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Bone is the most common site of distant metastasis from malignant tumors, with the
highest prevalence observed in breast and prostate cancers. Such bone metastases (BM)
cause many painful skeletal-related events, such as severe bone pain, pathological
fractures, spinal cord compression, and hypercalcemia, with adverse effects on life
quality. Many bone-targeting agents developed based on the current understanding of
BM onset’s molecular mechanisms dull these adverse effects. However, only a few studies
investigated potential predictors of high risk for developing BM, despite such knowledge
being critical for early interventions to prevent or delay BM. This work proposes a
computational network-based pipeline that incorporates a ML/DL component to
predict BM development. Based on the proposed pipeline we constructed several
machine learning models. The deep neural network (DNN) model exhibited the highest
prediction accuracy (AUC of 92.11%) using the top 34 featured genes ranked by
betweenness centrality scores. We further used an entirely separate, “external” TCGA
dataset to evaluate the robustness of this DNN model and achieved sensitivity of 85%,
specificity of 80%, positive predictive value of 78.10%, negative predictive value of 80%,
and AUC of 85.78%. The result shows the models’way of learning allowed it to zoom in on
the featured genes that provide the added benefit of the model displaying generic
capabilities, that is, to predict BM for samples from different primary sites.
Furthermore, existing experimental evidence provides confidence that about 50% of
the 34 hub genes have BM-related functionality, which suggests that these common
genetic markers provide vital insight about BM drivers. These findings may prompt the
transformation of such a method into an artificial intelligence (AI) diagnostic tool and direct
us towards mechanisms that underlie metastasis to bone events.
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INTRODUCTION

Cancer-related morbidity and mortality are primarily associated
with metastasis, and the most frequent site for tumor metastasis is
the bone, particularly for breast and prostate cancers (Coleman,
1997; Landemaine et al., 2008). Also, cancer cells present in the
bone marrow called disseminated tumor cells (DTCs) were
shown to correlate with increased risk of disease recurrence
and poor prognosis in early breast cancer (BCa) patients
(Braun et al., 2005; Bidard et al., 2008). We now know that
cancer metastasizing to the bone (BM), called osteotropism,
requires stepwise processes that include tumor cells acquiring
specific molecular characteristics to one/detach from the primary
tumor, two/enter the bone, and three/home within the bone
niche. However, the molecular pathways of metastases are still
unknown despite the substantial advancements made in cancer-
related therapies. Moreover, adjuvant treatment with
bisphosphonates or denosumab only benefits specific patient
subgroups (Paterson et al., 2012; Gnant et al., 2015; Jacobs
et al., 2015). Thus, a number of groups have been attempting
to unravel BM mechanisms using molecular biology methods
(Kingsley et al., 2007).

Recent works (Josefsson et al., 2018; Rizzo et al., 2019;
Pantano et al., 2020) used circulating tumor cells’ protein or
gene expression profiles to suggest biomarkers for predicting
BM. However, primary tumors’ protein or gene expression
profiles are more commonly studied and recommended
biomarkers for predicting BM. For example, high or
elevated levels of CAPG, GIPC1 (Westbrook et al., 2016),
ITGBL1 (Li et al., 2015), IL-1B (Li et al., 2015), DOCK-4
(Westbrook et al., 2019), nPAK4 (Li Y. et al., 2019), PRDX4
(Tiedemann et al., 2019), LPC1 (Tiedemann et al., 2019), and
PRL (Sutherland et al., 2016) are all suggested BM biomarkers
based on different studies. Also, several works (Kang et al.,
2003; Smid et al., 2006; Sanz-Pamplona et al., 2012; Dean-
Colomb et al., 2013; Zhou and Liu, 2014) have attempted to
identify panels of BM-related genes from gene expression
data. Few studies, such as (Smid et al., 2006; Zhou and Liu,
2014), used the identified genes as signatures to construct a
model for predicting BM risk in breast cancer. Developing
more such models that can predict BM from a disease specific
and generic perspective with high performance accuracy
could be used to support the physician’s work.
Additionally, exploring the mechanism of BM from
different primary sites and determining if this mechanism
has common features despite originating from various
primary sites is necessary, as it may provide a better
understanding of the biological underpinnings of BM
(Albaradei et al., 2021b).

