
Construction and Verification of a
Glycolysis-Associated Gene Signature
for the Prediction of Overall Survival in
Low Grade Glioma
Wei Liu1†, Chunshan Liu1†, Chengcong Chen1†, Xiaoting Huang1, Qi Yi1, Yunhong Tian1*,
Biao Peng2* and Yawei Yuan1*

1Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of GuangzhouMedical University, Guangzhou, China,
2Department of Neurosurgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China

The overall survival of patients with lower grade glioma (LGG) that might develop into high-
grade malignant glioma shows marked heterogeneity. The currently used clinical
evaluation index is not sufficient to predict precise prognostic outcomes accurately. To
optimize survival risk stratification and the personalized management of patients with LGG,
there is an urgent need to develop an accurate risk prediction model. The TCGA-LGG
dataset, downloaded from The Cancer Genome Atlas (TCGA) portal, was used as a
training cohort, and the Chinese Glioma Genome Atlas (CGGA) dataset and Rembrandt
dataset were used as validation cohorts. The levels of various cancer hallmarks were
quantified, which identified glycolysis as the primary overall survival-related risk factor in
LGGs. Furthermore, using various bioinformatic and statistical methods, we developed a
strong glycolysis-related gene signature to predict prognosis. Gene set enrichment
analysis showed that in our model, high-risk glioma correlated with the
chemoradiotherapy resistance and poor survival. Moreover, based on established risk
model and other clinical features, a decision tree and a nomogram were built, which could
serve as useful tools in the diagnosis and treatment of LGGs. This study indicates that the
glycolysis-related gene signature could distinguish high-risk and low-risk patients
precisely, and thus can be used as an independent clinical feature.
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INTRODUCTION

Glioma is the most common intracranial malignant tumor, which accounts for 80% of all intracranial
malignancies, with 15,000–17,000 new cases every year in America (Ostrom et al., 2018). The World
Health Organization defined grade II and III gliomas as diffuse lower grade gliomas (LGGs), occupying
approximately 30% of intracranial tumors (Brat et al., 2015). LGGs predict a better prognosis than
glioblastoma; however, despite their highly heterogeneous natural processes, most LGGs progress to
aggressive high-grade secondary gliomas that ultimately cause death (Zhang et al., 2020). Despite great
advances in treatment for LGGs being achieved, including neurosurgery, radiotherapy, and
chemotherapy, the treatment of LGGs remains a challenge (Youland et al., 2017). Recently, our
ability to diagnose and prognose LGGs has been enhanced by the discovery of various biomarkers. The
classification of CNS tumors was revised by the World Health Organization in 2016, based on
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morphological and molecular features, which highlighted the
importance of molecular testing and signature construction for
the diagnosis and prognosis of LGGs (Louis et al., 2016).

Compared with healthy cells, cancer cells have very different
metabolic patterns, adjusting metabolism to sustain the biosynthetic
demands of tumor proliferation and have a higher resistance to cell
death pathways (Abbaszadeh et al., 2020). Changes in the tumor
glucose metabolic environment are often associated with oxygen
supply and demand, dysfunction of key enzymes, or mitochondrial
dysfunction, frequently resulting in advanced tumor aggressiveness,
poor prognosis, and limited efficacy of available therapeuticmethods
(Ancey et al., 2018). Although some studies have shown that tumor
glucose metabolism disorders are closely associated with cancer
progression and low survival in gliomas, there is no glycolysis-
based approach to distinguish high-risk patients (Gabriely et al.,
2017; Strickland and Stoll, 2017).

There has been significant progress in molecular markers;
however, they are still not satisfactory and there is still much
room for improvement (Zhang et al., 2017). The present study
aimed to determine whether glycolysis is a primary survival-related
risk factor for LGGs, to identify powerful biomarkers, and construct
a glycolysis-related gene signature for LGG prognosis. Furthermore,
the prognostic efficiency of the model was tested in two additional
validation sets. Finally, we established a comprehensive model based
on clinicopathological and genetic characteristics to enhance the
signature’s accuracy and predictive power, whichmight be applied to
guide the clinical care and patient consultation.

