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Abstract

Background: Metagenomic data of whole genome sequences (WGS) from samples across several cities around the
globe may unravel city specific signatures of microbes. Illumina MiSeq sequencing data was provided from 12 cities
in 7 different countries as part of the 2018 CAMDA “MetaSUB Forensic Challenge”, including also samples from
three mystery sets. We used appropriate machine learning techniques on this massive dataset to effectively identify
the geographical provenance of “mystery” samples. Additionally, we pursued compositional data analysis to
develop accurate inferential techniques for such microbiome data. It is expected that this current data, which is of
higher quality and higher sequence depth compared to the CAMDA 2017 MetaSUB challenge data, along with
improved analytical techniques would yield many more interesting, robust and useful results that can be beneficial
for forensic analysis.

Results: A preliminary quality screening of the data revealed a much better dataset in terms of Phred quality score
(hereafter Phred score), and larger paired-end MiSeq reads, and a more balanced experimental design, though still
not equal number of samples across cities. PCA (Principal Component Analysis) analysis showed interesting clusters
of samples and a large amount of the variability in the data was explained by the first three components (~ 70%).
The classification analysis proved to be consistent across both the testing mystery sets with a similar percentage of
the samples correctly predicted (up to 90%). The analysis of the relative abundance of bacterial “species” showed
that some “species” are specific to some regions and can play important roles for predictions. These results were
also corroborated by the variable importance given to the “species” during the internal cross validation (CV) run
with Random Forest (RF).

Conclusions: The unsupervised analysis (PCA and two-way heatmaps) of the log2-cpm normalized data and
relative abundance differential analysis seemed to suggest that the bacterial signature of common “species” was
distinctive across the cities; which was also supported by the variable importance results. The prediction of the city
for mystery sets 1 and 3 showed convincing results with high classification accuracy/consistency. The focus of this
work on the current MetaSUB data and the analytical tools utilized here can be of great help in forensic,
metagenomics, and other sciences to predict city of provenance of metagenomic samples, as well as in other
related fields. Additionally, the pairwise analysis of relative abundance showed that the approach provided
consistent and comparable “species” when compared with the classification importance variables.
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Background
This present work was developed as a continuation of
the work presented as part of the 2017 CAMDA Meta-
SUB challenge. The 2017 data was given as a pilot study
of microbial communities present in samples collected
from different subway stations in three American cities.
In that distributed data the DNA extraction protocols
and the sequencing approach were not implemented in
the same or even similar manner for all three cities, and
as a consequence a large percentage of samples did not
yield any bacterial signal, and furthermore the experi-
mental design was greatly unbalanced with immense dis-
parities between the sample sizes between the three
cities (1572, 134, and 18 samples). The current version
of the CAMDA MetaSUB challenge data was much bet-
ter with an overall small number of samples for each of
the 12 cities. Although the design was still unbalanced,
there weren’t large differences in the sample sizes across
all cities. All datasets used in the development of this
work were provided as part of the CAMDA forensic
challenge by the MetaSUB International Consortium
(http://metasub.org/camda-challenge-2018/). Table 1
presented a tabulated insight of the dataset for all the
different groups and cities. Additionally, the DNA proto-
cols in this challenge data had a much larger and com-
parable read depth, and longer pair-end reads, which
resulted in better breadth, and depth of coverage of dif-
ferent “species” present in the DNA pool. It ultimately
resulted in a raw dataset with more consistent counts
across the cities, and better representation of the

taxonomic hierarchy. As stated earlier, we have ex-
panded our methodology not only to classify the mystery
samples but also used better statistical inferential tech-
niques based on the compositional data analysis of
microbiome data identifying important differentiating
city specific microbes. In this context, three more data-
sets were provided as mystery datasets through the
CAMDA 2018 MetaSUB challenge to serve as testing
samples for the classification problem. This work re-
ported the results considering all the cities in the main
dataset as well as the three mystery sets for the taxo-
nomic rank “species”. As far as the open-reference pick-
ing, we included all OTUs with quality score greater
than 0.5 (Please refer to Bioinformatics and Data Prepar-
ation section in the Methods section for more details).
Nevertheless the large amount of zeros in the data can
tell whether a species is absent in the sample or was the
result of an under sampled microbiome [1, 2]. Bioinfor-
matically, the latter issue can be improved by adding
more samples [1] to the dataset or by increasing the se-
quencing depth [2].

Results
Principal component analysis
The PCA results in Fig. 1 shows the bi-plots for both
the training datasets. Plot A depicts the main dataset
and shows a better separation of the cities than the ana-
lysis in our previous work [3]. However, some city ellip-
ses were overlapping. Specifically, Hamilton, and
Auckland; both being in the same country, overlapped

Table 1 Number of samples included in the analyses and their corresponding city and country of provenance

Set City Country

New Zealand U.S.A. Nigeria Portugal Chile Japan Colombia

Training Main Auckland (AKL) 15

Hamilton (HAM) 16

New York (NYC) 26 + 0 = 26

Offa (OFA) 20

Porto (PXO) 60

Sacramento (SAC) 16 + 18 = 34

Santiago (SCL) 20

Tokyo (TKO) 20

Testing Mystery-1 Various (C1) 10 (NCY) 5 10 5

Training Mystery-2 Ilorin (C2) 12

Lisbon (C3) 12

Boston (C4) 12

Bogota No samples in the training set

Testing Mystery-3 Various (C5) 3 (Boston) 4 4 5 (Bogota)

