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Abstract 

Background:  Paralogs formed through gene duplication and isoforms formed 
through alternative splicing have been important processes for increasing protein 
diversity and maintaining cellular homeostasis. Despite their recognized importance 
and the advent of large-scale genomic and transcriptomic analyses, paradoxically, 
accurate annotations of all gene loci to allow the identification of paralogs and iso‑
forms remain surprisingly incomplete. In particular, the global analysis of the transcrip‑
tome of a non-model organism for which there is no reference genome is especially 
challenging.

Results:  To reliably discriminate between the paralogs and isoforms in RNA-seq data, 
we redefined the pre-existing sequence features (sequence similarity, inverse count of 
consecutive identical or non-identical blocks, and match-mismatch fraction) previously 
derived from full-length cDNAs and EST sequences and described newly discovered 
genomic and transcriptomic features (twilight zone of protein sequence alignment 
and expression level difference). In addition, the effectiveness and relevance of the pro‑
posed features were verified with two widely used support vector machine (SVM) and 
random forest (RF) models. From nine RNA-seq datasets, all AUC (area under the curve) 
scores of ROC (receiver operating characteristic) curves were over 0.9 in the RF model 
and significantly higher than those in the SVM model.

Conclusions:  In this study, using an RF model with five proposed RNA-seq fea‑
tures, we implemented our method called Paralogs and Isoforms Classifier based on 
Machine-learning approaches (PIC-Me) and showed that it outperformed an existing 
method. Finally, we envision that our tool will be a valuable computational resource for 
the genomics community to help with gene annotation and will aid in comparative 
transcriptomics and evolutionary genomics studies, especially those on non-model 
organisms.
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Background
Gene duplication and alternative splicing have played central roles in defining protein 
diversity and its link to phenotypic variations. Gene duplication that gives rise to the 
production of two genes encoding distinct proteins with different functions is a phe-
nomenon that occurs as a result of a number of dynamic cellular events, including chro-
mosomal (or genome) duplications, retroposition, or unequal crossing over (reviewed in 
[1–3]). After duplication, from a functional redundancy perspective, the predominant 
fate of duplicates is pseudogenization; however, a significant fraction of duplicated genes 
(hereafter called paralogs) is preserved by either subfunctionalization or neofunctionali-
zation. This event plays a fundamental role in the evolution of genomes and organisms. 
Alternative splicing is a post-transcriptional process that generates multiple mRNAs 
from the same precursor-mRNA and plays a critical role in cell development, physiologi-
cal processes, and various diseases (reviewed in [4–6]). It is now firmly established that 
this alternative splicing event is prevalent in all multicellular eukaryotes.

Intriguingly, these two disparate events are closely linked. Multiple transcript iso-
forms generated by alternative splicing (hereafter called isoforms) especially via mutu-
ally exclusive exons, where an exclusive exon is selected from two or more exons in the 
pre-mRNA, are considered to have an “internal paralog” in the same gene [7]. These iso-
forms have novel functions that can evolve without disrupting the original function of 
the gene, and this scenario is compatible with the neofunctionalization model (that is, 
the gain of a new function by a duplicate gene [8]) of duplicate gene evolution. Because 
of this reason and the growing interest in this phenomenon, evolutionary and functional 
analyses of gene duplication and alternative splicing events have become a popular topic 
in the evolutionary genomics field.

To explain this relationship between gene duplication and alternative splicing, three 
theoretical models (independent, functional sharing, and accelerated alternative splicing 
models; depicted in Fig. 2 in [9]) have been proposed [10], and several studies have pre-
sented analytical fits to experimental data. For example, in comparison with non-dupli-
cated single-copy genes, larger gene families that originated from duplication events 
have fewer genes affected by alternative splicing events, and the number of alternative 
splicing events per gene is lower in larger gene families. These results supporting the 
functional sharing model have been observed in humans, mice, and worms [11–13] but 
not in plants [14]. Roux and Robinson-Rechavi [15] additionally reported a positive cor-
relation between the number of alternative splicing events and the evolutionary time 
after gene duplication and found that paralogs under higher purifying selection have a 
lower rate of acquisition of new splicing forms. Furthermore, two independent studies 
showed that paralogs that experienced an alternative splicing event had higher expres-
sion variation than those that did not experience such events [16, 17].