MATERIALS AND METHODS

Preparation and Processing of Data
We downloaded the transcriptome profiles (HTSeq Fragments Per
kilobase of transcript per Million mapped reads [FPKM]) and their
associated clinical profiles from TCGAbiolinks (Colaprico et al., 2016),
which was used as The Cancer Genome Atlas (TCGA) training cohort
(n = 501) to establish the risk score signature. The IDH1 (encoding
isocitrate dehydrogenase 1) statuses were calculated using maftools
(Mayakonda et al., 2018). The first validation cohort comprised RNA
sequencing (RNA-seq) data from the Chinese Glioma Genome Atlas
(CGGA) database (n = 552). Gene expression was also normalized and
calculated using the FPKMmethod. Rembrandtmicroarray datasetwas
downloaded from CGGA database and used as the second validation
cohort (n = 123) (Gusev et al., 2018). The 13,609 common genes in 3
independent cohorts are used for the following analysis.

The batch effect of RNA-seq data in the CGGA database,
which comprised two independent cohorts, was removed using
SVA packages (Brägelmann and Lorenzo Bermejo, 2019).
Patients with grade II and III glioma with complete sex, age,
IDH1 status, and survival information were used in the following
study. The patients with grade II and III glioma in the Rembrandt
dataset with complete survival information were used for the
follow-up study. For all the included RNA-seq and microarray
data, normalization and log2 transformation were performed.
The RNA-seq data were adopted in FPKM methods, the
microarray data were normalization using RMA methods by
oligo package (Carvalho and Irizarry, 2010).

Screening Candidate Genes and Building
the Signature
The RNA-seq training data and hallmark gene sets downloaded from
the Molecular Signatures database (MSigDB) (Liberzon et al., 2015)
were used by a single-sample gene set enrichment analysis (ssGSEA)
algorithm (Hänzelmann et al., 2013) as the basis to calculate the
quantified score of each cancer hallmark. Univariate Cox analysis was
used to calculate the significance of different cancer hallmarks in
patients with LGG. With a network type of unsigned and a soft
threshold of β = 5 (scale free R2 = 0.8997766), the expression values of
protein coding genes in the LGG samples were subjected to weighted
gene co-expression network analysis (WGCNA) to construct a scale-
free co-expression network, which was used to screen those genes that
were most correlated with glycolysis, based on their ssGSEA scores
(Langfelder and Horvath, 2008). Subsequently, 19 modules were
identified by setting the merged threshold function at 0.25, the
green module was identified the genes of significantly related
module. The correlation between the gene expression profiles and
module eigengenes was measured using module membership (MM),
and the correlation between the glycolysis ssGSEA score and
individual genes represented the gene significance (GS). We
screened 407 extracted candidates from the “glycolysis module”
using a cutoff p value of GS of <0.0001 and the univariate Cox
regression calculated p value of <0.01. Then, a least absolute shrinkage
and selection operator (Lasso) Cox regression algorithm were
employed to identify the most significant prognostic markers
(Friedman et al., 2010). We then constructed a glycolysis-related
risk score (GRS) that included normalized gene expression values
weighted by their LASSO Cox coefficients as follow:

GRS � ∑
n

i�1
coefficient(mRNAi)pexpr(mRNAi)

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Enrichment Analysis Based on
DEGs Between High GRS Score and Low
GRS Score
Based on median value of GRS score, we divided the patients in
training cohort into high-risk group and low-risk group, we obtain
1827 differentially expressed genes (p < 0.05, |log2FC|>1) using the
edgeR (Robinson et al., 2010) package of R between two group. Based
on the differential genes that have been obtained, Gene ontology and
Kyoto encyclopedia of genes and genomes enrichment analyses were
launched to probe the potential biological functions and signaling
pathways by clusterProfiler (Yu et al., 2012), enrichplot packages (Yu,
2021). Standards of significantly enriched terms were set as follow:
q-value < 0.05.

Gene Set Enrichment Analysis
We utilized the msigdb. v7.0. entrez.gmt gene sets from the
MsigDB database and clusterProfiler packages to explore the
therapeutic resistance and possible cellular pathways. We set
following standards for significantly enriched terms: I. NOM
p-value < 0.05; II. FDR q-value < 0.05.
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Drug Sensitivity of the Members in GRS
Score
The drug sensitivity of the members in GRS score were calculated
by online webtool GSCALite (http://bioinfo.life.hust.edu.cn/web/
GSCALite/). The results from CTRP database were adopt and
displayed in our study.

