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Abstract

Research Article

IntroductIon

Nonsmall cell lung cancer (NSCLC) is the most common 
type of lung cancer, affecting over 1.5 million people 
worldwide.[1] The disease often responds poorly to standard 
of care chemoradiotherapy and has a high incidence of 
recurrence, resulting in low 5-year survival rates.[2-4] Advances 
in immunology showed that NSCLC frequently elevates the 
expression of programmed death-ligand 1 (PD-L1) to bind 
to programmed death-1 (PD-1) expressed on the surface 
of T-cells.[5,6] PD-1 and PD-L1 binding deactivates T-cell 
antitumor responses, enabling NSCLC to evade targeting by the 
immune system.[7] The discovery of the interplay between tumor 
progression and immune response has led to the development 
and regulatory approval of PD-1/PD-L1 checkpoint blockade 

immunotherapies such as nivolumab and pembrolizumab.[8-10] 
Anti-PD-1 and anti-PD-L1 antibodies restore antitumor 
immune response by disrupting the interaction between PD-1 
and PD-L1.[11] Notably, PD-L1-positive NSCLC patients 
treated with these checkpoint inhibitors achieve durable tumor 
regression and improved survival.[12-16]

Background: Tumor programmed death‑ligand 1 (PD‑L1) status is useful in determining which patients may benefit from programmed 
death-1 (PD-1)/PD-L1 inhibitors. However, little is known about the association between PD-L1 status and tumor histopathological 
patterns. Using deep learning, we predicted PD-L1 status from hematoxylin and eosin (H and E) whole-slide images (WSIs) of nonsmall 
cell lung cancer (NSCLC) tumor samples. Materials and Methods: One hundred and thirty NSCLC patients were randomly assigned to 
training (n = 48) or test (n = 82) cohorts. A pair of H and E and PD-L1-immunostained WSIs was obtained for each patient. A pathologist 
annotated PD-L1 positive and negative tumor regions on the training samples using immunostained WSIs for reference. From the H and E 
WSIs, over 145,000 training tiles were generated and used to train a multi‑field‑of‑view deep learning model with a residual neural network 
backbone. Results: The trained model accurately predicted tumor PD-L1 status on the held-out test cohort of H and E WSIs, which was 
balanced for PD-L1 status (area under the receiver operating characteristic curve [AUC] =0.80, P << 0.01). The model remained effective 
over a range of PD-L1 cutoff thresholds (AUC = 0.67–0.81, P ≤ 0.01) and when different proportions of the labels were randomly shuffled to 
simulate interpathologist disagreement (AUC = 0.63–0.77, P ≤ 0.03). Conclusions: A robust deep learning model was developed to predict 
tumor PD-L1 status from H and E WSIs in NSCLC. These results suggest that PD-L1 expression is correlated with the morphological features 
of the tumor microenvironment.
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As the role of immunotherapy in oncology expands, it is useful 
to accurately assess tumor PD-L1 status to identify patients 
who may benefit from PD‑1/PD‑L1 checkpoint blockade 
immunotherapy. Immunohistochemistry (IHC) staining of 
tumor tissues acquired from biopsy or surgical specimens is 
commonly employed to assess PD-L1 status.[17-19] However, 
IHC staining can be limited by insufficient tissue samples, 
and in some settings, a lack of resources.[20,21]

Hematoxylin and eosin (H and E ) staining is fundamental 
to analyzing tissue morphological features for malignancy 
diagnosis, including NSCLC.[22,23] Furthermore, H and E 
slides may capture tissue visual characteristics that are 
associated with PD-L1 status. For example, Velcheti et al. 
and McLaughlin et al. both observed that PD-L1 positive 
NSCLC tended to have higher levels of tumor‑infiltrating 
lymphocytes (TILs).[24,25] However, quantification of TILs 
using H and E slides is laborious and affected by interobserver 
variability.[25,26] Moreover, TILs may be inadequate to fully 
describe the complexity of the tumor microenvironment and 
its relationship with PD-L1 status.

