be predicted more
accurately. Additionally, we plan to investigate the training of raw BCG signals using deep
learning, utilizing continuous BCG signals’ characteristics. We also plan to investigate a
deep learning model’s training with improved better performance by creating an end-to-
end model without preprocessing.

This study’s results are particularly applicable to patients with chronic diseases who
are seated on sofas or chairs in houses and/or offices, dialysis patients who need constant
BP checks, and even to patients in medical beds, in and out of the clinical setting. Moreover,
the proposed system can measure BP with high accuracy even when the patient’s BP
rises abnormally.
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Abbreviations
The following abbreviations are used in this manuscript:
AAMI Association for the Advancement of Medical Instrumentation
ANN Artificial Neural Network
ANSI American National Standards Institute
BCG Ballistocardiogram
BP Blood Pressure
CNN Convolutional Neural Network
DBP Diastolic blood pressure
ECG Electrocardiogram
EMD Empirical mode decomposition
GRU Gated recurrent units
IMF Intrinsic mode function
IPD Instantaneous phase difference
ISO International Organization for Standardization
ME Mean error
PPG Photoplethysmogram
PTT Pulse transit time
PVDF Polyvinylidene fluoride resin
PWV Pulse wave velocity
SBP Systolic blood pressure
SD Standard deviation
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