In this study we performed a meta-analysis of three breast
cancer and two prostate cancer gene expression profiles, to
identify metastasis-related genes common to both cancer
types. We started this process by identifying the
differentially expressed genes (DEGs) between primary and
metastasized tumors, then used these genes to construct a
protein-protein interaction (PPI) network. We then
calculated betweenness centrality (BC) to determine the

hub genes which we used as input to develop machine
learning models that can predict BM with high prediction
accuracy. We developed support vector machine (SVM),
random forest (RF), and deep learning network (DNN)
models. The DNN model produced the highest prediction
accuracy using only 34 top-ranked hub genes. Next, the
robustness of the DNN model was validated using
independent datasets from the cancer genome atlas
(TCGA) and the metastasis-related functionality of the
34 top-ranked hub genes were validated by experimental
evidence in existing literature.

METHOD AND MATERIALS

Gene Expression Datasets
We searched for gene expression datasets in Gene Expression
Omnibus (GEO) (Edgar et al., 2002) using the following query:
"metastas* ANDboneANDHomo sapiens” filtered by “Expression
profiling by array” on July 19th, 2021.We retrieved 241 entries that
we sifted through but only found breast or prostate cancer samples
with microarray gene expression data for primary tumors (without
metastasis) and tumors with BM (metastasis to bone). The data
used in this study include breast cancer data (GSE103357,
GSE137842, GSE 2034) and prostate cancer data (GSE32269,
GSE43332) (see Table 1). We fed this data to the ImaGEO tool
(Toro-Domínguez et al., 2019) to perform the initial differential
expression analysis, including background correction,
normalization, and batch effect correction.

Meta-Analysis of Gene Expression Data
We used ImaGEO software, with default settings and the
effect size method for the gene expression data meta-
analysis. The tool transforms expression values to the
logarithmic scale where needed, annotates the probe
identifiers with unique Entrez Gene identifiers, merges the
data, and provides data quality control checking. The tool
further computes median values for duplicate gene expression
profiles in each dataset, filters out genes with missing values in
more than 10% of samples, and imputes missing values for the
remaining genes using the average expression values in the
respective primary or metastasis group.

We identified the DEGs using MetaDE.ES in the MetaDE
package. This method tested the heterogeneity of gene
expression value using three statistical parameters: τ2,
Q-value, and Qpval. Then, we tested for differential
expression of genes between the primary and metastasized
groups using p-value. To ensure the homogeneity of featured
genes, τ2 � 0, Qpval >0.05, and p < 0.05 were set as the cut-
offs. The criteria for DEGs were false discovery rate (FDR)
p-value < 0.05 and log2fold change >2. Thus, the MetaDE
package performs heterogeneity tests first to determine if
genuine differences underlie the results of the studies
(heterogeneity) as opposed to variation based on chance
alone, then selects DEGs successively (Wei et al., 2018),
unlike commonly used limma, which selects DEGs based
on p-value and fold-change thresholds.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7710922

Albaradei et al. Predicting Bone Metastasis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Constructing the PPI Network and
Identifying Hub Genes
Many recent studies use GeneMANIA (Gene Ontology
molecular function-based weighting) to analyze the gene
lists and prioritize genes for functional assays (Taye et al.,
2017). The reason being, it offers several advantages over
other PPI networks in terms of flexibility, data
representation, and predictive accuracy as it is a collection
of many datasets and different interactions from GEO,
BioGRID (Stark et al., 2006), IRefIndex (Razick et al.,
2008), and I2D (Brown and Jurisica, 2007). Thus, we used
the GeneMANIA Cytoscape 3.6.0 plugin (Montojo et al.,
2014) to generate a physical protein-protein interaction
network using the 534 DEGs. Briefly, we uploaded our
534 DEGs to Cytoscape, then selected the physical
interactions option and removed the nodes with no
connections. Next, we used the Cytoscape CytoHubba
plugin to identify hub genes in the constructed PPI
network via the BC scoring technique. Genes/proteins
were ranked based on the BC score. DEGs among the top
100 hub genes were shortlisted and subsequently used to
develop ML/DL models that distinguish between primary
and metastasized samples.