Technological advances have enabled the digitization of 
histopathology H and E and IHC slides into high-resolution 
whole-slide images (WSIs), providing opportunities to 
develop computer vision tools for a wide range of clinical 
applications.[27-29] Recently, deep learning applications 
to pathology images have shown tremendous promise in 
predicting treatment outcomes,[30] disease subtypes,[31,32] lymph 
node status,[27,28] and genetic characteristics[30,33,34] in various 
malignancies. Deep learning is a subset of machine learning 
wherein models are built with a number of discrete neural 
node layers, imitating the structure of the human brain.[35] 
These models learn to recognize complex visual features from 
WSIs by iteratively updating the weighting of each neural node 
based on the training examples.[29] To our knowledge, deep 
learning has never been applied to predicting PD-L1 status 
from H and E imaging features in NSCLC patients.

Here, we hypothesized that morphological changes to the NSCLC 
microenvironment associated with elevated PD-L1 expression 
can be recognized by deep learning. Our results may aid the 
further development of H and E -based imaging biomarkers that 
complement clinical IHC testing for tumor PD-L1 status.

MaterIals and Methods

The tissue samples and patient-related health information 
used in the study that is described in the manuscript were 
deidentified. All digital images and clinical data related to the 
tumor tissues were also anonymized.

Programmed death‑ligand 1 immunohistochemistry assay
A total of 130 deidentified, archival formalin-fixed, 
paraffin-embedded (FFPE) tumor tissues (1 tissue 
sample/patient) from NSCLC patients were used in this 
study. All the FFPE blocks were processed, reviewed, and 
stored in a College of American Pathologists (CAP) accredited 

and Clinical Laboratory Improvement Amendments (CLIA) 
certified laboratory (Tempus Labs Chicago, IL, USA).

Each FFPE block was cut into 4 μm-thick serial sections for 
H and E and IHC stains. H and E staining was performed on 
the Leica Autostainer XL staining platform. The sections were 
stained with H and E and anti-PD-L1 (clone 22c3, pharmDx Kit 
Dako) using an automated staining system (BOND-III: Leica 
Microsystems). IHC slides were stained with anti-PD-L1 22C3 
monoclonal mouse primary antibody using the Bond Polymer 
Refine detection system on a Leica Microsystems BOND‑III 
with positive and negative cell line run controls.

Assessment of programmed death‑ligand 1 expression
The level of PD-L1 expression, referred to as tumor PD-L1 
score or tumor proportion score, was defined as the number 
of partially or completely stained tumor cells at any intensity 
divided by the total number of tumor cells.[36] In accordance 
with the Food and Drug Administration (FDA) documents, a 
tumor tissue was considered to have a PD-L1 positive (PD-L1+) 
status if its expression level was >1%.[15,36] Tumor tissue 
with a PD‑L1 expression level ≤1% was considered PD‑L1 
negative (PD‑L1−). One of three CAP‑CLIA certified 
laboratory pathologists (N.B., B.M., or T.J.T.) reviewed 
IHC-stained slides and scored the level of PD-L1 expression.

Dataset distribution
A total of 130 H and E and their corresponding PD-L1 IHC slides 
were scanned and digitized at a resolution of 0.25 μm/pixel 
(40× magnification) using a Philips Ultra Fast Scanner (Philips, 
Eindhoven, The Netherlands). The images were initially 
acquired in the iSyntax format and then converted to the  tagged 
image format file (TIFF)  format using Philips’ proprietary 
algorithm. Eighty-two of these WSIs were randomly chosen 
as an independent test cohort. To ensure a balanced test cohort 
(i.e., 41 PD‑L1+ and 41 PD‑L1−), these slides were equally 
sampled from tumor PD‑L1+ and PD‑L1− cases [Table 1]. The 
remaining 48 were used as a training cohort to train our deep 
learning architecture [Figure 1a and b].

Training example generation
In the training cohort, PD‑L1+ and PD‑L1− tumor regions of 
IHC slides were manually annotated by a pathologist (T.L.T.). 
Annotations were made using the publicly-available digital 
pathology software QuPath.[37] Then, using the IHC annotations 
as a reference, matching areas on the corresponding H and E 
slides were annotated [Figure 1b]. In total, three classes 
(i.e., tumor PD‑L1+, tumor PD‑L1−, and other) were annotated 
on the H and E slides. Nontumor regions on the H and E 
slides, such as stroma, necrosis, and normal epithelium, were 
annotated as a single “other” class.

