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ABSTRACT: Catheter-associated urinary tract infections (CAUTIs) fre-
quently occur following the insertion of catheters in hospitalized patients,
often leading to severe clinical complications. These complications are
exacerbated by biofilm-forming organisms such as Staphylococcus aureus,
contributing to the emergence of multidrug-resistant (MDR) strains, which
complicates treatment strategies. This study aims to investigate the
antibacterial, antibiofilm, and antiadhesive properties of duloxetine against S.
aureus in the context of CAUTI. Our findings demonstrate that duloxetine
exhibits significant antibacterial activity, as evidenced by the agar diffusion
method. A minimal inhibitory concentration (MIC) of 37.5 μg/mL was
established using the microdilution method. Notably, duloxetine displayed
inhibitory effects against biofilm formation on polystyrene surfaces up to its
MIC level, as demonstrated by the crystal violet method. Intriguingly, the study
also revealed that duloxetine could prevent biofilm formation at lower
concentrations and reduce mature biofilms, as confirmed by scanning electron microscopy (SEM) and quantitative biofilm assays.
Furthermore, duloxetine-coated silicone catheter tubes exhibited antibacterial properties against S. aureus in a bladder model,
visualized by confocal laser scanning microscopy (CLSM) and corroborated through FDA and PI staining, highlighting noticeable
morphological changes in S. aureus post-treatment. In conclusion, this study presents duloxetine as a promising alternative agent with
antibacterial and antiadhesive properties against S. aureus in the prevention and management of CAUTI, warranting further
exploration in the clinical setting.

1. INTRODUCTION
The recent technology used in modern medicine has improved
the knowledge of physicians to overcome problems related to
untreated diseases. In the current scenario, hospital-acquired or
nosocomial infections, particularly associated with medical
devices, are gaining much attention due to their social burden.
However, several medical devices have been used for
healthcare improvement, and expected or unexpected
complications have occurred from such life-saving devices.
Particularly, indwelling catheters play a dynamic role in the
medical era by supporting hospitalized patients to overcome
illnesses arising due to various reasons.1−3 Medical devices
present in the human body provide the appropriate micro-
environment for suitable microbial colonization resulting in the
emergence of hospital-acquired infections.4 Indwelling cathe-
ters are mainly used for urine drainage in hospitalized patients;
in certain circumstances, the occurrence of infections through
catheter usage plays a serious role in catheter-associated
urinary tract infections (CAUTIs), which affect more than a
million people globally.5,6 In accordance, CAUTIs rank as the
third most significant contributor to nosocomial infections,
accounting for a substantial 40% of total healthcare-related
infections. This alarming prevalence is associated with elevated

rates of morbidity and mortality.7,8 Long-term catheter usage
provides the opportunity for uropathogen colonization in the
urinary tract region, leading to various difficulties such as
bacteriuria, sepsis, extended stay in the hospital, high treatment
cost, chances for antibiotic resistance, and, in some cases, high
mortality rates, which cause a severe economic burden.9−11

Most importantly, CAUTI favors polymicrobial structures,
including Gram-positive as well as Gram-negative etiological
agents. Of these, Staphylococcus aureus, Enterococcus faecalis,
Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis
stand out as the predominant organisms responsible for
microbial colonization, facilitating the formation of biofilms on
catheter surfaces. This highlights the critical nature of CAUTI
treatment, given the emergence of antibiotic-resistant
strains.12,13
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Indeed, CAUTIs are primarily linked to the formation of
biofilms on catheter surfaces, which significantly diminish the
efficacy of antibiotics by various mechanisms such as efflux
pumps, which expel the antimicrobial agents, or through the
transfer of antibiotic-resistant genes within bacterial and
extracellular polymeric substances, thus making CAUTI
treatment ineffective, and thereby lead to the development of
antibiotic-resistant organisms.14,15 Therefore, there is a very
urgent need for the development of antimicrobial agents that
possess antibiofilm as well as antiadhesive properties to prevent
further infection. Our research group reported the risk factors
of nosocomial infections and in vitro studies of dispiro-3-
phenylpyrrolothiazoles for a wide range of uropathogenic
pathogens.16 In recent years, strategies have been reported in
the literature to combat polymicrobial biofilms of uropath-
ogens with biopolymer, organic, and metal complex-coated
catheters.17−20 Frieboes and his research group discussed the
infusion of antibiotics and antimicrobial compounds with
modifications of the catheter to control the colonization of
pathogens in the catheter and bladder. Interestingly, their
report concludes that coating the catheter with nonpathogenic
bacteria results in the effective control of colonization by
uropathogenic organisms.21