Using the Hub Genes as Features to
Develop ML/DL Models
We created a parameter search space to evaluate different
configurations for the SVM, RF, and DNN models (see
Table 2). We implemented the SVM SVC class from the
Scikit-learn Python library (Pedregosa et al., 2011). We
employed the standard parameters, radial basis function
kernel with degree � 3 and gamma � auto. We also

implemented an RF model from the Scikit-learn Python
library with 100 trees in the forest and max depth � 2.
Also, we implemented DNN, a neural network with two
hidden layers with 12 and eight nodes using the Python
Keras library (https://github.com/fchollet/keras). We
employed the SGD algorithm with the default parameters
as the optimizer and used cross-entropy to compute the loss
between actual and predicted labels. We set the number of
epochs to 500 and the batch size to 8. We used the early
stopping technique and the dropout technique with a drop
rate of 0.3 to avoid overfitting. Because the number of samples
is imbalanced, we also used the synthetic minority
oversampling technique (SMOTE) to oversample the
minority class using the imbalanced-learn python library
(Chawla et al., 2002).

We previously developed ML/DL models that successfully
distinguish between primary and metastasis samples
(Albaradei et al., 2019; Albaradei et al., 2021a). Thus, we here
too iteratively added ten top-ranked genes based upon their BC
value to train SVM, RF, and DNN models to mine
the top essential genes that distinguish the primary and BM
tumors.

We used the GEO integrated datasets (samples) for model
training and computed the area under the curve (AUC) to
evaluate the prediction performance of all the models. Using
stratified random sampling technique (Pedregosa et al., 2011),
we split the data into 80% training (296 samples) and 20%
validation (74 samples). In addition, we used external testing
data from the TCGA datasets to test the robustness of the best-
performing model. The external set was extracted from the
human cancer metastasis database (HCMDB) (Zheng et al.,
2018), where we found 117 samples in which 38 were
metastasized to bone (see the complete list of TCGA IDs in

TABLE 1 | Information of the gene expression datasets from GEO.

GEO accession Platform Total number of
samples included

Metastasis Non-metastasis

GSE103357 GPL6947 5 3 2
GSE137842 GPL570 6 3 3
GSE2034 GPL96 286 69 217
GSE32269 GPL96 51 22 29
GSE43332 GPL6244 14 8 6

TABLE 2 | Parameter search space for optimizing SVM, RF, and DNN models (Bold fond indicates the selected value).

Model Parameter Range

SVM gamma (“scale”, “auto”)
Kernel (“linear”, “poly”, “rbf”, “sigmoid”, “precomputed”)

RF n_estimators (1, 2, 4, 8, 16, 32, 64, 100,200)
max_depth (1, 2, 4, 8, 16, 32, 64, 100)

DNN node size in each layer (4, 8, 12, 16, 32, 64)
activation function (“relu”, “tanh”, “sigmoid”, “linear”)
Optimizers (SGD, “Adam”, “Nadam”]
batch size (4, 8, 16, 32)
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Supplementary Table S1). We computed sensitivity (Se),
specificity (Sp), positive predictive value (PPV), negative
predictive value (NPV), and AUC to evaluate the model on
the test set.

Validating the Metastasis-Related
Functionality
To validate the metastasis-related functionality of the 34
featured hub genes, we conducted a literature review and
used the R package to explore the diseases associated with
the 34 featured genes based on the disease gene network
(DisGeNet). The enrichment significance was calculated
using gene set enrichment analysis (GSEA), a computational
method determining if a predefined set of genes exhibit a
statistically significant or concordant difference between two
biological states (Subramanian et al., 2005).