The annotated regions were tiled into overlapping 
tiles (466 × 466 pixels) with a stride of 32 pixels at 
10× magnification (1 pixel = 1 μm). Only tiles whose center 
fell within the annotated regions were kept. The tile size was 
chosen to provide spatial context to the network, while the 
stride was chosen to increase sampling density and the number 
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of training examples. This procedure produced 107,854 
PD‑L1+ and 57,837 PD‑L1− tiles.

Deep learning architecture
Our deep learning architecture is composed of three major 
components: (1) a fully convolutional residual neural 
network (ResNet) backbone that processes a large 466 × 466 
field of view (FOV), (2) two branches that process 32 × 32 
small FOVs, and (3) concatenation of small and large FOV 
features for multi‑FOV classification [Figure 1].

We chose ResNet because it overcomes the accuracy 
degradation challenges traditionally suffered by “very deep” 
neural networks (i.e., neural networks with more than 16 
convolutional layers).[38,39] ResNet consists of a stack of 
convolutional layers interleaved with “shortcut connections” 
which skip intermediate layers [Figure 1a]. These connections 
use earlier layers as a reference point to guide deeper layers to 
learn the residual between layer outputs rather than learning 
an identity mapping between layers. This innovation improves 
convergence speed and stability during training and allows 
deeper networks to perform better than their shallower 
counterparts.[38]

The backbone of our model consisted of an 18-layer version 
of ResNet (ResNet-18) with some modifications. The 
ResNet-18 backbone was converted into a fully convolutional 
network (FCN) by removing the global average pooling layer 
and eliminating zero padding in downsampled layers. This 

enables the output of a two-dimensional probability map rather 
than a one-dimensional probability vector [Figure 1c]. The tile 
size (466 × 466 pixels) is over twice the tile size of a standard 
ResNet, providing our model with a larger FOV that allows it 
to learn surrounding morphological features.

The model includes two additional branches with receptive 
fields restricted to a small FOV (32 × 32 pixels) in the center of 
the second convolutional feature map [Figure 1b]. One branch 
passes a copy of the small FOV through a convolutional filter, 
while the other branch is a standard shortcut connection with 
downsampling. The features produced by these additional 
branches are concatenated to the features from the main 
backbone just before the model outputs are converted into 
probabilities in the softmax layer. In this way, the model 
combines information from multiple FOVs, much like a 
pathologist relies on various zoom levels when diagnosing 
slides; our implementation ensures that the central region of 
each tile contributes more to classification than the tile edges, 
resulting in a more accurate classification map across the 
entire WSI.

Implementation details
Our model was implemented using PyTorch and trained on an 
NVIDIA Tesla V100 GPU by stochastic gradient descent with a 
batch size of 100. The ResNet-18 backbone was initialized with 
pretrained ImageNet weights.[40] Image augmentations, including 
random crop, random rotation, random flip, and color jitter, were 
performed batchwise during training. Batch normalization,[41] 

Table 1: Patient characteristics in the test and training cohorts

Test cohort Training cohort

PD‑L1+ (n=41), 
n (%)

PD‑L1− (n=41), 
n (%)

Overall (n=82), 
n (%)

PD‑L1+ (n=28), 
n (%)

PD‑L1− (n=20), 
n (%)

Overall (n=48), 
n (%)

Age (year)
Average 70 73 72 70 68 69
Range 38-93 57-86 38-93 50-87 36-84 36-87

Sex
Male 26 (63) 17 (41) 43 (52) 12 (43) 13 (65) 25 (52)
Female 15 (37) 24 (59) 39 (48) 16 (57) 7 (35) 23 (48)

Smoking history
Current/former 
smoker

31 (76) 30 (73) 61 (74) 21 (75) 13 (65) 34 (71)

Never smoker 4 (10) 7 (17) 11 (13) 3 (11) 3 (15) 6 (13)
N/A 6 (15) 4 (10) 10 (12) 4 (14) 4 (20) 8 (17)