Despite their recognized importance and the advent of large-scale genomic and tran-
scriptomic analyses, paradoxically, obtaining an accurate annotation of each gene locus 
to identify paralogs and isoforms remains surprisingly difficult. This difficulty is mainly 
due to the lack of completely assembled genomes and the difficulty of assembling and 
obtaining full-length transcripts [18]. Recently, Spitzer et al. [19] studied genetic factors 
that can be used to facilitate the discrimination between paralogs and isoforms. They 
proposed three sequence-alignment-based features and developed a machine learning 
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classifier to distinguish between paralogs and isoforms without the need to access the 
genomic data, including the reference genome and annotation information. However, 
this approach requires substantial conceptual and methodological improvements when 
full-length cDNAs and EST sequences are unavailable. Indeed, recent advances in tran-
scriptome analysis facilitated by RNA sequencing (RNA-seq) technology make it possi-
ble to characterize and annotate the transcriptome. However, it is still not clear, and may 
never be, how exactly full-length transcripts can be reconstructed when used de novo.

In this study, to reliably identify and classify the paralogs and isoforms in RNA-seq 
data, we redefined the pre-existing sequence features of possibly fragmented and misas-
sembled transcripts and described newly discovered genomic and transcriptomic fea-
tures. Using a random forest (RF) model with all of the suggested RNA-seq features, we 
implemented our new tool, Paralogs and Isoforms Classifier based on Machine-learning 
approaches (PIC-Me), and showed that our method outperformed an existing method.

Methods
Data collection

We collected publicly available RNA-seq data for three animal tissues (brain, ovary, and 
testis) from humans [20] and zebrafish [21] and three plant seed tissues (aleurone layer, 
transfer cells, and whole endosperm) from wheat [22].

Transcriptome analysis

To discard low-quality reads and trim the adaptor sequences, all nine RNA-seq data-
sets were preprocessed using Trimmomatic v.0.36 [23]. Using our stepwise transcrip-
tome assembly pipeline [24], we reconstructed all transcripts from each tissue in each 
species. Briefly, the trimmed read sequences were separately de novo assembled for 
each tissue using Trinity v.2.2.0 [25] with the default parameters. The coding sequences 
(CDSs) within the assembled transcripts were predicted using TransDecoder v.3.0.0 
(https://​github.​com/​Trans​Decod​er/​Trans​Decod​er) aided by BLASTP searches [26] in 
the Uniprot/Swiss-Prot database [27] with an E-value cutoff 10–5. To obtain high-quality 
non-redundant transcripts, those with a CDS length < 100 amino acids or 99% sequence 
identity were removed. To quantify the expression level of each transcript, the RNA-seq 
reads from each sample were mapped to the corresponding non-redundant transcrip-
tome database using bowtie (v.2.2.6) [28], and their expression levels were estimated 
with RSEM (v.1.2.26) [29]. The unit of expression level in our analysis is referred to as 
fragment per kilobase of transcript per million fragments mapped (FPKM).

Annotation between paralogs and isoforms

We obtained the lists of paralogous gene pairs from the Ensembl Compara homol-
ogy database (version 95) [30] via biomart. Using the single linkage clustering method, 
these gene pairs were clustered into gene families. To obtain the isoforms at a transcript 
sequence level, gene data, including gene description and location, were collected from 
biomart, and transcripts were designated as isoforms if they had the same ENSG ID but 
a different ENST ID. To annotate the assembled transcripts, we performed BLASTP 
searches against the human (GRCh38), zebrafish (GRCz11), and wheat (IWGSC RefSeq 

https://github.com/TransDecoder/TransDecoder
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v1.0) protein databases from Ensembl (https://​www.​ensem​bl.​org) and EnsemblPlants 
(https://​plants.​ensem​bl.​org) with an E-value cutoff 10–10.

Bioinformatic features for the classification of paralogs versus isoforms

To discriminate between paralogs and isoforms, we considered five genomic and tran-
scriptomic features, including sequence similarity (SS), inverse count of consecutive 
identical or non-identical blocks (ICCB), match-mismatch fraction (MMF), twilight 
zone of protein sequence alignment (TZ), and expression level difference (ELD). The 
first three genomic features were adopted from the study by Spitzer et al. [19]; these were 
used for full-length cDNA and EST sequences from a public database, not with RNA-
seq data, to distinguish between isoforms and paralogs. For our RNA-seq-based analy-
sis, we used the same concepts and definitions. Briefly, SS is the fraction of the number 
of matches in the alignment of the sequences. ICCB is the reciprocal value of the num-
ber of blocks in which the alignments are consecutively matched or mismatched. MMF 
represents the normalized number of consecutive matches and mismatches–namely, the 
sum of the lengths minus one of all consecutive identical or non-identical blocks divided 
by the length of alignment. Next, TZ, which has been defined as the range of sequence 
length with 20–35% sequence identity that can unambiguously distinguish between pro-
tein pairs with similar and non-similar functions [31], was used as a cut-off value. In this 
study, pairs of proteins with less than 20% SS were excluded because they could not be 
correctly identified as paralogs or isoforms. Finally, ELD is the log-transformed absolute 
value of the FPKM difference between two transcripts. These features are schematically 
illustrated in Fig. 1 and Additional file 1: Fig. S1.