RESULTS

Study Design
The study design comprises six steps, depicted in a
flowchart in Figure 1. First, we used ImaGEO to
integrate and analyze the five GEO datasets and obtain
DEGs (Step 1). Then, the DEGs were used to construct a
gene-gene functional interaction network in GeneMANIA
(Step 2). Next, we calculated network nodes’ betweenness
centrality and degree centrality to determine the hub genes
(Step 3). We then used the hub genes to develop ML/DL
models that distinguish primary from metastasized samples
(Step 4). Next, we validated the best-performing model
using an independent test set from TCGA (Step 5).
Finally, we conducted a literature review to validate the
metastasis-related functionality of the 34 hub genes
(Step 6).

FIGURE 1 | A Flowchart description of the study design.
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Differentially Expressed Genes (DEGs)
Between Primary and Bone Metastasized
Tumours
Table 3 provides the ImaGEO tool’s quality control test results
for the five gene expression datasets. The test shows the data used
in this study is of good quality. The ImaGEO tool further
annotated the probes with gene identifiers, merged and
normalized data to provide the DEGs. The tool identified 534
DEGs, which include 365 up-regulated DEGs and 170 down-
regulated DEGs. We provide the complete list of DEGs in
Supplementary Table S2. A visual representation of the top
100 DEGs in the form of a heatmap shows the expression of more
of the genes in the primary group is consistent in all the samples
compared to the metastasized group (see Figure 2). Also, about
25% of these clearly down-regulated genes in the primary group
are consistently up-regulated in the metastasized samples.

Determining which DEGs are Hub Genes
The previous step provides us with the 534 DEGs but does not
provide a means to identify the genes with the most functional
impact, i.e., the so-called “hub” genes. Hub genes, according to
research, are nodes that are highly connected to other nodes and
are responsible for the majority of diseases such as cancer (Wachi
et al., 2005). To identify the hub genes, we generated a gene-gene
functional interaction network using GeneMANIA. First, the
GeneMANIA software generates an interactive functional
association network, comprising 634 nodes (which include the
534 genes and genes added based on the guilt-by-association
approach) and 3,024 edges representing only direct physical
protein-protein interaction (see Table 4). Then, we removed
all the genes with no connected edges, leaving a network with
549 nodes and 3,005 connections. Next, we used the Cytoscape
cytoHubba plugin to estimate the topological parameters,
specifically, the betweenness centrality. Based on the BC score,
we found 80 genes/proteins from the 534 DEGs among the top
100 hub genes. These 80 genes/proteins were subsequently used
to develop ML/DL models that distinguish between primary and
metastasized samples.

Evaluating if the Hub Genes Can Be Used to
Develop Robust ML/DL Models that
Distinguish Primary and Metastasized
Tumours
We fed the 80 hub genes to each model (SVM, RF, and DNN) for
training. That is, we iteratively added ten of the top-ranked genes

based upon their BC value to train the models. The DNN model
achieved the best AUC when including the 30 top-ranked genes
(see Figure 3). We then evaluated the effect of adding some genes
surrounding the 30 top-ranked genes to get the optimized
performance. The 34 top-ranked featured genes (see Table 5)
achieved the best performance with AUC of 92.11% and were
selected to construct the final DNN model. To evaluate the
robustness of this DNN model, we further used the model to
distinguish primary and BM samples in a completely separate,
“external” TCGA dataset. The DNN model achieved Se of 85%,
Sp of 80%, PPV of 78.10%, NPV of 80%, and AUC of 85.78%. This
result shows that the DNN model provides a more than
satisfactory performance. Also, the models’ way of learning
allowed it to zoom in on the featured genes that provide the
added benefit of themodel displaying generic capabilities in terms
of the phenotype under investigation (primary versus BM).