Overall stages
IA/IB 11 (27) 16 (39) 27 (33) 7 (25) 8 (40) 15 (31)
IIA/IIB 6 (15) 11 (27) 17 (21) 5 (18) 2 (10) 7 (15)
IIIA/IIIB 10 (24) 7 (17) 17 (21) 3 (11) 2 (10) 5 (10)
IV 8 (20) 6 (15) 14 (17) 11 (39) 8 (40) 19 (40)
N/A 6 (15) 1 (2) 7 (8) 2 (7) 0 2 (4)

Histology subtypes
Adenocarcinoma 30 (73) 31 (76) 61 (74) 20 (71) 17 (85) 37 (77)
SCC 7 (17) 10 (24) 17 (21) 7 (25) 3 (15) 10 (21)
Adenosquamous 4 (10) 0 4 (5) 1 (4) 0 1 (2)

Tumor PD‑L1 + and PD‑L1−status were determined using immunohistochemistry staining. N/A=Information not available, SCC=Squamous cell 
carcinoma, PD‑L1=Programmed death‑ligand 1, PD‑L1+=PD‑L1 positive, PD‑L1−=PD‑L1 negative
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where each layer is independently normalized by subtracting 
the mean and dividing by the standard deviation (SD) of each 
training batch, was also implemented to accelerate training, 
improve network stability, and reduce overfitting. We used a 
cross-entropy loss function with the Adam optimizer and an 
initial learning rate of 0.001, which was decreased by 50% at 
epochs 3, 5, 7, and 9. Twenty percentage of training tiles were 
randomly reserved for a validation set to monitor validation 
accuracy during training. The model was trained with 10 epochs, 
at which point validation loss no longer decreased.

Model inference
Inference on unseen WSIs was performed in three stages: 
(1) division of the image into large input windows consisting 
of many overlapping tiles, (2) simultaneous classification 
of all tiles within each input window using the trained 
fully-convolutional deep learning model, and (3) Computation 
of model score by aggregating tile classifications.

Since the tiles are 466 × 466 pixels large with a stride of 
only 32 pixels, they overlap significantly. While this overlap 

ensures that the resulting WSI classification map is smooth, 
it also represents a substantial potential for computational 
redundancy, as the convolutional features computed for 
overlapping regions will be identical. A single WSI can be 
over 5GB, with ≥1010 pixels and hundreds of thousands of 
tiles. To reduce this redundant computation, we took advantage 
of the fully convolutional nature of our model [Figure 1c]. 
Instead of using 466 × 466 pixel tiles as the model input, we 
used much larger 4096 × 4096 pixels input windows. The 
FCN treats the large input window as an array of tiles and 
computes their features simultaneously. Consequently, many 
of the convolutional features computed for a single tile are 
reused for neighboring tiles, enabling efficient computation.
Processing all tiles in this fashion produces a 2D probability 
map of the three classes (i.e., tumor PD‑L1+, tumor PD‑L1−, 
and other) for each tile in the image. The class with the 
highest probability is assigned to each tile. The model score 
is then calculated as the ratio of the number of predicted 
tumor PD-L1+ tiles to the total number of predicted tumor 
tiles (both tumor PD‑L1+ and tumor PD‑L1−). The model 

Figure 1: (a) Network architecture: Our deep learning framework consists of a fully convolutional ResNet‑18 that processes a large field of view, along 
with two additional branches that process small field of views. The ResNet‑18 backbone contains multiple shortcut connections. The dotted lines 
indicate shortcut connections where feature maps are also downsampled by 2. The small field‑of‑view branches emerge after the second convolutional 
block. The feature maps of the small field‑of‑view branches are downsampled by 8 to match the dimensions of the ResNet‑18 feature map. These 
feature maps are concatenated before passing through a softmax output to produce a programmed death‑ligand 1 staining probability map. (b) Model 
training: matching areas on Immunohistochemistry and H and E slides were annotated. The annotated regions of the H and E image were tiled into 
overlapping tiles (466 × 466 pixels) with a stride of 32 pixels, producing our training data. The multi‑field‑of‑view ResNet‑18 model was then trained 
using a cross‑entropy loss function. The yellow square in the model schematic depicts the central region that is cropped for the small field of views. 
(c) Model inference: each image was divided into large nonoverlapping 4096 × 4096 input windows (blue dashed lines). Each large window was 
passed through the trained model. Because the model is fully convolutional, each tile within the large input window was processed in parallel, producing 
a 128 × 128 × 3 probability cube (the last dimension represents three classes). The resulting probability cubes were slotted into place and assembled 
to generate a probability map of the whole image. The class with the maximum probability was assigned to each tile