Development and Evaluation of Clinical
Predictive Models
A decision tree was constructed using recursive partitioning analysis
(RPA) in the “rpart” package for risk stratification (Terry and Beth,
2019). For the quantitative prediction of the prognosis of patients
with LGG, we established a prognostic nomogram, comprising the
glycolysis-based riskmodel and other clinical parameters, which was
used to predict the probability of overall survival (OS) for 1, 3, and
5 years. The predictive ability of the model was demonstrated by
plotting a calibration curve, in which a curve close to 45° indicates a
good predictive ability.

Bioinformatic and Statistical Analyses
Data processing and graph construction were carried out using R
software (version 4.0.3, http://www.r-project.org). Adobe Illustrator
2020 was used to fine tune the graphics. Survival was evaluated using
the Kaplan-Meier method. The differences between the high-risk
group and low-risk group in the targeted cohorts were compared
using a Log-rank test. To evaluate the risk signature’s predictive
performance, receiver operating characteristic curve (ROC) and area
under the curve (AUC) at 1, 3, and 5 years were calculated in all
cohorts using the “timeROC” packages (Blanche et al., 2013). In the
absence of a full-scale gene signature expression profile, each cohort
was divided into different clusters according to the optimum k value
using K-means consensus clustering in the “ConsensusClusterPlus”
packages, The optimal cluster numbers were determined by
constructing CDF curves respectively (Wilkerson and Hayes,
2010). In the pooled cohort, to assess the prognostic value, a
meta-analysis (I2 = 97%, random-effect model) was used.

RESULTS

Schematic Diagram of Research Design
The information for the patients in each cohort whomet the inclusion
criteria is listed in Supplementary Table S1. First, among the various
hallmarks of cancer, we identified glycolysis as the primary OS-related
risk factor in patients with LGG (Figure 1A). Then, WGCNA,
univariate Cox regression analysis, and the LASSO algorithm were
used to screen candidate genes and construct a robust signature, which
could be used to predict patient survival reliably (Figure 1B). Next, the
glycolysis signature’s prognostic efficiency was assessed in the training
set and two independent validation datasets. In addition, to confirm
the signature’s prognostic accuracy, a meta-analysis was preformed,
and the usability of the signature in clinical practice was assessed by
choosing the response to therapy as an important evaluation indicator
(Figure 1C). Finally, we built a decision tree for prognostic precision
improvement, and constructed a nomogram based on GRS and other

clinicopathological indicators to evaluate the level of risk and the
individual patients’ survival probability (Figure 1D).

Glycolysis Is the Primary OS-Related Risk
Factor in LGGs
ssGSEA is an analytical algorithm that uses RNA expression data to
score different cancer hallmarks in each sample. The score of 50
hallmark gene sets were calculated and 30 gene sets with a p-value <
0.05 were considered to represent significantly enriched pathways
(Figure 2A). Compared with other cancer gene sets, such as those
representing apical junction, apoptosis, and angiogenesis, the
glycolysis-related gene set had the most powerful influence (highest
HR) on survival (Figure 2B). Based on their median ssGSEA score,
patients (n= 501) could divide into a low score group and a high score
group, which exhibited poorer OS compared with those in the low
score group (p < 0.05; Figure 2C).

Construction of a Prognostic
Glycolysis-Related Gene Signature
The top 50 percent of differentially expressed genes (6,805 genes),
selected on the basis of an analysis of variance and their glycolysis
ssGSEA score in the training set, were chosen for WGCNA. The
optimal soft-thresholding power was 5, which ensured that the co-
expression network was scale free (Supplementary Figure S1A).
Specifically, 20 co-expression modules were identified after merging
modules with similarities above 0.75 (Figure 3A). To assess the
stability of each module identified in the training cohort, we divided
the TCGA data into training and testing cohort to conduct module
preservation analysis using the module preservation test
(nPermutations = 200) in the WGCNA package; modules with
Z-score >10 were considered to be strongly preserved
(Supplementary Figure S1B). Among the modules with Z-score
>10, the green module showed the highest correlation (r = 0.57, p =
3e-44) and was thus considered to correlate the most with glycolysis
(Figure 3B). Using a p value <0.0001 as the filtering criterion for GS,
univariate Cox regression analysis was performed on hub genes
extracted from the green module. Based on a threshold p value <
0.01 for the univariate Cox regression analysis, 407 candidate genes
were submitted to the LASSO Cox regression algorithm, which can
identify the strongest prognostic markers for prognosis. Ten-fold
cross-validation was used to abrogate over-filtering, by selecting an
optimal λ value of 0.0684 (Figure 3C). Fifteen genes (ARL3, EMP3,
IGFBP2, PTGFRN,ADAMTS3,ARL9, SEMA4G, RYR3, TNFRSF11B,
SSFA2,ABCC3, EMILIN3, IGF2BP2,KLHL9, andRHBDF1) retained
their individual non-zero LASSO coefficients (Figure 3D). The
LASSO coefficients of each gene in the GRS. Thus, we established
the GRS formula, among the members of the signature, KLHL9,
ARL9 and SEMA4G are protective factors, the others are risk factors
(Figure 3E and Supplementary Table S2).