Validating the Metastasis-Related
Functionality of the 34 Top-Ranked Hub
Genes
Thus far, the gene-gene functional interaction network allowed us
to predict several of the critical metastasis-related genes based on
diverse metrics, including FN1 with the lowest FDR value (0.001)
and highest BC value (7,078.61), and XPO1 with a similarly low
FDR value (0.001) and high BC value (5,525.37). Therefore, FN1
and XPO1 were the most important hub genes among DEGs
across five microarray studies, followed by UBC (FDR 0.038, BC
245916.54), PCNA (FDR 0.0127, BC 2237.75), and YWHAE
(FDR 0.0233, BC 1851.59).

However, we still do not know the gene-disease associations of
the 34 hub genes or if available experimental evidence links the
genes to metastasis-related functionality. Thus, we evaluated the
gene-disease associations of the 34 hub genes using DisGeNET
(see Figure 4). DisGeNET indicates that the genes are associated
with numerous types of cancer, autoimmunity, and bone
disorders. For example, featured genes such as COL1A1,
COL5A1, FN1, and ACTB are involved in invasive breast
carcinoma and osteogenesis imperfecta, a heritable bone
fragility disorder associated with short stature and
abnormalities. This links these genes to breast cancer and
bone softening, which is a feature of BM. In addition, genes
such as COL1A1, HSPA5, FN1, ACTB, HNRNPA1, COL5A1,
JAK2, and RASA1 are involved in Carcinomatosis and Mastitis,
which shows these genes are involved in cancer spread
throughout the body and inflammation in breast tissue. Also,
FN1, PCNA, ACTB, COL1A1, EZH2, JAK2, and HSPA5 are

TABLE 3 | The dataset quality control results generated by the ImaGEO tool.

ID Samples preQC Samples postQC Imputed genes PASS_QC

GSE103357 5 5 0 Yes
GSE137842 6 6 0 Yes
GSE2034 286 286 0 Yes
GSE32269 51 51 0 Yes
GSE43332 145 14 0 Yes
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involved in ureteric obstruction, an outcome of long-term
invasive prostate cancer (Deng, Liu et al., 2015). This is
interesting as a 2006 case report indicates that ureteric

obstruction is a rare manifestation of metastatic breast cancer
and that the obstruction may be due to retroperitoneal fibrosis,
retroperitoneal or ureteric metastases. Furthermore, gastric

FIGURE 2 | An ImaGEO generated heatmap of the top 100 DEGs based on the five microarray profiles.
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cancer and renal cell carcinoma can also cause similar
manifestations (Jani, 2006). We also conducted a literature
review to provide a type of verification that the genes
pinpointed in this study are indeed involved in metastasis-

related functionality (see Table 5). As a result, we found
literature supporting 17 of the 34 hub genes having known
metastasis-related functionality. These results provide
confidence that about 50% of the 34 hub genes have BM-

FIGURE 3 | AUC is based on different numbers of featured genes using DNN, SVM, and RF. AUC is indicated in blue, while error rate is indicated in red.

TABLE 4 | The 80 DEGs ranked among the top 100 hub genes.