c

b

a
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score ranged from 0% to 100%, where 0% implies no tumor 
tiles are predicted to be PD-L1+ and 100% implies all tumor 
tiles are predicted to be PD-L1+.

Statistical analysis with an independent test cohort
Two analyses were performed to evaluate prediction of 
PD-L1 status based on H and E images alone. Both analyses 
were performed on the 82 “unseen” test cases that were held 
out from the model during training. In the first analysis, we 
assessed whether the average model score of the predicted 
PD‑L1+ group was significantly greater than the PD‑L1− group 
using the Welch’s t‑test (considered significant if Pt-test < 0.05). 
Average model score was defined as the score averaged over all 
patients within the group. For example, in the PD-L1+ group, 
the average model score was equal to the sum of each patient’s 
model score divided by 42 (i.e., the total number of patients 
in the PD-L1+ group).

Second, the area under the receiver operating characteristic 
curve (AUC) was employed to quantify the power of the 
deep learning model score in predicting tumor PD-L1 status. 
A permutation test was implemented to assess if AUC was 
significantly different from random chance. In the permutation 
test, all PD-L1 labels of the test cohort were randomized 
3000 times. A new AUC (AUCnew) was computed each time the 
label was randomized. AUC was considered to be significantly 
different from random if AUCnew ≥AUC <5% of the time 
(i.e., Ppermutation <0.05). We reported Ppermutation <<0.01 if none of 
the AUCnew ≥AUC.

Both analyses were also performed independently on 
adenocarcinoma and squamous cell carcinoma (SCC) cases.

Robustness studies
The robustness of our model was examined by testing the 
impact of different PD‑L1 positivity cutoffs and shuffled 
PD-L1 statuses.

Programmed death‑ligand 1 cutoff variation
The effect of changing the PD-L1 positivity cutoff on model 
predictions was investigated. For example, if the PD-L1 
expression cutoff was set to 15%, a tumor tissue was only 
considered to be PD-L1+ if over 15% of the tumor cells were 
stained. The default cutoff in the test cohort was chosen to be 1% 
as aforementioned. Here, the cutoff was varied from 5% to 50% 
in increments of 5% and the AUC was computed for each cutoff.

Programmed death‑ligand 1 label shuffle
To simulate the effect of pathologist variability, 5%–30% of the 
PD‑L1 status labels in the test cohort were randomly shuffled in 
increments of 5%. Each shuffle was repeated 3000 times. The 
AUC was calculated for each repetition, and the permutation 
test assessed whether the average AUC (over 3000 repetitions) 
was significant.

results

This study assessed the ability of our deep learning model to 
predict PD-L1 status from H and E images in 82 independent 

test cases. Most patients (>70%) in the test cohort had 
adenocarcinoma and were former/current smokers [Table 1]. 
Approximately half of the patients were female. Of all patients, 
54% (44/82) and 38% (31/82) were overall Stage I/II and 
Stage III/IV, respectively. However, stage information was 
unavailable for 8% (7/82) patients. The test cohort was 
perfectly balanced, consisting of 50% (41/82) PD-L1+ and 
50% (41/82) PD‑L1− cases to prevent bias in our model 
evaluation.

The test WSIs ranged in size from 500MB to 5GB and 
measured 10,000–200,000 pixels in each dimension. The 
average computation time to generate a PD-L1 probability 
map was 40 s (7.9–66 s) on an AWS EC2 p3.2× large 
instance (NVIDIA V100, Intel Xeon E5-2686).