The pairs of sequences were aligned using the program fftnsi in the MAFFT package 
[32] with default parameters.

Machine learning models

We trained and applied two supervised machine learning algorithms: support vector 
machine (SVM) and random forest (RF). For the SVM classifier, we used the SVMlight 
(http://​svmli​ght.​joach​ims.​org) package [33], consisting of two modules: svm_learn 
and svm_classify. The former module is used to learn input–output functionality 
from the training dataset (positively and negatively labeled for paralogs and iso-
forms, respectively), and the latter is used to classify the data by using the models 
prepared by svm_learn. In this study, the radial basis function (RBF) was used as 
a kernel function for the SVM classifier. Except for C and g describing the trade-
off between training error and margin and the width of the Gaussian bells, all the 
SVM parameters were set to their defaults. To find the optimal C (defining how 
much a misclassification increases the cost function) and g (determining the deci-
sion boundary of the SVM), a grid-search was performed with two separate steps. 
First, a grid consisting of 21 steps and 19 steps for the parameters C and g on a 
logarithmic scale was constructed. The parameter ranges were initially from 10–5 to 
1015 for parameter C and from 10–15 to 103 for parameter g. Based on a cross-valida-
tion procedure, the SVM classifier with maximum accuracy was selected, and from 
the corresponding kernel parameters C and g, new parameter ranges were set. After 
repeatedly running the grid-search with higher resolutions, the grid point with the 

https://www.ensembl.org
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maximum accuracy of the SVM classifier was chosen, and its corresponding ker-
nel parameters were determined as the optimal values (Additional file 6: Table S1). 
For the RF classifier, the randomForest function in the R randomForest package [34] 
was used. The number of random explanatory variables considered as each note was 
tuned by mtry = number of features, and the number of trees (ntree) was set to 500, 
its default value.

Validation and evaluation of model performance

To validate the constructed machine learning models, we performed cross-valida-
tion. Both positive (paralogs) and negative (isoforms) datasets were randomized and 
divided into two parts, each having an equal number of paralog and isoform sam-
ples. One-half of the dataset was designated as the training group. The other half 
was divided into four parts, and each dataset was designated as a testing group. The 
receiver operating characteristic (ROC) curve was calculated four times based on the 
vectors of sensitivity and specificity. The values of the area under the curve (AUC) 
of the ROC curves of the four cross-validation groups were averaged to compare the 
predictability and stability of the models.

Fig. 1  Illustration of the five features. A Two amino acid sequences (sequence1 and sequence2) are 
aligned. Matches, mismatches, and gaps between the two sequences are colored in black, red, and yellow, 
respectively. Green underlining indicates the consecutive identical or non-identical blocks (CB). B Sequence 
similarity (SS) is the percentage of matched sequences in the aligned sequences. C Inverse count of 
consecutive identical or non-identical blocks (ICCB) is the inverse count of CB. D Match-mismatch fraction 
(MMF) indicates the overall number of consecutive matches and mismatches–namely, it is the sum of the 
sequence lengths minus one of all CB divided by the length of the alignment. E Twilight zone (TZ) is a range 
of sequence similarity; a 20% cut-off score was used here. F Expression level difference (ELD) is the difference 
in the expression levels between two genes. From the example alignment in A, the scores of the first three 
features were 0.625 for SS, 0.091 for ICCB, and 0.656 for MMF, which are detailly described in Additional file 1: 
Fig. S1
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Results and discussion
Identification of paralogs and isoforms in RNA‑seq data