Rank Hub genes BC Rank Hub genes BC Rank Hub genes BC Rank Hub genes BC

1 UBC 245,916.53 21 HSPA5 1094.87 41 TDG 292.11 61 CENPE 101.76
2 FN1 7,078.61 22 TNNT1 1094 42 GORASP2 251.35 62 CCT6A 98.94
3 XPO1 5,525.37 23 TUBB 863.24 43 WASF2 248.53 63 CCNB1 98.66
4 PCNA 2,237.74 24 DOLPP1 689.82 44 MMP14 246.27 64 FANCG 93.63
5 YWHAE 1851.59 25 PMM1 609.2 45 SP110 242.55 65 UBFD1 92.57
6 CSNK2B 1828.92 26 DCUN1D1 597.11 46 CREB1 237.59 66 CCND1 89.44
7 ACTB 1649.7 27 GAPVD1 592.8 47 SPARC 232.73 67 SHFM1 89.11
8 CUL2 1612.17 28 SEC61B 590.25 48 PROCR 219.23 68 PIAS1 88.99
9 HNRNPA1 1595.04 29 AURKA 576.99 49 NDUFA4 184.02 69 RAE1 80.2
10 COL1A1 1494.98 30 EZH2 573.01 50 MYH9 167.71 70 DNMT3B 79.91
11 TUBA1A 1480.27 31 RASA1 547.88 51 BUB1B 149.02 71 EIF3D 77.52
12 ILK 1439.63 32 SATB2 503.98 52 NACA 140.35 72 PHF20L1 77.41
13 TMEM109 1313.23 33 JAK2 483.91 53 PAXIP1 137.01 73 PINK1 76.5
14 VAPA 1294.47 34 RPL26L1 481.36 54 RAN 126.37 74 EEF1A2 71.12
15 PCBP1 1240.18 35 TUBA1C 424.14 55 JUNB 125.6 75 KIF2C 70.24
16 BUB1 1222.72 36 TUBA1B 395.71 56 NFKB1 122.42 76 KIF11 68.14
17 COL5A1 1194.25 37 HSPA9 372.74 57 RBBP4 121.81 77 IPO7 68.12
18 PSMA7 1171.14 38 CUL4A 353.56 58 MAD2L1 120.84 78 ICAM1 60.64
19 SSR4 1110.56 39 PRKCQ 325.42 59 ARF6 115.1 79 TOP2A 60.24
20 SCRIB 1098.59 40 EIF3I 300.9 60 KPNA2 106.04 80 CLNS1A 53.59
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related functionality and provide a birds-eye-view of the
knowledge or lack of knowledge related to underlying BM
mechanisms.

DISCUSSION

Certain types of cancer, such as breast and prostate, migrate to
and grow in the bone microenvironment due to specific
conditions. However, the number of large-scale gene
expression research undertaken to identify the shared genetic
markers responsible for BM is low. Therefore, this study aims to
perform a meta-analysis of the primary site and BM-related gene
expression profiles from breast and prostate cancers to identify
BM-related genes common to both cancer types. First, we
identified the DEGs and the subset of hub genes that we can
use as features in the ML/DL models to distinguish between the
primary tumors and the BM. Then, we tested how generic the
best-performing model is with respect to predicting BM for
samples from different primary sites, but could not compare
our model related models because all previous works are based on
predicting BM from one primary site. However, we could not
compare our model to related models because all previous works

predict BM from one primary site. Additionally, we are exploring
BM from different primary sites to determine common features
despite originating from various primary sites. Thus, this work is
different from previous works. Nonetheless, the developed model
predicts BM from a disease-specific and generic perspective with
high-performance accuracy, which could support the physician’s
work if transformed into an AI tool.

To recap, we set out to perform a BM-related meta-analysis
across different cancer types but only found five GEO gene
expression datasets associated with prostate and breast cancers
that fulfil this criterion. Briefly, the methodology we implemented
allowed us to identify 534 DEGs (p-value <0.05) shortlisted to a
subset of 80 hub genes based on betweenness centrality. Next, we
fed the 80 top-ranked hub genes as features to each machine
learning model, including SVM, RF, DNN models. In this
manner, we filtered the genes to prioritize the most significant
hub genes based on AUC using ML/DL models. Then, to test the
robustness of the best-performing model, we used an external set
(Zheng et al., 2018) comprising 117 samples, of which 38 were
metastasized to bone. The DNN model achieved Se of 85%, Sp of
80%, PPV of 78.10%, NPV of 80%, and AUC of 85.78%. These
results provide a good indication of the potential power of the
selected 34 featured genes combined with a DNN to predict BM

TABLE 5 | Metrics and literature linking the 34 feature genes to metastasis or specifically BM.