Table also shows the mystery sets and how the city and sets were internally coded in this work. The column corresponding to US, shows that samples from New
York City and Sacramento included additional samples from the pilot analysis but those samples yielded OTUs in this present setting only in Sacramento. Light
gray rows are multi-city groups where city of provenance was predicted (testing sets) for all the samples according with the corresponding training model (main
or mystery-2). All samples in training sets had a counterpart in the testing sets with the exception of the city of Bogota, which has 5 samples in the testing set
(mystery-3) but has no samples in the training set (mystery-2)
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with Tokyo. The three cities have comparable latitude
(~ 35° south and north from Equator) though the two
countries are in opposite hemispheres. We observed
similar overlapping between samples from Santiago and
Porto, although these two are not in geographical prox-
imity. However, overall from the plot 1A, it was evident
that a large percentage of the variables (“species”) were
well aligned with the horizontal axis and explained a
considerable amount variability for the first principal
component (48.7%). Additionally, there was a secondary
set of variables, which were well more aligned with the
vertical axis that also explained about 8.8% of the total
variability of the data. Plot 1B presents the mystery-2

dataset (samples: C2, C3, and C4) and shows an almost
perfect separation of the Boston samples, with a small
overlap between Lisbon and Ilorin samples. The first
two principal components explained 64.5% of total vari-
ability in the data, which is comparable with the percent-
age explained by the corresponding components in the
main training dataset. Additionally, in B it can be seen
that a group of variables was well aligned in the direc-
tion of Ilorin whereas a secondary group is aligning with
Lisbon, and only a single “species” (Pseudomonas stut-
zeri) pointing down that suggests a preference towards
Boston and Lisbon. A two-way heatmap of the normal-
ized data (Fig. 2) showed that the samples from each city

Fig. 1 Bi-plots of first and second principal components are presented in a and b for training sets main and mystery-2 respectively. Axis labels
show the percentage of the total variability in the dataset explained by the correspondent axis

Fig. 2 Two-way heatmap showing the log-cpm data for all cities and mystery sets for all the variables (“species”) in the main dataset. Samples
from each group are separated by a light-green line to help the reader visualize the distinctive patterns shown by each set of samples. Groups C1
and C5 are testing sets with samples from multiple locations, which rendered them not showing any recognizable pattern
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had a distinctive signature, which could be beneficial for
the classification of the mystery samples. In the plot, the
samples were separated by a light-green line to
emphasize the separation of all groups, and the variables
were sorted taxonomically. Obviously, groups C1 and C5
were not showing a distinctive pattern since they are
multi-city testing sets. There were some cities showing
similar patterns that can lead to misclassifications. How-
ever, there were others with very distinctive patterns that
would be a great advantage during the classification
process. In the heatmap, some “species” also showed a
remarkably distinctive pattern, exhibiting a specific color
in a city/s (group) and an opposite in another city/s (e.g.
Janthinobacterium spp and Pseudomonas veronni),
which would definitely play a key role during the
classification.

Machine learning analysis
Results from the internally cross-validated (CV) Random
Forest [4] (RF) on the training set (Fig. 3) showed an
over-all classification error of 36% with a narrow range
(33–39%). Partial classification error rate for each city
was in close range with the out of bag (OOB) error, with
the exception of the city of Santiago with a median clas-
sification error rate of 85% (75–95%). The city where RF
performed the best was Porto (PXO) in Portugal with a
median error rate of 15% (12–19%). Better classification
results for the city of Porto could be the consequence of
a very distinctive bacterial signature of that city. This
can be visualized in Fig. 2 where samples from this city
have log2-cpm values colored with dark shades of blue
which, are generally not comparable with color patterns
from all other cities. Additionally, from Fig. 2 we can

assess that the samples from Santiago, have overall pat-
tern similar to samples from Sacramento and Tokyo.
But the CV error rates of both cities were better com-
pared to Santiago, which might suggest that internally
the classifier encountered a distinctive “species” signal
that resulted in better overall results for some cities than
others. Classification errors for the mystery-2 run were
better compared to the main set. The out of bag (OOB)
error rate for this run was in the range of 3 and 11%,
with the city of Ilorin having the best rate (~ 0%) and
Lisbon as the worst ranging from 8 to 25%. Again, from
Fig. 2 it can be assessed that the city of Ilorin (C2)
showed a characteristic pattern for some of the “species”
that was not present in Lisbon (C3) and Boston (C4).
This latter also exhibited an overall pattern more in the
higher range of values compared with the other two cit-
ies in the group.
Specific results for the prediction of provenance for

samples of unknown origin challenge proved that the
methodology implemented in this work is on the right
track. Table 2 presents the final predictions of city of
provenance, with RF and Support Vector Machine
[5, 6] (SVM) classifiers, for all samples in mystery-1
and mystery-3 sets. It can be inferred from the table
that 19 (63.3%) samples from a total of 30 samples
were correctly labeled by the voted classifier in the
mystery-1 testing set. Results for the mystery-3 test-
ing set were similar with 10 (62.5%) samples, out of
a total of 16, with the correct label. In this case, the
testing set included 5 samples from the city of
Bogota, though no samples from this city were pro-
vided in the training set. Technically, and since the
classifier was not able to predict this city (samples

Fig. 3 Classification error rate for the CV run with the RF classifier. Plot presents out of bag (OOB) overall classification error rate and partial error
for all the cities in the main dataset (city codes can be found in Table 1)
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Table 2 Final results for the classification of mystery samples from mystery set 1 and 3

Sample Random Forest SVM Final
Prediction

Real
Label

Status of the
predictionPrediction Score Departures Adj. Score Prediction Score Departures Adj. Score