For PD-L1+ slides, the location of tissue regions with high 
predicted PD-L1+ probability typically corresponded to the 
location of observed PD-L1 IHC expression [Figure 2a-c]. 
For PD‑L1− slides, most of the slide area was usually 
predicted to be tumor PD‑L1− or other, with only a few 
sparse areas predicted to be tumor PD-L1+ [Figure 2d-f]. 
For all NSCLC test cases, the average deep learning model 
score for PD‑L1+ WSIs (26% ±24%) was significantly 
greater than that for PD‑L1− WSIs (6.5%±9.7%) with 
Pt-test = 4.01 × 10 − 7. As observed in Figure 3, the model 
score significantly separated PD-L1+ samples from 
PD‑L1− samples. The deep learning model significantly 
predicted PD-L1 status in all test cases with an AUC of 
0.80 (Ppermutation <<0.01).

The analysis was also performed independently for the 
two NSCLC subtypes, lung adenocarcinoma and lung 
SCC. The model scores were greater for PD-L1+ than 
PD‑L1− cases in both subtypes [Figure 3b-c]. The 
model score was observed to significantly discriminate 
PD‑L1+ adenocarcinomas from PD‑L1− adenocarcinomas 
(average model score = 28% ±25% vs. 5.3% ±7.5%) with 
Pt-test = 1.6 × 10 − 6 and AUC = 0.83 (Ppermutation <<0.01). 
On the other hand, PD‑L1+ SCC and PD‑L1− SCC were 
not significantly discriminated by the model score in 
SCC (Pt-test = 0.32, AUC = 0.64, Ppermutation = 0.18). The average 
model score was 23% ±27% and 10% ±14% for PD-L1+ SCC 
and PD‑L1− SCC, respectively.

Robustness studies
Programmed death‑ligand 1 cutoff variation
The impact of the PD-L1 positivity cutoff on the robustness 
of our model’s predictive power was investigated. The AUCs 
varied moderately between 0.81 and 0.67 (Ppermutation ≤ 0.01) 
as the cutoff threshold used to determine positive PD-L1 
status increased from 5% to 50% [Figure 4a]. Notably, the 
model score significantly separated PD‑L1+ samples from 
PD‑L1− samples for all cutoffs with Pt-test ≤ 0.03.

Programmed death‑ligand 1 label shuffle
The effect of interpathologist variability on the model was 
simulated by shuffling PD-L1 status label. The average 
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AUC decreased steadily from 0.77 ± 0.02 to 0.63 ± 0.05 
as 5% (4/82) to 30% (25/82) of the labels were randomly 
shuffled [Figure 4b]. The overall SDs of the average AUC 
ranged from 0.02 to 0.08. All of the averaged AUCs were 
significant (Ppermutation ≤ 0.03).

dIscussIon

In this study, we developed and trained a deep learning model 
to recognize H and E imaging patterns for tumor PD-L1 
status prediction in NSCLC. During training, our model was 
presented with over 145,000 examples to learn H and E image 

Figure 3: Test cohor t results. Top row: Box plots depicting how tumor programmed death‑ligand 1 statuses are separated by deep learning 
model score in (a) all nonsmall cell lung cancer, (b) lung adenocarcinoma, (c) lung squamous cell carcinoma. Bottom row: Receiver operating 
characteristic curve for (d) all nonsmall cell lung cancer, (e) adenocarcinoma, and (f) squamous cell carcinoma. The horizontal line indicates 
median
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Figure 2: Top row: representative positive case (a) H and E whole‑slide image, (b) probability map overlaid on H and E, and (c) programmed 
death‑ligand 1 immunohistochemistry stain. Bottom row: representative negative case (d) H and E whole‑slide image, (e) probability map overlaid on 
H and E, and (f) programmed death‑ligand 1 immunohistochemistry stain. The color bar indicates the predicted probability of the tumor programmed 
death‑ligand 1 + class. The outline marked in A and B is a laboratory remnant and unrelated to the model
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characteristics of PD‑L1+ and PD‑L1− tissue. The trained 
model reliably predicted PD-L1 status in the “unseen” test 
cohort (AUC = 0.80). Using ResNet18 as the backbone, our 
trained multi-FOV deep learning model reliably predicted 
PD-L1 status in the “unseen” test cohort (AUC = 0.80). 
Other architectures, such as ResNet 50, have been shown 
to outperform ResNet18 in image classification tasks.[38] 
Replacing our deep learning model backbone with other 
existing architectures (e.g., ResNet50, Inception v3) may 
further improve the ability of deep learning to predict PD-L1 
status in NSCLC. The effect of backbone architecture on 
performance needs to be further investigated.