Genes FDR BC Expression linked to
metastasis

Linked to metastasis

UBC 0.038 245,916.531 down-regulated n/a
FN1 0.001 7,078.614 up-regulated Soikkeli et al. (2010)
XPO1 0.001 5,525.367 up-regulated Gravina et al. (2014), Cotul et al. (2020)
PCNA 0.013 2,237.745 up-regulated Zuo et al. (2020)
YWHAE 0.023 1,851.595 down-regulated Leal et al. (2016)
CSNK2B 0.045 1,828.924 down-regulated n/a
ACTB 0.013 1,649.700 down-regulated n/a
CUL2 0.022 1,612.171 up-regulated Meng et al. (2018)
HNRNPA1 0.039 1,595.038 up-regulated Loh et al. (2015), Chen et al. (2018)
COL1A1 0.013 1,494.975 up-regulated Liu et al. (2018a)
TUBA1A 0.039 1,480.275 up-regulated n/a
ILK 0.015 1,439.632 down-regulated Zhu, Liu et al. (2012)
TMEM109 0.042 1,313.235 down-regulated n/a
VAPA 0.014 1,294.474 up-regulated Zhang et al. (2020), Zhou et al. (2020)
PCBP1 0.006 1,240.178 down-regulated Wang et al. (2010)
BUB1 0.014 1,222.716 up-regulated n/a
COL5A1 0.005 1,194.251 up-regulated Liu et al. (2018b), Feng et al. (2019)
PSMA7 0.049 1,171.135 up-regulated n/a
SSR4 0.018 1,110.555 down-regulated n/a
SCRIB 0.021 1,098.592 up-regulated Hussein et al. (2021)
HSPA5 0.010 1,094.874 down-regulated n/a
TNNT1 0.026 1,094.000 up-regulated n/a
TUBB 0.010 863.241 down-regulated n/a
DOLPP1 0.004 689.825 up-regulated n/a
PMM1 0.046 609.200 down-regulated n/a
DCUN1D1 0.038 597.108 up-regulated Shuang et al. (2017), Li et al. (2019c)
GAPVD1 0.012 592.799 up-regulated n/a
SEC61B 0.021 590.249 up-regulated n/a
AURKA 0.000 576.994 up-regulated Yang et al. (2016), Chen et al. (2017)
EZH2 0.004 573.010 up-regulated Shin and Kim (2012), Hirukawa et al. (2018)
RASA1 0.047 547.878 up-regulated n/a
SATB2 0.038 503.985 up-regulated Seong et al. (2015), Luo et al. (2016)
JAK2 0.025 483.914 up-regulated Talati et al. (2015), Wang et al. (2017)
RPL26L1 0.000 481.357 up-regulated n/a
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for samples from different primary sites, promoting the
development of artificial intelligence (AI) diagnostic tools to
enhance BM treatment.

Beyond that, these findings point out key genes involved in the
metastasis process. Specifically, we further validated that more
than 50% of the 34 hub genes have metastasis-related
functionality. Here we mention the metastasis-related
functionality exhibited by the products of a few of the top-
ranked hub genes. Soikkeli and others demonstrated that the
transforming growth factor-β signaling pathway is activated
during metastatic outgrowth, and transforming growth factor-
β inducible genes, including POSTN, FN1, and COL-I and
VCAN, are up-regulated (Soikkeli et al., 2010). Moreover, they
showed that POSTN, FN1, VCAN, and pro-collagen-I (PCOL-I,
newly synthesized COL-I) colocalize in extracellular strand and
ring structures, visible inside the metastases and at the tumor-
stroma interface. Later findings supported this work, as Li and
others demonstrated that small interfering RNA (siRNA)-
mediated downregulation of FN1 suppress the migration,
invasion, adhesion, proliferation capabilities, and induced
apoptosis of melanoma cells (Li B. et al., 2019). Additionally,
Armstrong and others also demonstrated that depletion of
fibronectin (FN1) by siRNA knockdown markedly reduce the
invasive capacity of prostate cancer (PCa) cells (Armstrong et al.,
2018). Then, we have Exportin 1 (XPO1), one of the few exportins
involved in transporting several tumor suppressor proteins
(including p53, BRCA1, Survivin, NPM, APC, and FOXO) out
of the nucleus. Gravina and others used a selective inhibition of