GRS Is a Risk Factor for OS in Each Cohort
The median GRS risk score in the training set and two validation sets
were used to categorize patients with LGG into low- and high-risk
groups. In each cohort, patients in the high-GRS score group had
worse OS than those with a low GRS score (Figures 4A–C, p <
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0.0001). Time-dependent ROC curves were used to evaluate the
reliability of the GRS (Figures 4D–F). The AUC values were
0.78, 0.711, and 0.603 for 1-year, 3-years, and 5-years survival,
respectively, in the TCGA training set, implying good reliability
of the GRS to monitor survival. In the CGGA validation cohort,
the AUC values were 0.731, 0.753, and 0.717; and in the
Rembrandt cohort, the AUC values were 0.777, 0.842, and
0.749 for 1-year, 3-years and 5-years survival, respectively.
Clustering was performed using a k-means algorithm which
divided each cohort into different groups based on the best k
value of genes in the GRS signature (Figures 4G–I), basing on
the cumulative distribution function (CDF) curves

(Supplementary Figure S2A: TCGA, Supplementary Figure
S2B: CGGA, Supplementary Figure S2C: Rembrandt). The
results showed that the OS differed significantly among the
k-means derived groups, which suggested that the classification
means based on genes in the signature could be used directly for
tumor subtyping (Figure 4J-L). Moreover, a meta-analysis of
the prognostic value of the GRS in the pooled cohort, which
integrated the TCGA training cohort and the two validation
cohorts, showed that among all the 1,176 patients in three
cohorts, those with a lower GRS had a better prognosis than
those with a high GRS (pooled HR = 1.23, 95% confidence
interval (CI): 1.09–1.39; Figure 4M).

FIGURE 1 | The analysis the study workflow. (A) Among various hallmarks of cancer, we identified glycolysis as the primary risk factor for OS in patients with LGG
(B) A robust glycolysis-related gene signature for patients with LGG was constructed using various bioinformatic methods. (C) The validation of the gene signature’s
prognostic value in the CGGA and Rembrandt cohorts (D) Clinical significance. LGG: low-grade glioma; WGCNA, weighted gene co-expression network analysis;
LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; OS: overall survival.
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GRS Score Was Associated With the
Clinicopathological Characteristics
To identifying the relationship between the GRS score and
the clinicopathological characteristics, we explored the
corresponding clinical information of LGG cases in the
TCGA training cohort and the CGGA testing cohort (The
clinical information in the Rembrandt cohort was

incomplete). The GRS score was associated significantly
with age, survival status, and IDH1 status. The results
showed that the GRS score was high in “Dead (survival
status)”, “> 40 (Age)”, “IDH1 wild-type”, non-codel
(1p19q status) unmethylated (MGMT status) group, the
respective p values were below 0.05 (Figures 5A–F), the
same trend was observed in the CGGA cohort (Figure 5G-L).

FIGURE 2 | Glycolysis was identified as the primary survival-related risk factor. (A) Heatmap for different hallmark pathway enrichment scores generated by the
ssGSEA algorithm. (B) Univariate Cox analysis of top 10 hallmark pathways. (C) Patients with a higher glycolysis-associated ssGSEA score had a worse OS, as shown
by Kaplan-Meier analysis. OS: overall survival.
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Pathway Enrichment Analysis and
Visualization of Differentially Expressed
Gene (DEGs) Between the High and Low
GRS Score Groups
To explore the association of gene expression with GRS score,
gene expression in 501 patients with LGG in the training set was

compared between the high and lowGRS score groups, to identify

differentially expressed genes (DEGs). We obtain 1827

differentially expressed genes (p < 0.05, |log2FC|>1), Gene

ontology (GO), and Kyoto Encyclopedia of Genes and

Genomes (KEGG) were performed on the DEGs. The GO

analysis showed that a higher GRS score was associated with

FIGURE 3 | Glycolysis-associated gene signature construction. (A) was perform with the top 50 percent of variant genes commonly expressed in the training and
testing cohorts were subjected to WGCNA (B)Gene modules associated with the glycolysis enrichment score obtained using WGCNA. (C) Cross-validation plot for the
penalty term. (D) Plot of the LASSO expression coefficients of 15 glycolysis-related genes. (E) LASSO coefficients of the glycolysis-related gene signature.
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extracellular matrix organization and extracellular structure
organization (Figure 5M). The KEGG analysis indicated
that a higher GRS score was related to ECM−receptor
interaction, Complement and coagulation cascades