A convolutional neural network like our model learns a series 
of features to classify images. These features can be subtle 
and imperceptible to the naked eye. This method is distinct 
from previous studies that sought to recognize associations 
between tumor PD‑L1 status and specific pathologist‑defined 
features. For example, an increased density of TILs has been 
associated with PD-L1+ status in multiple malignancies.[25,42-44] 
However, manual quantification of TILs on WSIs is subjective 
and time-consuming. Furthermore, the microenvironment 
driven by the interaction between a tumor and the immune 
system is highly complex, and therefore, high levels of TILs 
and PD-L1 expression may not always co-occur.[5] Thus, 
a deep learning model that directly predicts PD-L1 status 
from imaging may represent a more holistic approach. Future 
work should investigate the relationship between TIL density 
and the deep learning features that are important for PD-L1 
prediction.

Our deep learning model predicted PD-L1 status in 
lung adenocarcinoma better than in lung SCC. Model 
score was significantly predictive in the adenocarcinoma 
subtype (AUC ≈ 0.85, Ppermutation <<0.01), but not in the 
SCC subtype (AUC = 0.64, Ppermutation = 0.18). In SCC, 
the model score was higher for PD-L1+ samples than 
PD‑L1− samples [Figure 3c and f], although the separation 
was not statistically significant (Pt-test > 0.05). The training 
cohort only contained 10 SCC cases (and 37 adenocarcinoma 
cases), which might been insufficient for the model to reliably 
identify subtle features associated with SCC PD-L1 status. 

A larger dataset with more SCC training examples could 
improve model performance.

The model performed well regardless of the specified PD‑L1 
positivity cutoff value. PD-L1 protein levels expressed by 
NSCLC tumors exist on a spectrum.[45] There is currently no 
consensus on a cutoff value to define PD‑L1 positivity, resulting 
in a wide range of PD-L1 expression level cutoffs in clinical 
practice and trials.[15,17,46,47] For example, pembrolizumab was 
approved by the FDA as a single agent for metastatic NSCLC 
patients with tumor PD‑L1 ≥1% who failed platinum‑based 
chemotherapy.[15] However, PD‑L1 expression cutoffs of ≥1%, 
≥5%, and ≥10% were used in a Phase III clinical trial of 
NSCLC patients treated with nivolumab, which revealed that 
higher levels of PD-L1 expression are associated with greater 
efficacy of nivolumab.[13] Due to the discrepancy in these 
definitions of PD‑L1 positivity, we conducted a sensitivity 
study to evaluate the impact of varying PD-L1 cutoffs on the 
model’s ability to predict PD‑L1 status. Adjusting the PD‑L1 
expression cutoffs from 5% to 50% had a moderate effect on 
the results with an AUC of 0.81 and 0.67, respectively. Despite 
this effect, a permutation test showed that all the predictions 
performed using various cutoffs were significant. The model 
recognizes complex H and E morphological features associated 
with different levels of tumor PD-L1 expression, suggesting it 
can be used in applications with varying PD-L1 cutoff values.

In the present study, tumor PD-L1 status was assessed using a 
Dako PD-L1 22c3 IHC assay, the FDA approved companion 
diagnostic for pembrolizumab prescription. Other assays, 
including Ventana SP142, Ventana SP263, and Dako 28-8, 
are used as diagnostic tests for atezolizumab, durvalumab, and 
nivolumab, respectively. [18,19,47] All IHC assays, except Ventana 
SP142, are concordant with the Dako 22c3 assay in assessing 
PD-L1 expression.[18,19,47] This suggests that our model can be 
used to predict PD-L1 status as determined by the Dako 28-8 
and Ventana SP263 IHC assays; however, further studies are 
needed to investigate the model’s performance in predicting 
Ventana SP142-assessed tumor PD-L1 status.