Mystery Set 1

C1.001 SAC 1.000 0 1.000 SAC 0.848 2 0.240 SAC SCL

C1.002 SCL 1.000 0 1.000 SCL 1.000 0 1.000 SCL SCL CORRECT

C1.003 NYC 1.000 0 1.000 NYC 0.771 1 0.297 NYC OFA

C1.004 PXO 1.000 0 1.000 PXO 1.000 1 0.500 PXO PXO CORRECT

C1.005 NYC 1.000 0 1.000 OFA 1.000 1 0.500 NYC OFA

C1.006 PXO 0.999 1 0.499 PXO 0.821 3 0.168 PXO PXO CORRECT

C1.007 SCL 0.971 1 0.471 SCL 0.769 1 0.296 SCL SCL CORRECT

C1.008 PXO 1.000 0 1.000 PXO 0.696 3 0.121 PXO PXO CORRECT

C1.009 NYC 1.000 0 1.000 OFA 0.619 1 0.192 NYC NYC CORRECT

C1.010 PXO 1.000 0 1.000 PXO 0.698 2 0.162 PXO PXO CORRECT

C1.011 SCL 1.000 0 1.000 SCL 0.741 4 0.110 SCL SCL CORRECT

C1.012 OFA 1.000 0 1.000 OFA 1.000 0 1.000 OFA OFA CORRECT

C1.013 PXO 1.000 0 1.000 PXO 0.864 2 0.249 PXO PXO CORRECT

C1.014 SAC 1.000 0 1.000 SCL 0.717 2 0.171 SAC SCL

C1.015 TOK 1.000 0 1.000 HAM 0.462 3 0.053 TOK NYC

C1.016 OFA 0.913 1 0.416 NYC 0.826 1 0.341 OFA NYC

C1.017 SCL 0.610 1 0.186 TOK 0.543 3 0.074 SCL PXO

C1.018 NYC 1.000 0 1.000 NYC 0.995 1 0.495 NYC NYC CORRECT

C1.019 AKL 1.000 0 1.000 OFA 1.000 0 1.000 Inconclusive NYC

C1.020 OFA 1.000 0 1.000 OFA 1.000 1 0.500 OFA OFA CORRECT

C1.021 AKL 0.834 3 0.174 OFA 0.997 3 0.248 OFA NYC

C1.022 PXO 1.000 0 1.000 PXO 0.894 1 0.399 PXO PXO CORRECT

C1.023 NYC 1.000 1 0.500 NYC 0.990 2 0.327 NYC NYC CORRECT

C1.024 NYC 0.852 1 0.363 NYC 0.898 4 0.161 NYC NYC CORRECT

C1.025 NYC 1.000 0 1.000 NYC 0.997 4 0.199 NYC NYC CORRECT

C1.026 PXO 1.000 0 1.000 PXO 1.000 0 1.000 PXO PXO CORRECT

C1.027 PXO 1.000 0 1.000 TOK 0.621 1 0.193 PXO PXO CORRECT

C1.028 OFA 1.000 0 1.000 OFA 1.000 0 1.000 OFA OFA CORRECT

C1.029 AKL 1.000 1 0.500 NYC 0.494 3 0.061 AKL NYC

C1.030 TOK 0.761 1 0.290 TOK 0.994 1 0.494 TOK PXO

Mystery Set 3

C5.001 Boston 1.000 0 1.000 Boston 1.000 0 1.000 Boston Boston CORRECT

C5.002 Ilorin 1.000 0 1.000 Lisbon 0.754 1 0.284 Ilorin Ilorin CORRECT

C5.003 Lisbon 1.000 0 1.000 Lisbon 1.000 0 1.000 Lisbon Lisbon CORRECT

C5.004 Ilorin 1.000 0 1.000 Ilorin 0.568 1 0.161 Ilorin Ilorin CORRECT

C5.005 Lisbon 1.000 0 1.000 Lisbon 0.999 1 0.499 Lisbon Lisbon CORRECT

C5.006 Lisbon 1.000 0 1.000 Ilorin 0.616 1 0.190 Lisbon Ilorin

C5.007 Boston 1.000 0 1.000 Lisbon 0.749 1 0.280 Boston Bogota

C5.008 Lisbon 0.999 1 0.499 Lisbon 0.772 1 0.298 Lisbon Bogota

C5.009 Lisbon 1.000 0 1.000 Lisbon 1.000 0 1.000 Lisbon Lisbon CORRECT

C5.010 Ilorin 0.384 2 0.049 Boston 0.982 1 0.482 Boston Bogota

C5.011 Lisbon 1.000 0 1.000 Lisbon 1.000 0 1.000 Lisbon Bogota
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were not included during the training of the model),
the results did not show a good solution of this im-
plementation. In this context, it could be argued that
without considering the samples from Colombia, the
testing set would have had 11 samples which would
have raised the proportion of correctly labeled sam-
ples up to 90.9%. Comparison of the independent
predictions made by both classifiers (RF and SVM)
with the real labels in the mystery-1 set revealed
that even though the total count of correct predic-
tions from both algorithms are close with 19 correct
labels for RF and 21 for SVM, the voted and final
label only counted 19. In the mystery-3 set the total
number of correct labels was 10. In this set sample
C5.006 was incorrectly voted, though SVM predicted
the correct label, but with a lower adjusted score
than RF. All these suggested that, even though our
voted method achieved a remarkably high number of
correct labels, it was still not at its best. If the vot-
ing was optimized, then the final count of correct la-
bels could go up to 23 (76.6%) in the mystery-1 set
and 11 (100%) in the mystery-3 set.

Additional results from the optimization of the data-
sets (zero-city analysis) were presented in Fig. 4. The left
(plot 4A), depicted the OOB classification error rate for
the datasets with increasing number of cities with zero-
count samples in the training set, where counts “0” cor-
responded to the main dataset, and “7” corresponded to
the dataset of 8 cities having all variables with at most 7
cities with all samples as zero counts. As evident from
the plot that the error rate dropped from 36% (main
dataset) to 17% when variables with at most 4 cities with
zero-counts were added to the dataset. This latter state-
ment might suggest that this was an important improve-
ment in the generation of the dataset. However, in plot
4-B after consolidating the predictions for the mystery-1
set it was evident that the number of correctly predicted
labels was continuously dropping from the maximum
value obtained with the optimized main dataset. These
results not only proved that the analyses presented in
this work were conducted with the most optimal data
possible under these conditions but also suggested that
the classifier might have shown a considerable error rate
reduction in the mid-range of plot 4-A. This might be

Table 2 Final results for the classification of mystery samples from mystery set 1 and 3 (Continued)

Sample Random Forest SVM Final
Prediction

Real
Label

Status of the
predictionPrediction Score Departures Adj. Score Prediction Score Departures Adj. Score

C5.012 Lisbon 1.000 0 1.000 Lisbon 0.988 1 0.488 Lisbon Lisbon CORRECT

C5.013 Boston 1.000 0 1.000 Boston 0.998 1 0.498 Boston Boston CORRECT

C5.014 Ilorin 1.000 0 1.000 Ilorin 1.000 0 1.000 Ilorin Ilorin CORRECT

C5.015 Boston 1.000 0 1.000 Lisbon 0.750 1 0.282 Boston Boston CORRECT

C5.016 Boston 0.843 1 0.356 Lisbon 0.750 1 0.282 Boston Bogota

Table shows samples abbreviated names, partial results from both classifiers (RF and SVM) and voted results, actual label of each sample, and whether the
samples prediction was correct. Results for sample C1.019 were not correct but also labeled as inconclusive since both classifiers predicted a different city with
the same adjusted score. Additionally, in similar cases whether or not one of the classifiers was correct or not was irrelevant due to the inability of the pipeline to
produce a label