Because the main objective of this study was to distinguish between paralogs originat-
ing from duplication events and isoforms arising from the alternative splicing of a sin-
gle gene, which recently has become more necessary and demanding with the advent 
of high-throughput sequencing, we de novo (reference-free) assembled and annotated 
reference transcriptomes using RNA-seq data. To this end, we strategically selected mul-
tiple RNA-seq datasets generated from different species, human, zebrafish, and wheat, 
which included the brain, ovary, testis, and seed tissues because (1) the brain and tes-
tis tissues carry highly abundant alternative splicing events of transcripts [35], (2) the 
selected human tissues have a high number of expressed genes [20, 36, 37], and (3) 
the zebrafish and wheat species have complex genomes resulting from ancient whole 
genome duplication and interspecific hybridization events [22, 38], which can lead to 
formidable obstacles in distinguishing between paralogs and isoforms (Additional file 7: 
Table S2). After performing mRNA transcriptome analysis, about 1.6 million transcripts 
with an average length of 784 bp were de novo assembled, and a total of 275,195 tran-
scripts were uniquely annotated (Additional file 8: Table S3). Using the Ensembl annota-
tion pipeline, each sample contained an average of 11,998 paralogs and 16,998 isoforms 
(Additional file 9: Table S4).

Possibly fragmented and misassembled transcripts hamper accurate classification 

of paralogs and isoforms with sequence alignment‑based features

Based on various available genomics data, Spitzer et  al. [19] proposed three sequence 
alignment-based features (SS, ICCB, and MMF; Fig. 1) to distinguish between paralogs 
and isoforms and explored their relevance using full-length cDNAs and EST sequences. 
To determine whether these features could be applied directly to RNA-seq transcrip-
tome sequences, they were reassessed in our data. A large portion of the matching pairs 
was well separated into two classes. However, a small but non-negligible number of par-
alogs and isoforms overlapped with one another and were dispersed with no obvious 
agglomerate form (Fig. 2). The same patterns were consistently observed regardless of 
which sample was used for testing (Additional file 2: Fig. S2–Additional file 5: Fig. S5). 
These results suggest that existing sequence-alignment only features are not sufficient 
to distinguish between paralogs and isoforms in de novo assembled transcriptome data.

Minimum cut‑off score and gene expression level are considered as potential constitutive 

features

A previous study [19] found that the SS, ICCB, and MMF scores were usually higher 
in isoform pairs than in paralog pairs. Indeed, similar distribution patterns were 
observed in our data, but a clear classification boundary could not be distinguished. 
Notably, many of the short sequence pairs were mixed and overlapped (Fig. 3A–C). 
Thus, we hypothesized that fragmented and misassembled transcripts in RNA-seq 
transcriptome data with intrinsic methodological issues, including low sequencing 
accuracy, incomplete gene coverage, and chimerism, represented one of the main 
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causes of the reduction in classification accuracy. To circumvent this issue, we 
adopted the concept of TZ of sequence alignment for homology modeling to define 
the sequence similarity limit and used a 20% SS score as the minimum cut-off to be 
excluded.

According to the classic gene duplication models, a duplicated paralog may result 
in one of the following: (1) creation of a pseudogene resulting from degenerative 
mutations (nonfunctionalization) [39], (2) gain of a new function by one of the dupli-
cate genes (neofunctionalization) [8, 40], (3) division of the parental gene’s function 
between the two duplicate copies after the duplication event (subfunctionalization) 
[41], or (4) a combination of neofunctionalization and subfunctionalization (subneo-
functionalization) [42]. Recently, many genome-wide expression experiments have 
revealed divergent expression patterns between paralogs [43–45], and these can help 
to understand the emergence of new gene functions after duplication events [46]. 
Thus, we predicted that the expression patterns would be distinct between these two 
structural groups. Indeed, in our data, the expression level differences between par-
alog pairs were significantly higher than those between isoform pairs (Fig. 3D), indi-
cating its potential as a novel feature.

Fig. 2  Paralogs and isoforms are poorly classified using pre-existing sequence features. The distributions of 
SS, ICCB, and MMF are shown in panels A, B, and C, respectively. Panel D illustrates all three features at the 
same time. Samples derived from paralogs and isoforms in the human brain data are shown in blue and red, 
respectively. The same tests for the other datasets are shown in Additional file 2: Fig. S2–Additional file 5: Fig. 
S5
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Predicting paralogs and isoforms using machine learning models

To determine whether these five features could be used to classify and differentiate 
between paralogs and isoforms, we deployed two widely used machine learning mod-
els (SVM and RF). With mixed half-split cross-validation (see “Methods”) and using the 
AUC of the ROC curve, the classification accuracy of our proposed features (TZ and 
ELD) with the pre-existing features (SS, ICCB, and MMF) was on average 0.826 for SVM 
and 0.903 for RF. All AUC scores from the RF model were over 0.9 and significantly 
(P-value = 0.002, Wilcoxon paired signed-rank test) higher than those from the SVM 
model. The lowest AUC score was from the SVM model, 0.484 in zebrafish brain tissue, 
and this model produced unstable results in the different datasets (Fig. 4A).