Our model predictions are also robust to simulated 
interpathologist variability. Assessments of tumor PD-L1 

Figure 4: (a) Area under the receiver operating characteristic curve as a function of the programmed death‑ligand 1 positivity cutoffs (b) area under 
the receiver operating characteristic curve as a function of the percentage of shuffled programmed death‑ligand 1 labels
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status can be affected by interpathologist disagreement.[47] 
Ratcliffe et al.[19] compared the agreement in NSCLC PD-L1 
status assessment between a CLIA laboratory pathologist and 
an independent pathologist. The agreement between the two 
pathologists increased from moderate (75%) to excellent (96%) 
as the PD-L1 positivity cutoff increased from 1%–50%. 
To mimic the effect of interpathologist disagreement, we 
randomly shuffled 5%–30% of the PD‑L1 labels in our test 
cohort. As expected, the power of our model in predicting 
PD‑L1 status decreased as the proportion of shuffled labels 
increased [Figure 4b]. However, even in the case corresponding 
to maximum interpathologist divergence (25% shuffled 
samples), the model retained predictive power (AUC = 0.66, 
Ppermutation = 0.01).

This study has two limitations. First, our training slides were 
annotated by only one pathologist. It is possible that the 
samples may include some bias arising from interpathologist 
variability. Despite this possibility, the model performed well 
in predicting PD-L1 status from H and E WSI. The model 
is expected to perform equally well or better with the use of 
consensus annotations from multiple pathologists. Second, the 
successful prediction of overall PD-L1 status did not require 
an accurate probability prediction at every individual location 
on each slide. For instance, in test cases with negative PD-L1 
status, the average model score was approximately 5%, while 
the pathologist score was <1%, indicating that the model 
predicted some PD‑L1− tumor regions as PD‑L1+. Increasing 
the number of training examples will improve the model’s 
ability to identify unique features that are associated with 
PD-L1+ tiles. This improvement is anticipated to allow more 
precise prediction of local PD-L1 expression.

Prospective studies with large, independent datasets and 
masked tumor PD-L1 status are needed to confirm our 
findings. Finally, future studies will need to investigate which 
interpretable morphological features contribute most to our 
deep learning model in order to extract biological meaning. 
For example, our model could be extended by adding the 
ability to classify PD-L1 expression among TILs. While 
overall tumor PD-L1+ status is commonly used as a response 
biomarker for checkpoint inhibitor immunotherapy,[7,15] PD-L1 
expression on TILs is also strongly associated with improved 
response to checkpoint inhibitors in various cancer types.[48,49] 
A model that classifies tumor and lymphocyte PD‑L1 status 
simultaneously would have broader applications for cancer 
patients. Furthermore, it would be an interesting future study 
to investigate if deep learning can uncover novel H and E and 
PD-L1 IHC features for enhanced prognosis and response 
prediction.

Our histopathological slides were prepared at a single 
CAP-accredited and CLIA-certified laboratory and were 
scanned using the same scanner. Other laboratories may 
follow different staining protocols, leading to color variations 
of the slides. Color normalization schemes, such as sparse 
nonnegative matrix factorization, have been used to 

standardized appearance of tissues slides and have shown to 
improve the performance of computer vision algorithms.[50,51] 
Thus, the robustness of our deep learning model can be 
further improved by implementing color normalization into 
our deep learning model. The diagnostic performance of 
scanners between different vendors has not been studied. The 
discordance and concordance in diagnosis between glass slides 
and WSI acquired from various scanners were about 15% and 
85%, respectively.[52] Scanner variability is thus expected to 
have moderate effect on the performance of our deep learning 
model.

conclusIons

In this study, we developed a fast and robust deep learning 
model to predict tumor PD-L1 status from H and E WSIs in 
NSCLC. The prediction of tumor PD‑L1 status was significant 
regardless of expression cutoff values, and the results were 
robust to interpathologist variability. This analysis may open 
new avenues to further developing an H and E image-based test 
to complement IHC staining for PD-L1 assessment, especially 
when there is insufficient tissue, and in some settings, a lack 
of resources for IHC staining.
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