Fig. 4 Zero-city analysis results. Plot a shows the OOB classification error rate for dataset with increasing number of “species” with zero-city
samples (8-cities CV run after selection of the variables). Figure b presents the prediction score corresponding to the proportion of correctly
predicted labels for the mystery-1 dataset
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due to the way the rows of zeros were added to the data-
set. But the classifier failed latter when provenance la-
bels were generated, probably because of confounding
signals added by the additional zeros in the dataset
and the fact that the predicted samples were not in-
cluded in the training model whatsoever. Additionally,
in the zero-city analysis, PCA plots were generated
for each one of these datasets (Fig. 5). They prog-
ressively showed a deterioration not only in the
clustering of the city samples, but also in the overall
quality of the datasets, which can be visualized by
focusing on how the amount of variability explained
by the first two principal components were continu-
ously increasing as the number of zero-count vari-
ables were increasing. In the PCA plot for the main
dataset (Fig. 1) the total variability explained is 57.5%
with the data concentrated in the range of − 5 to 5
on both axes; conversely in the zero-city analysis
while adding variables, the variability changed from

62.5% in plot A to 89.9% in plot L with x-axis range
changing from − 10,10 to − 100,100 from plot A to
plot L.

Differential abundance analysis
Results from ANCOM [7] are summarized in Fig. 6. Plot
A depicted the relative abundance analysis of “species”
across all pair-wise comparisons of cities in main train-
ing set and plot B corresponds to results from mystery-2
training set. The predictors (as “species” on the right)
were sorted by the number of times the normalized
mean abundance was significantly different in each pair-
wise comparison. In plot 6-A, the top “species” in the
list showed a count of 17 (number of blue squares). This
means that, even though Acinetobacter schindleri was
present in all the cities, only in 17 pairwise comparisons
(total of 28 pair-wise comparisons) the abundance was
significantly different. Further analysis of the ranking of
the species between ANCOM results and “species”

Fig. 5 Zero-city datasets PCA plots. These plot from a to g were generated from datasets with increasing number of zero-city samples from 1 to
7 respectively. Plot also show an increasing (from a to g) proportion of the total variability of the dataset explained by the first two principal
components, which can be observed also in the scale change of the x-axis. Plot A x-axis ranges from −10 to 10 whereas plot G x-axis ranges
from −50 to 50
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importance from RF (Fig. 7-A), showed little changes in
the “species” rank between both the lists. For example,
Pseudomonas stutzeri a bacterium belonging to the class
Gammaproteocacteria, distributed widely in the environ-
ment and also identified as an opportunistic pathogen
from humans [8] were present in both the lists. Another
bacteria that was on top of both the lists was Acineto-
bacter schindleri, originally described by Nemec at al.

[9], also belonging to the class Gammaproteocacteria. It
is known to be a common bacteria present in hospitals
with pathogenic potential [10]. Similarly, when compar-
ing the “species” ranking from ANCOM results (Fig. 6-
B) and classification importance (Fig. 7-B) for the
mystery-2 training set, it can also be concluded that
there were no dramatic changes in the relative rankings
of the “species” between both the lists.

Fig. 6 Relative abundance analysis with ANCOM results for both training sets: main dataset in plot a and mystery-2 dataset in plot b. Results
are presented as significant when blue and white when there is not a significant difference in the relative abundance for any “species” in a
city-by-city comparison

Fig. 7 Variable importance from the CV run with the Random Forest classifier. Plot on the left (a) shows results for the main dataset and plot on
the right (b) for the mystery-2 dataset. The order from top to bottom is given by the normalized score given by the classifier to each “species” at
each split
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Descriptive statistics of the dataset
Up to this point we have implemented the same ap-
proach to normalize and select variables we developed
in our previous work. There are some changes in the
machine learning implementation and how we are find-
ing city-specific bacterial signature with ANCOM. Re-
sults from the classifiers were effectively good, but the
question that remains is whether the relatively large
number of zeros in the data had a negative effect in the
analyses and prediction scores. Knowing the answer of
this before the analysis, and even reporting the classifica-
tion results without knowing the real labels of the
mystery-1 set was challenging and the afterward ac-
knowledgement of the real provenance of the samples
was satisfactory considering the large percentage of sam-
ples that were correctly predicted. But at this point, one
question still remains; Is it possible to improve the ~
65% correct predictions of the samples in the mystery-1
set? The large number of zeros in the data can be graph-
ically visualized in Fig. 8. Plot A shows the overall miss-
ingness (or zero counts) on the data presented variable
by variable (species). It is highly desired that the amount
of missingness do not exceed 25%. By looking at plot A
we can conclude that in this work there is no such data-
set with more than 25% zeros. Boxplots in plot B, are
showing that for most of the cities or groups (hereafter
only cities) the median (plotted as the bold black line in
the middle box, and the corresponding value on the
right side of each city box) is at the top of the scale. This
means that 50% of the data points (in this case are bac-
terial counts) has only zeros. Additionally, if the city box
is also shrinking towards the top, then there is a good
chance that most of the species have only zeros. Only
three cities departed from this trend; NYC, SAC, and
SCL with a median of 97, 97, and 95% respectively.

Considering this, it can be argued that the red dots (out-
liers in this case) are actually species with a reduced
number of zeros. This also means that the actual num-
ber of variables with a decent amount of counts instead
of zeros is quite limited. These results are particularly
critical for both Auckland and Hamilton (New Zealand),
with only 6 and 10 variables with at most 25% of zeros
in the data (count of points below the 75% proportion of
missing data line). These poor results for New Zealand
cities might be a consequence of multiple events, such
as sample acquisition, storage, under sampling, DNA ex-
traction, and sequencing protocols [1, 2].
Additional machine learning techniques and predic-

tions were conducted in datasets generated allowing at
most 75% of missing counts in the data. Results from
this analysis in the main set, were not satisfactory (data
not shown in this work) with an important drop in the
percentage of correctly predicted samples. We hypothe-
sized that the low percentage of cities correctly predicted
from the mystery-1 set was the result of a dramatic
change in the overall presence/absence of bacterial sig-
nature pattern across all the cities in the main set. The
latter reinforced results from the zero-city approach,
which added variables with zeros for all samples of cities
in an increasing manner, keeping the bacterial signatures
of city-specific species.
We also tested datasets with imputed missing data