(Figure 5M). Taken together, these results suggested that
the proteins encoded by the GRS genes have important
functions in tumor microenvironment (TME) remodeling
in patients with LGG.

FIGURE 4 | Prognostic risk score features of glycolysis-related genes in the training and testing cohorts. (A-C) Kaplan–Meier survival curve in the Rembrandt
cohort, CGGA cohort, and TCGA cohort. (D-F) ROC curves of the GRS on OS in the three cohorts. (G-I) Sample clustering heat maps of the three cohorts generated
using the K-mean cluster algorithm. (J-L) Kaplan–Meier survival curve in respectively clusters generated by K-mean cluster algorithm in three cohorts. (M)Meta-analysis
of training cohort and testing cohorts.
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GRS Acts as an Indicator of Therapeutic
Resistance and Potential Treatments for
Patients With High GRS Score Patients
Tumor glycolysis increases therapy resistance; therefore, we
determined if the GRS could function as an indicator of
therapeutic resistance (Hamilton et al., 2018). In addition to
being associated with poor survival, a higher GRS score correlated
significantly with resistance to various therapies, such as targeted
therapy, radiation therapy, and chemotherapy, according to

GSEA in the training cohort (Figure 6A). The online tool
GSCALite was used to draw landscape plot (bubble heatmap),
which demonstrated the relationships between gene signature
members and drug responses (Figure 6B). Genes in the signature
correlated significantly with the half-maximal inhibitory
concentration (IC50) data in LGG cells. The genes ABCC3,
RHBDF1, and PTGFRN conferred drug resistance, which were
consistent with the results shown in Figure 3E. Next, clinical
outcomes and treatment information from the training cohort
were used to verify these predictions. Following surgery, the
clinical benefit rate (CR, complete remission; PR, partial
remission; SD, stable disease) was remarkably lower (p <
0.0001) in the higher GRS group, both in terms of follow-up
treatment outcome and primary treatment outcome (Figure 6C).
Furthermore, among patients who had been treated with adjuvant
therapies (chemotherapy and radiotherapy), patients with a
higher GRS score had worse (p < 0.0001) OS than those with
a lower GRS score (Figure 6D).

Integrating the Glycolysis Signature With
Clinicopathological Features to Improve
Risk Stratification and Survival Prediction
A decision tree was constructed to increase the stratification of
risk using the three parameters available age (≥40 or <40), IDH
status (wild and mutant), and the GRS (high and low), the
results of which showed that all factors (nsplit = 3, xerror is
minimum) remained in the decision tree and four different
risk subgroups were identified (Figure 7A). The GRS score
played an important role in the model. Kaplan–Meier curves
showed that OS differed significantly among the four risk
subgroups. Patients in the high GRS score, wild-type IDH1
status, advanced age (age >40) subgroups had the highest risk
(Figure 7B). The patients in the training cohort with age, sex,
IDH1 status, and GRS scores were used for further study.
Univariate Cox regression analysis showed that age, IDH1
status, and GRS score were associated significantly with the
prognosis of LGG (Figure 7C, p < 0.05). Multivariate Cox
regression analysis identified GRS as an independent
prognostic factor combined with other clinicopathological
factors (Figure 7D, p < 0.2). These three factors (The GRS
score was scaled) were constructed into a nomogram to
quantify the risk assessment and survival probability for
individual patients with LGG (Figure 7E). The forecast
curve of the calibration analysis (black line) of the
nomogram for 3-years and 5-years survival probability
closely resembled that of the ideal performance (the grey
line in Figures 7G,H), indicating that the nomogram was
highly accurate. Finally, the nomogram’s reliability was
evaluated using time-dependent ROC curves (Figure 7F).
The AUC values were 0.875, 0.893, 0.799, and 0.762 for 1-,
3-, 5-, and 10-years survival, respectively, indicating a good
potential in clinical practice for monitoring survival. We
conduct same analysis in the CGGA cohort, the result was
exhibited in Supplementary Figure S3, which also suggest
high reliability of our model.