XPO1, Selinexor (KPT-330), to demonstrate that XPO1
inhibition affects the metastatic potential of PCa cells using
one model of intraprostatic tumor growth and two models of
bone metastasis (Gravina et al., 2014). Concerning PCNA, Cui
and others demonstrated that small hairpin RNA(shRNA)-
mediated knockdown of a nuclear effector of the Hippo
pathway, Yes-associated protein 1 (YAP1), down-regulate the
expression of AxI, PCNA, and MMP-9, and inhibit the
proliferation and invasion of human lung adenocarcinomas
and gastric adenocarcinoma cells (Cui et al., 2012). Also, Zuo
and others wanted to examine the role of circ-SMAD7 in glioma
progression (Zuo et al., 2020). They demonstrated that
downregulated Circ-SMAD7 inhibits cell proliferation,
migration, and invasion in glioma cells. In addition, repressed
PCNA mRNA and protein expression was observed after circ-
SMAD7 was knocked down in the glioma cells, suggesting circ-
SMAD7 promotes proliferation and metastasis of glioma via
upregulating PCNA. In another study, Meng and others aimed
to investigate how the key epithelial-mesenchymal transition
(EMT) protein, Twist 1, increases vimentin expression (Meng
et al., 2018). They reported that Twist1 binds to the Cullin2
(Cul2) promoter to activate the selective transcription of Cul2
circular RNA (circ-10720), but not mRNA. The circ-10720
absorb miRNAs that target the vimentin, and it is in this
indirect manner that Twist1 promoted vimentin expression.
They further demonstrated that circ-10720 knockdown
represses the tumor-promoting activity of Twist1 in vitro and
patient-derived xenograft.

FIGURE 4 | Represent the significantly over-expressed and under expressed genes present in the DisGeNET disease and genes involved in the significantly
enriched DisGeNET disease. The depth of the color represents the fold change and the names of DisGeNET disease displayed vertically.
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Overall, the experimental evidence shows that downregulation
of several of the upregulated top-ranked hub genes suppresses the
metastasis-related process, including migration, invasion,
adhesion, and proliferation capabilities. Additionally, their
functionality extends from being structurally-related to
affecting the transportation of tumour suppressor genes and
even eliminating miRNA that suppresses genes with metastasis
functionality. Moreover, experimental evidence shows that
silencing of the downregulated top-ranked hub genes such as
YWHAE (Leal et al., 2016), ILK (Zhu et al., 2012) and PCBP1
(Wang et al., 2010) induces cell proliferation, migration, and/or
invasion.

The present work yields the common genetic markers between
breast and prostate cancer and provides vital insight about BM
drivers. Additionally, more research focused on the subset of
genes with no experimental evidence may yield new biomarkers
or treatment targets.

CONCLUDING REMARKS

To our knowledge, this is among the few studies to consolidate
data on various cancer types, allowing us to understand the
shared or consistent biological features of BM. In addition,
this research unveiled several new and previously unknown
genes related to BM. The last thing to mention is that, in
this study, we developed a high-accuracy DNN model with
34 featured or hub genes. As far as we know, the primary
site associated with BM does not hamper the models’
prediction performance. Therefore, we will focus our future
work on identifying the unknown but “standard”
molecular mechanisms that underlie BM from any
primary site and transforming the model into an AI
diagnostic tool.

Availability
We also developed a web server to serve the scientific community.
The web-based tool, bone metastasis predictor https://www.cbrc.

kaust.edu.sa/bonemetastasis/, implements the DNN model
developed in the current study to allow the users to predict
the BM state of their sample using gene expression quantification
values. The user needs to provide the gene expression of the genes
for every sample. The number of samples corresponds to the
number of rows in a file. The output includes a list of samples and
indicates if the prediction is primary or BM.
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