(zeros). The reasoning for this was to account for miss-
ingness in the data modelling the zero-counts accord-
ingly with the existing information from samples from
the same city. For this approach we replaced all zeros in
the data with NAs and run the package “mice” [11] in R
for the imputations with the imputation method set as
“pmm” (predictive mean matching). As we learned from
previous tests, changing the bacterial patterns with this

Fig. 8 Proportion of missing data (zero count) in the dataset. Plot a shows the missingness found on each species (variable). The variables are
sorted from less to large missingness. Plot b shows missingness by city (main set) or mystery samples (C1-C5). Refer to Table 1 for a better
understanding of the mystery sets labels
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approach should have produced poor prediction scores.
As a matter of fact, the percentage of correctly predicted
cities was around 10%, which is extremely low and
prompted us to try a different approach. Considering
these results, along with what we have learnt about the
zero-city datasets and the reported issues with samples
from Auckland and Hamilton (see Fig. 8-B); we gener-
ated an imputed dataset only considering missingness in
these two cities and generated again eight datasets by
adding cities with all samples with zeros. Results from
this analysis are presented in Fig. 9. As described in
methods section our approach is to predict cities with
RF and SVM and the vote for the “best” prediction. Plots
A, B, and C in Fig. 9 present results for RF, SVM and
voted predictions respectively. As it can be seen in plot
C, the highest score was given by the third set (87% cor-
rect predictions), where each variable (or species) had at
most two cities with all samples as zero values. These re-
sults also confirm what we already have said about the
consistency achieved by RF, and its major influence in
the prediction score. In Fig. 9, plot A shows that RF
scores were consistently around the 75% mark for all
sets, whereas SVM scores were higher for sets 3 to 5 (2
and 4 zero-cities) with a maximum of 83% for dataset 4
(3 zero-cities). It would be interesting to know if these
results were affected by the way the imputation changed
the bacterial signature of Auckland and Hamilton from
the real patterns of these two cities or simply made these
counts too divergent from the counts of the remaining
cities in the main dataset, which made training more ef-
fective and predictions more accurate.

Discussion and conclusions
This year the CAMDA challenge MetaSub dataset was
of much better quality compared to CAMDA 2017,
which was reflected, not only, on the amount and Phred
score of the sequencing data, but also on the number of
samples and cities. OTU picking in open reference mode
yielded a large number of OTUs with high quality scores
from the Ribosomal Database Project (RDP) classifier.

Additionally, a large number of these OTUs reached the
“species” taxonomy rank with a decent classification
score (> 0.5). PCA analysis in both the training sets
(main and mistery-2), showed that the first two compo-
nents explained a large amount of the total variance (>
65%). The analysis also showed that the samples from
the same city were clustered in close proximity. The ma-
chine learning analysis was effective in predicting city of
provenance on unknown provenance samples and
proved to be of great potential for forensic, bacterial
ecology and other sciences. The city-by-city analysis of
the “species” relative abundance in the main dataset (8-
cities) revealed that some of them were significantly dif-
ferent in a large number of pair-wise comparisons. Some
of these “species” were also given a high variable import-
ance score during the RF implementation, which made
this “species” highly effective during the classification.
Conversely, some “species” did not show any differenti-
ation in relative abundances across all city-by-city com-
parisons. Apparently, it might appear that this is a
sufficient justification to remove them from the analysis;
nevertheless, in specific cases these “species” were still
given a relatively high importance score, which might
suggest that “species” with non-significant difference in
relative abundance across all cities, still can add critical
signal to the data and further improve the classification
results. The analysis was conducted in an optimized
dataset and the results were the best achievable consid-
ering only the “species” log2-cpm as input; nevertheless,
it still remains a future challenge to consider more taxo-
nomic ranks or integration between them in the context
of a machine learning approach and verify whether the
class predictions might improve. Unfortunately, due to
the time-restricted nature of this work we were unable
to verify this statement, even though the datasets are
already generated and normalized up to the taxonomic
rank “order” (“order”, “family”, “genus” and “species”).
Additionally, in this context it would be of great interest
to implement a variable selection step with elastic-net
[12], Bayes-Cpi [13], and partial least squares (PLS) [14,

Fig. 9 Prediction scores as a function of the number of zero-cities datasets for the main set. Plot a shows scores for the RF. Plot b shows results
for SVM, and plot c presents combined results from the voted algorithm as described in the methods
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15], and maybe even other approaches in order to con-
duct a more analytical and inclusive selection of not only
“species” but considering all the taxonomical variables
generated during the OTU picking with QIIME [16].
Regarding the implementation of the classifiers in the

code, this can still be optimized by training the models
in the same subset. This would lead to more compar-
able, and possibly better results. Also, the voting algo-
rithm definitely requires more work in order to achieve
a perfect voting score. Even though the voting score be-
tween RF and SVM was high in both the testing sets,
there were still a small number of samples (5 out of 46
from both datasets) that were incorrectly voted but cor-
rectly predicted by one of the classifiers. As it was stated
before, this was not at all a sensitive issue since the vot-
ing was quite effective, though still not perfect. More re-
search would help to improve the voting mechanism.
Regarding imputation of zero-values, it is not recom-
mended to impute all the missingness in the incomplete
dataset, because this would effectively change the bacter-
ial patterns of city-specific species, which can, ultimately,
lead to misclassification. Alternatively, as it was shown,
imputing specific cities (in this case Auckland and
Hamilton), resulted in an increase of 24 points in the
percentage of correctly predicted cities. As for this work
we only used “pmm” as imputation, though there are
some other methods within the “mice” package that can
still be applied. Finally, as a closing remark, the results
presented in this work showed an effective method to
process, optimize, and classify the metagenomic samples
by origin, but still there are scopes to improve upon the
results by carefully adjusting for all the possible sources
of errors in such data.

Methods
The design of this analysis was highly prompted by the
experience acquired from the CAMDA 2017 MetaSUB
Challenge [3]. The main factor influencing the changes
of the analytical procedure and the results obtained was
the quality of the sequencing data, which allowed us to
apply a uniform quality filtration scheme. The open ref-
erence OTU picking with QIIME [16] was now incred-
ibly successful and effective that yielded a large number
of features reaching the taxonomic rank “species”, which
was barely seen in our previous pilot analysis, since a
limited number of “species” exhibited a taxonomy score
greater than the stablished threshold. Considering the
compositional nature of the count data, we implemented
a normalization step, which took into consideration not
only the structure of the data, but also the experimental
design and number of samples. Finally, we run analyses
using unsupervised and supervised techniques. A more
detailed description of these implementations can be
found in the following sections.