FIGURE 5 | The correlation between the log2 (GRS score) and
clinicopathological features and pathway enrichment analysis. (A-F)
Distribution of GRS scores in different subgroups in TCGA cohort, and (G-L)
CGGA cohort. (M-N)GO and KEGG enrichment analysis for differentially
expressed genes between the high- and low- GRS score groups.
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DISCUSSION

Compared with normal cells, tumor cells have many unique
hallmarks, which are of great significance in the precise
treatment of tumors. Metabolic change is one of the most
intriguing areas of tumor research (Pavlova and Thompson,
2016). To meet their high metabolism, tumor cells must
struggle to get enough nutrients (Ou and Lv, 2020). More
than 90 years ago, Warburg et al. found that tumor cells
maintain active glycolysis levels even in the absence of oxygen.
This landmark discovery is known as the “Warburg Effect”
(Liberti and Locasale, 2016). Since then, the study of glucose
metabolism in tumors has been in full swing. Positron emission
tomography (PET) imaging based on cancer glucose metabolism
has been widely used in clinical and plays an important role in the
diagnosis and monitoring of tumors (Walker et al., 2020).
Therapies targeting glucose metabolism, such as glucose
transporter (GLUT) inhibitors, also hold great promise in the
treatment of tumors (Reckzeh andWaldmann, 2020). The role of
glucose metabolism in cancer is becoming increasingly attractive.

As research progressed, the role of glucose metabolism in
tumors was found to be related to more than just energy supply.

Some intermediates of glucose metabolism, such as lactic acid,
may be involved in improving the tumor microenvironment and
mediating immune reprogramming (Vaupel et al., 2019).
Clinicians can also be able to choose and tailor treatments
based on well-established disease models. Zhang et al.
constructed immune infiltrating cells-derived risk signature,
which can well describe immune characteristics and predict
prognosis in glioma patients (Zhang et al., 2021). Therefore,
the current research on glucose metabolism is far from enough. In
addition, several clinical studies have found that high glucose
metabolism is associated with poor prognosis in some tumors.
Zhang et al. constructed a prognostic signature of glycolysis-
related genes in lung adenocarcinoma (Zhang et al., 2019), in
which patients in the high-risk group had a worse prognosis. Yu
et al. also constructed a prognostic model of glycolysis-related
genes in gastric cancer and found that glycolysis was related to
prognosis and immune infiltration in gastric cancer patients (Yu
et al., 2020). However, for the low-grade glioma, a tumor with a
very poor prognosis, no glycolysis-related prognostic model has
been established. Therefore, it is necessary to evaluate the
prognostic significance and therapeutic guidance value of
glycolysis in low-grade glioma.

FIGURE 6 | The gene signature is a good marker of resistance to various treatments. (A) A high GRS score correlated with therapeutic resistance. (B) A landscape
graph illustrating the drug sensitivity (IC50) of members of the GRS signature in LGG cells. (C) The clinical benefit rate (CBR) was lower in the high GRS score groups both
in follow-up treatment outcome terms and primary treatment outcome terms. (D) Patients with a higher GRS score had a worse OS among those that received
chemotherapy and radiotherapy. CBR: CR + PR + SD (CR, complete remission; PR, partial remission; SD, stable disease; PD, progressive disease) IC50, half
maximal inhibitory concentration.
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In this study, using the ssGSEA algorithm and univariate
regression model, glycolysis was identified as the primary OS-
related risk factor in patients with LGG. Combining algorithm

WGCNA, univariate Cox regression and LASSO Cox regression
model, we obtained robust prognostic candidates and constructed
a glycolysis-related gene signature (GRS). Next, the gene