To access the performance of our method (implemented using RF, which is hereaf-
ter referred to as PIC-Me: Paralogs and Isoforms Classifier based on Machine-learning 
approaches), we compared PIC-Me with IsoSVM [19], which is a SVM-based classifica-
tion model that only uses three genomic features (SS, ICCB, and MMF). Based on the 
five different performance evaluation scores (accuracy, positive predictive value, nega-
tive predictive value, Matthews correlation coefficient, and AUC), our proposed PIC-Me 
method always significantly outperformed the existing IsoSVM method (Fig. 4B).

Fig. 3  Paralogs and isoforms, especially those with a short gene length, are indistinguishable using the 
SS, ICCB, and MMF features. A–C Scatterplots illustrating the combinations of the mean lengths of the pair 
sequences and each feature. D Expression level differences between the isoform and paralog groups. The 
central line and lower and upper edges of the box indicate the median and 25th and 75th percentiles, 
respectively. The whiskers extend to the furthest point within 1.5 times the interquartile range (IQR). P-values 
were calculated using the Mann–Whitney U test
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Conclusions
To overcome the limitations of conventional full-length cDNA- and EST-based 
approaches for distinguishing between paralogs and isoforms, which is very chal-
lenging when performing the global analysis of the transcriptome of a non-model 
organism, five distinctive genomic and transcriptomic features were extracted from 
RNA-seq data, and their use in two machine learning models was examined. Using 
the RF model with the proposed RNA-seq features, including SS, ICCB, MMF, TZ, 
and ELD, we developed a machine learning tool, called PIC-Me, and showed that it 
outperformed an existing classification method. We believe that our tool will be a val-
uable computational resource for the comparative and evolutionary genomics com-
munity [47] and for human disease and cancer biology [48–50].

Abbreviations
AUC​: Area under the curve; CDS: Coding sequence; ELD: Expression level difference; FPKM: Fragment per kilobase of 
transcript per million fragments mapped; ICCB: Inverse count of consecutive identical or non-identical blocks; MMF: 
Match-mismatch fraction; PIC-Me: Paralogs and Isoforms Classifier based on Machine-learning approaches; RBF: Radial 
basis function; RF: Random forest; RNA-seq: RNA sequencing; ROC: Receiver operating characteristic; SS: Sequence simi‑
larity; SVM: Support vector machine; TZ: Twilight zone of protein sequence alignment.
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Fig. 4  Classifying paralogs and isoforms using machine learning methods. a AUC comparison between 
the SVM and RF models using nine RNA-seq datasets from human, zebrafish, and wheat tissues. AL is the 
aleurone layer, TC is transfer cells, and WE is whole endosperm. b Performance assessment of our method, 
PIC-me, and a pre-existing method, IsoSVM. Accuracy, positive predicted value (PPV), negative predicted 
value (NPV), and MCC were calculated as follows: Accuracy = (TP + TN)/(TP + FP + TN + FN), PPV = TP/
(TP + FP), NPV = TN/(TN + FN), and MCC =  TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
 , where TP and TN are true positive 

and true negative, respectively, and FP and FN are false positive and false negative, respectively. P-values were 
calculated using the Mann–Whitney U test. Error bars indicate the standard error of the mean
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Additional file 1: Figure S1.  Calculation example of three sequence features (SS, ICCB, and MMF).

Additional file 2: Figure S2.  Distributions of SS, ICCB, and MMF in two human tissues. Blue and red indicate 
paralogs and isoforms, respectively.

Additional file 3: Figure S3.  Distributions of SS, ICCB, and MMF in three zebrafish tissues. Blue and red indicate 
paralogs and isoforms, respectively.

Additional file 4: Figure S4.  Distributions of SS, ICCB, and MMF in three wheat tissues. Blue and red indicate paral‑
ogs and isoforms, respectively. AL is the aleurone layer, TC is transfer cells, and WE is whole endosperm.

Additional file 5: Figure S5.  Three-dimensional scatter plots of all three features. (A-C) Human tissues, (D-F) 
zebrafish tissues, and (G-I) wheat tissues. Blue and red indicate paralogs and isoforms, respectively. AL is the aleurone 
layer, TC is transfer cells, and WE is whole endosperm.

Additional file 6: Table S1.  Optimal parameter C and g.

Additional file 7: Table S2.  Statistics of nine public RNA-seq data from human, zebrafish and wheat.

Additional file 8: Table S3.  Statistics of  de novo assembly.

Additional file 9: Table S4.  Number of paralogs and isoforms.
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