Bioinformatics and data preparation
New sequencing data provided as Illumina MiSeq
paired-end reads, was screened for Phred score. This
analysis revealed that this data was of a much higher
and consistent quality compared to the 2017 sequencing
dataset provided by CAMDA 2017 MetaSub data. Add-
itionally, in order to remove all human DNA sequences
from the samples, and to reduce the size of the FASTQ
files in the process, a small subset of samples from each
country were mapped to the human genome reference
(accession number: GCA_000001405.1, http://hgdown-
load.cse.ucsc.edu/goldenPath/hg19/chromosomes/) with
BWA [17]. Later with Samtools [18] and Picard (http://
broadinstitute.github.io/picard) we extracted the un-
mapped sequences, supposedly containing only micro-
bial and bacterial DNA. Ultimately, by analyzing this
filtered sequencing data we realized that the contamin-
ation by human DNA in the samples was not enough (<
1%) to justify the implementation of this step in all the
samples. The results from this screening was a key factor
when designing the quality filtering approach further in
the bioinformatics part of the pipeline. At this point it is
virtually unfeasible to better evaluate other sources of
contamination in the samples, which would depend on
sample storage, DNA extraction protocols, sequencing
technology, biology grade water, DNA extraction kits,
amongst other sources [19–21].
Phred score filtering was implemented with FASTX-

Toolkit [22] with the purpose of setting a uniform qual-
ity standard for all cities, removing low quality reads,
and reducing the size of the FASTQ files in order to
keep the computational burden in check. The parame-
ters used in the filtering were q = 38 as a minimum
Phred score to keep and p = 50 to set a minimum per-
centage of the bases that must have a quality score of
38. As previously stated, we performed a preliminary
quality screening of the sequencing data which revealed
that all cities shared high quality Phred scores and have
long reads. The latter was a reasonably good justification
for applying this filtering scheme for all cities without
changing the parameters. The filtered data was then
transformed in a FASTA format and finally parsed to
QIIME [16] to perform an open reference OTU picking
and later a taxonomy assignment with the RDP classifier
[23]. After OTU picking, all the counts with quality
scores (calculated by the RDP taxonomy classifier)
smaller than 0.5 were removed from further analyses.
The resulting filtered OTUs were aggregated adding the
corresponding counts for each existing taxonomic rank
given by the classifier. Aggregated raw counts were nor-
malized using the “R” function “voom” [24] (included in
the package “limma” [25]) to generate log2-cpm, which
guaranteed that counts are bounded away from zero to
make the logarithm meaningful. The normalized data
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was maintained for all features that were given a “genus”
and a “species” taxonomy assignment during the RDP
run. Finally, the variables (created by concatenating the
corresponding names of ranks “genus” and “species”)
were selected such that at least one sample, within each
city, should have had a count greater than or equal to
two, which was the minimum count possible for any
OTU given by QIIME (non-zero counts). This would en-
sure that the variances for all variables across cities were
always non-zero. We also generated the datasets for
more taxonomic ranks in order to determine their use-
fulness in achieving our goals; results which are not re-
ported in this work. Additionally, with the purpose of
validating how the final dataset was chosen, we ran the
classifiers on datasets containing an increasing number
of variables with all samples per city only with zero-
count (we called this the “zero-city” analysis). A better
elaboration on this idea was that, in our previous work
we only considered the dataset with all the variables
where at least one sample was non-zero in a city (as de-
scribed before). However, we did not further tested what
would have happened if we tried adding variables with
zero-counts in all the samples or even testing the full
dataset. In this work, we have generated seven add-
itional datasets by subsequently adding more variables
with the following rule: the second dataset was gener-
ated by adding to the first (or main dataset) all the
variables with zero-counts in only one city, consider-
ing that it wouldn’t matter which was the zero-count
city. The third dataset was generated by adding to the
second set all the variables with zero-counts in two
cities. The other datasets were generated following
this rule until, finally the algorithm added all the vari-
ables with only zero-counts in all cities. Obviously
having a large number of variables with zero-counts
in the data is not ideal since it would create an in-
creasing problem with the variance estimation, but
the purpose of this exercise was to empirically proof
that our approach and the construction of the dataset
was optimized at its best.

Statistical analysis
All further statistical analyses in this work were con-
ducted in R [26] environment (version 3.3.2 “Sincere
Pumpkin Patch”). First, we conducted an unsupervised
PCA analysis in order to validate the quality of the data-
set by checking its consistency and the samples-by-city
clusters. Additionally, we generated heatmaps of the data
to visually asses their potential for predicting city of
provenance. The supervised method was implemented
as a voted machine learning approach with two well
regarded classifiers, namely Random Forest and Support
Vector Machine. These two algorithms were im-
plemented independently to predict provenance and

ultimately were voted accordingly as explained in the
machine learning section.

Principal components analysis (PCA)
Unsupervised analysis of normalized data was conducted
on the bases of correlation structure of common “spe-
cies” found across all cities in the main, and mystery-1
datasets. Eigenvalues were used to calculate the variabil-
ity accounted for each component. Two-dimensional bi-
plots and three-dimensional (not presented in this
manuscript) plots of the first three components were
generated to assess the group separation of the cities.
Additionally, we plotted two-way heatmaps of the var-
iables (“species”) for all cities in order to visualize
various bacterial signature patterns across all cities
(samples). The PCA analysis was also implemented in
the additional datasets containing increasing number
of zero-count (zero-city datasets) samples across cities
as described in the Bioinformatics and Data Prepar-
ation section.