FIGURE 7 | A nomogram and decision tree constructed on the basis of glycolysis and clinicopathological features in TCGA. (A) The decision tree that was
established to increase the level of risk stratification. (B) Kaplan-Meier curves showing the OS of subgroups established using the decision tree. (C-D)Univariate cox (p <
0.05) and Multivariate Cox (p < 0.2) analysis of clinicopathological factors. (E) A nomogram was drawn to predict the survival rate at different time points for individual
patients. (F) ROC curves at 1, 3, 5, and 10 years showing that the nomogram is a robust indicator for OS. (G-H) Three-year and 5-year calibration curves of the
training cohort.
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signature’s prognostic value was confirmed by multiple analyses in
two other cohorts. The clinical characteristics of patients with LGG
were analyzed to determine the correlation between the GRS score
and clinicopathological features, which showed that the GRS score
was elevated significantly in patients with older age (>40), wild-
type IDH1 status, and those who had died. Thereafter, GO, KEGG
enrichment analysis based onDEGs between the high and lowGRS
score groups were carried out to explore what aspects of the high
GRS score affected the TME of patients with LGG. In addition,
patients with LGG with a high GRS score experienced poorer
survival compared with those in the low GRS score group in the
adjuvant therapy groups, which might have been caused by
therapeutic resistance induced by members of the signature,
which suggested that the GRS could also be used as a reliable
tool to predict therapeutic resistance in patients with LGG. Finally,
a decision tree was constructed to improve the stratification of risk,
which was integrated with the clinicopathological characteristics.
In the decision tree, the GRS score functioned as the major decisive
factor. Meanwhile, the GRS was confirmed as an independent
prognostic factor after adjusting for other clinicopathological
features using multivariate Cox regression analysis. These results
indicated that the GRS is a reliable risk factor for OS in patients
with LGG. To increase the predictive ability of OS for LGG in a
quantitative manner, a prognostic nomogram containing scale-
GRS scores and other clinical features was established to predict the
probability of 1-, 3-, 5-years OS. Calibration analysis demonstrated
the accurate predictive ability of the nomogram, which was in
accord with actual survival. Furthermore, ROC analysis
demonstrated that the nomogram model exhibited high
accuracy to predict survival in the timeline of follow up.

Some candidates included in the signature, have been
reported to be involved in the glucose metabolic process of
low-grade glioma cancer. ARL3 cycling between an in active
GDP-bound and an active GTP-bound form, is involved in
energy metabolic process, which may be associated with glucose
metabolic process (Zhou et al., 2006; Veltel et al., 2008). Rahman
et al. demonstrated that IGFBP2 could induce the increase of
glioma invasion and malignancy by activating PTEN and AKT
pathways, which is enhanced by HIF-α associated with
promoting glycolysis related activities (Rahman and Thomas,
2011; Das et al., 2013). Li et al. reported that the express of
RHBDF1 inhibited the RACK1 induced HIF-α degradation in
breast cancer, which aggravated the hypoxic environment of the
tumor environment and promoted the activation of the
glycolysis pathway (Zhou et al., 2014). Based on
comprehensive bioinformatic analysis, this study further
screened some potentials which have not been reported in
glucose metabolic process, which may provide new insight
for the further research in glucose metabolic process of glioma.

Meanwhile, glycolysis related signature shows high accuracy
in predicting the survival rate in 3 cohorts in our study,
furthermore the signature displays strong correlation with
clinicopathological features. All the results indicate GRS can
serve as a reliable indicator in clinical application. To test the
correctness of the model and improve the prediction ability of the
model, more independent cohorts should be involved in our
study. Go and KEGG analysis reveal fact glycolysis is a tumor

hallmark involving gene networks (all the members of GRS)
rather than some individual “glycolysis genes”, which is involved
in tumor microenvironment remodeling. It gives us new
enlightenment for the treatment of glioma which should be
considered as a whole from multiple targets. In addition,
patients with high GRS score exhibited poorer survival treated
with traditional adjuvant therapy methods, which implicated
urgent need for new means for treatment. we exhibited the
drug sensitivity (IC50) of members of the GRS signature in
LGG cells, which is need further biological experiments to
validate the effectiveness in vitro and vivo.

At last, this study constructed a robust predictive model which
can increase the abilities of risk stratification and survival
prediction. However, the clinical information of cases in
incorporated datasets were inconsistent. We established a
predictive model based on the information available in TCGA
training set, not including some important clinical features which
can further improve the predictive ability of the model, such as p/
19q status, WHO grade. In addition, the further verifications are
needed by biological experiments and clinical studies.

CONCLUSION

The present study has the advantages of incorporating different
cohorts from the TCGA and CGGA databases to construct a
robust glycolysis signature that can predict patient survival and
therapeutic resistance with high accuracy in patients with LGG.

Combining the GRS signature with clinicopathological
characteristics allowed us to construct a decision tree and a
nomogram, which increased the abilities of risk stratification
and survival prediction. The GRS might function as a reliable
clinical prediction tool and might aid the future development of
therapeutic targets.
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