Machine learning analysis
The machine learning analysis was conducted at this
stage running two classifiers: Random Forest (RF) [4],
and Support Vector Machine (SVM) [5, 6]. RF was im-
plemented with 1000 trees and 20 variables chosen at
each split. We have fitted the model for all the samples
in the main set (8 cities) and consider this the training
model. From this cross-validation (CV) type run we re-
corded the overall out-of-bag (OOB) classification error
as well as the by-city error rates considering only the
samples from the eight known cities. We also recorded
the variable importance computed by the classifier in
the training model. After fitting this training model, we
predicted the city of provenance of the samples from the
mystery-1 set. We recorded the predictions and we re-
peated this process 10,000 times.
For mystery sets 2 and 3 we conducted a similar im-

plementation having the mystery-2 set (3 cities with 12
samples each) for training the model and the mystery-3
set (16 samples) for predictions. Again, we repeated this
cycle 10,000 times and recorded the results accordingly
as we did with the 8-cities and mystery-1 sets.
The SVM classifier was implemented in a similar man-

ner with some small variations due to the intrinsic na-
ture of this approach. Fitting of the training set was
conducted in a 5-fold-city CV scheme for both, 8-cities
and mystery-2 sets. This would randomly drop a number
of samples from each city to generate the training set.
The cost of mis-classification was set in 1000 and the
gamma parameter was set as default (gamma = 1/#vari-
ables). After fitting the model with the training set, pre-
dictions of city were done for the corresponding mystery
set. This process again was repeated 10,000 times. No
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prediction of the excluded samples from the training sets
were generated and reported.
After the predictions were all done we consolidated the

results as number of times a city or cities was or were pre-
dicted for each sample in the testing set (mystery-1 and
mystery-3) and we calculated a prediction score as, the
number of times the city with the highest count divided by
the total number of repetitions (10,000), which reflects the
proportion of hits. Additionally, we recorded the number of
cities that were predicted for each sample. In this work we
are proposing an adjusted score to decide whether RF or
SVM predicted is the final voted city. The prediction score
was then multiplied by the ratio between the score itself
and the number of departures. The number of departures
was the count of cities that were predicted for any particular
sample (this is an attempt to adjust the prediction score
with the total number of cities predicted for each sample).
Finally, we voted for the label predicted by the classifier
with the highest adjusted prediction score. This implemen-
tation was also conducted in the zero-city datasets and the
results were presented accordingly in the Results section.

Differential abundance analysis
Bacterial abundance analysis for the normalized log2-
cpm was conducted with the analysis of composition of
microbiome data by the ANCOM [7] package in R. This
method was proposed to account for the compositional
nature of microbiome data and fitted well with the
underlying structure of our own dataset. Twenty-eight
pairwise comparisons were made for all combinations of
the eight cities in the main dataset. ANCOM level of sig-
nificance was set to 0.2 and the output was a list of the
variables that were significantly different for each pair of
cities. Results were summarized as the number of times
the abundance of a “species” was found to be signifi-
cantly different across all pairwise comparisons. This
count later was compared with the “species” importance
given to the variables during the classification analysis.
This analysis was also conducted for the mystery-2 (3
cities set).

Reviewers’ comments
Reviewer’s report 1: Manuela Oliveira
Reviewer’s comments: Several aspects concerning scien-
tific accuracy, methods description, Figures and ethics
should be a addressed previously to consider the manu-
script for publication. Methods: more information
should be provided about the samples (mainly where
with the indication of GPS coordinates and when I
supposed these samples where collected in 2016) more
information about DNA extraction and sequencing
should be provided more information about the results
(e.g.: alpha and betadiversity) should be provided Fig-
ures: Image resolution should be improved. Ethics: I

am sure that the MetaSub project received more found-
ing that the one indicated in the paper No reference
was made to the MetaSub Consortium There is an
agreement with the Portuguese companies that manage
these subway systems (Metro do Porto and Transportes
de Lisboa) that data cannot be published with the previ-
ous consent from this companies. This approval should
be presented in the “Ethics approval and consent to par-
ticipate” or “Consent for publication” sections.
First we want to thank the reviewer for the valuable

comments and overall evaluation. The work presented in
this manuscript is part of the CAMDA 2018 challenge,
and the samples included on these analyses were given to
the participants as part of the MetaSUB Forensic Chal-
lenge. The metadata provided contained information re-
lated to the provenance of the samples, and the type of
surface the samples were collected from. Unfortunately
there was no information regarding the sequencing tech-
nology, DNA extraction protocols, and GPS coordinates.
We are sure that information exists, but for the purpose
of the competition we were supposed to use only part of
the data provided for the challenge for CAMDA 2018.
All the images were generated in high resolution prior to
the submission to the journal. Regarding the reviewer
suggestion to present more results (alpha and beta diver-
sities), we can say that we have reported those as part of
the experience acquired in the 2017 CAMDA challenge.
However, that information is not really necessary when
considering the current objective of this work. Finally,
thanks again to the reviewer to bring our attention to the
fact that we have failed to mention the MetaSUB Inter-
national Consortium. We sincerely apologize for this
omission, which has also been corrected in the manu-
script with the appropriate mention of the sample source.
Finally, regarding the use of the data originally provided
by the consortium, we can declare that there is no con-
flict or consent to publish issue regarding these results as
the data was provided to the participants as a part of
the CAMDA 2018 challenge in agreement with the Meta-
SUB International Consortium.

Reviewer’s report 2: Dimitar Vassilev
Reviewer’s comments: 1) There are some textual incon-
sistencies like wrong words (“rage” instead “range”) etc.,
some unnecessarily long sentences (67 lines). 2) The
most frequent problems in the presented text are in the
notations and abbreviations such as: Phred score or
Phred quality, RDP classifier, PLS, bash scripting.
Thanks to the reviewer’s for his valuable comments

and the overall assessment of the manuscript. Also
thanks for catching the “rage/range” issue, which was cor-
rected accordingly, as well as references to Phred quality
score, RDP classifier and PLS regression. We have fixed
all of them.
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3) The most important problems are with explanation
of the methodological approaches (PCA) and (RF, SVM)
for validation why such approaches are used and what
they can solve for the purposes of the particular results.
As we know the PCA can help in interpretation of the
data but will not always find the real patterns. In this
line I think that the use of classical PCA is somehow
problematic in the case of the study in particular for the
analysis of such unbalanced count data which are vari-
able and contain outliers. I would suggest the use of ro-
bust PCA (Reference: Introduction to Robust Estimation
and Hypothesis Testing (Statistical Modelling and Deci-
sion Science)), also and to comment the difference be-
tween the two methods with the aim how the PCA will
group in a better way the samples and how the quality
of this grouping can be validated by the RF classification.
Also the authors should comment the correlations
(Pearson’s and robust) together with the obtained
biplots. On the other point when explaining the used RF
model authors must comment the advantages: decorre-
lates trees relative to bagged trees (important when deal-
ing with multiple features which may be correlated) and
the reduced variance (relative to regular trees) which is
beneficial for the purposes of the study and disadvan-
tages that RF is not easy to be interpreted visually. There
also be such comments and explanations for the reason
to use the SVM.
The use of robust PCA in this work may result in inter-

esting new information, unfortunately at this point we
are unable to pursue that. The reasons are many, though
one of the most important is that it seems to fall a little
out of the scope that we wanted to achieve in this work,
which was underlined by the objectives given in the
CAMDA 2018 forensic challenge. There is no doubt that
in future projects we definitely will consider this
suggestion.
4) About the further improvement (methodological) of

the analysis my suggestion to the authors is to have in
mind methods based on zeroinflated models (for such
unbalanced, rich in zeroes data) and obviously spatial
(geospatial) models for analysing the microbial data dis-
tributions with some criteria for testing and fitting of the
models. 5) The references used in the study can be im-
proved by referring the sources (sites) of all the
methods, software, etc. in the study. My suggestion to
the editorial board of Biology Direct journal is the sub-
mitted material to be accepted after considering the re-
lated remarks and comments.
These suggestions are again very interesting and the

use of zero-inflated models can be a really interesting so-
lution in order to deal with the zero-counts. This can re-
sult in a more robust dataset that not only would
include the common variables across all the cities, but
all others. Such data can open new perspectives in order

to really search for those unique “bugs” across the differ-
ent locations. This can also result in an interesting
spatial analysis, but again for this work fall significantly
far from the project objectives and the timeline we were
given to develop the work and manuscript. As a closing
remark on the zero-inflated data, the preliminary ana-
lyses revealed that the normalization of the data, which
included the experimental design, did not have a strong
effect on the quality of the predictions when using the full
dataset. This is the reason for excluding those variables
with high counts of zeros (refer to pages 14–15 for more
details).

Reviewer’s report 3: Patrick Lee
Reviewer’s comments: 1. The authors should take the
opportunity to compare the strengths and weaknesses of
the two algorithms for the purpose of identifying the
mystery samples.
First of all we thank the reviewer for the valuable sug-

gestions and evaluation of the manuscript. Regarding this
first comment, if the reviewer is referring to the random
forest (RF) and support vector machine (SVM) classifiers,
we understand the reasoning behind the suggestion, but
we also believe that it would be beyond the scope of the
competition.
2. The challenge in 2017 suffered from the problem

of not having enough samples. Although there were
mores samples for the 2018 challenge, the authors
should test what is the minimum number of samples
required for both algorithms to perform adequately
and how the identification accuracy varies as the
number of sample increases.
Well that is not really what happened. The 2017 data

was highly unbalanced a large number of samples in one
city and a very small sample size for others. Additional
problem was the fact that there were only three cities
and the sequencing approach to generate the data was
also not the same in one city, hence the amount of se-
quencing data was also highly unbalanced. In this work
we were given samples from 8 cities (plus a number of
additional mystery samples). In this year challenge, the
design was still not balanced but the sample sizes were
more similar between the cities and the sequencing ap-
proach was comparable across cities, which resulted in a
more robust dataset, analyses, and results.
3. P. 17. Please further explain the rationale behind the

adjusted score to decide whether RF or SVM should be
the final answer. Has this approach been used elsewhere
and what is the basis for the calculation?
There are many publications reporting voted algo-

rithms and in our work the voting was mostly driven by
the proportion that a city was voted and the counts of
cities predicted for a sample. This is a simple voting
mechanism and, as it was stated in the manuscript, this
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voting mechanism can still be improved upon. We have
refered to this on Page 12 of the manuscript. However, as
far as the biological conclusions presented in this work
the voting mechanism still have produced really promis-
ing results.
4. P. 8, Figs. 6 and 7. It seems many signature species are

commonly found in the environment but there are not a
lot of humanassociated species. Given that these are sam-
ples from the subway, one would expect more human-
associated species. Please further discuss the implications of
this result and the lack of unique or highly specialized spe-
cies that one might expect are only found in a specific city
or region (e.g., Auckland in the Southern hemisphere).
The dataset used in this work was generated by choos-

ing all the variables (species) that were “detected” in at
least one sample in every one of the cities (please see
pages 14–15 for more details on how the dataset was
generated). This approach was also implemented in a
similar fashion in our 2017 work. The justification for
this is that the zero-inflated data was not giving good
prediction results and the PCA plots were showing a lin-
ear pattern for each city (this is not a good sign). This is
probably one of the reasons there are not human-
associated species in the data. This suggest that their
abundance is not really high enough to pass the zero-
counts threshold for selection. This is the reason why we
thought that the zero-data analysis was important since
in a controlled way was including variables that were
present in most of the cities.
5. For the signature species identified, what are their

relative abundance in the different cities? Will be good
to have a figure showing this result.
In our 2017 work on metagenomics we went in this dir-

ection, but we believe that doing so, departs from the ob-
jective of this work. We are interested in finding the
bacterial signature present in different cities and use this
data in a machine in order to generate results. This work
does not intend to go into a population based metage-
nomic analysis.
6. Have the authors actually identified cityspecific spe-

cies? That is, are there species unique to a particular city
and not found elsewhere? If not, the authors should con-
sider revising the title.
Again this is not our objective. If we go to the full data-

set, before selection we would be able to call for city-
specific species. During early testing of this methodology
full datasets were giving poor prediction results, because
the dataset was heavily loaded with zero counts. The title
suggest that we are looking for important bacterial signa-
ture not city-specific species abundance. The difference is
obvious and for our purpose we are interested in those
variables that are present in most of the cities in relative
abundances that can make the difference between bad
and good predictions.

7. The quality of all the figures need to improve and
the writing can use further polishing
The image resolution was set in 300 dpi, which is more

than enough for publications. We have realized that the
editor manager program generates a PDF file with the
images in low resolution, which sometimes is more than
enough to follow the text. Additionally, the file also con-
tains a link to download a full resolution version of the
image as needed. Regarding the writing polishing, we
have made some editing to further improve the manu-
script; particularly correcting some abbreviations, incon-
sistencies, and other minor issues.
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