Nonetheless, the development of novel antimicrobial agents
is a time-consuming and expensive process, and they have to
clear many preclinical studies before reaching public use.
Amidst diverse strategies for drug development, repurposing
old drugs for novel applications has garnered significant
attention. This approach has gained prominence due to its
successful passage through various clinical trials, ensuring
safety, establishing pharmacological profiles, and assessing the
impact on humans. This, in turn, has reduced the time, cost,
and risks associated with new antibiotic discoveries.22

Considering these compelling factors, this study explores the
antibacterial, antibiofilm, and antiadhesive properties of a
repurposed drug, duloxetine (originally an antidepressant),
against the highly prevalent bacterium S. aureus implicated in
CAUTIs.

2. MATERIALS AND METHODS
2.1. Chemicals and Media. All chemicals used in this

study were purchased from Sigma-Aldrich, and the medium
was procured from HiMedia Pvt Ltd., Mumbai, India. The
strain used in the study was procured from the American Type
Culture Collection. Throughout the study, ampicillin was used
as a positive control, and an overnight culture adjusted to 0.5
McFarland was used throughout the study. All experiments
were performed in triplicates.
2.2. Antibacterial Activity of Duloxetine. The anti-

bacterial efficacy of duloxetine against S. aureus was assessed by
the agar diffusion method following established protocols.23 In
brief, an overnight culture of the S. aureus strain was swabbed
onto sterile Mueller−Hinton agar (MHA) plates, creating
wells. Different concentrations (125.00, 150.00, and 200.00
μg/well) of duloxetine were loaded into each well and
incubated. Subsequently, the antibacterial activity was
evaluated by calculating the inhibition zone surrounding the
well, with ampicillin serving as a positive control.
2.3. Minimum Inhibitory Concentration (MIC) Deter-

mination. The MIC of duloxetine was determined against S.
aureus by the microdilution method using a 96-well plate, as
mentioned earlier.23 In brief, each well was loaded with sterile
Muller−Hinton broth (MHB), and 2-fold serial dilutions of

duloxetine were made from 150 μg/mL, which was serially
diluted up to 1.15 μg/mL. Later, the instant S. aureus strain
was added into each well and incubated. The turbidity of the
plate was visually examined, and the optical density (OD) was
read at 600 nm with a Thermo Evolution 600 UV−vis
spectrophotometer (Thermo Fisher Scientific).
2.4. Time−Kill Assay. The time−kill kinetics of duloxetine

against S. aureus was determined by a well-known method
described in the literature.24 In brief, an overnight culture of S.
aureus (1 × 106 CFU) was added into the BHI broth,
duloxetine was added at its MIC concentrations, and the
mixture was incubated at various time intervals such as 0, 1, 2,
4, 6, and 12 h. After incubation, a 10-fold serial dilution was
performed for each time point, and spread plating was carried
out for treated as well as untreated samples. After incubation,
the inhibitory effect of duloxetine against S. aureus was
calculated by counting the CFUs.
2.5. Effect of Duloxetine on S. aureus Biofilm

Formation. To study the effect of duloxetine on S. aureus
colony formation, the microdilution method was adopted as
described earlier.24 In brief, duloxetine was serially diluted
from 150 to 1.15 μg/mL using BHI broth in 96-well plates,
and the overnight S. aureus culture was added and incubated
for 96 h. Later, the impact of duloxetine on S. aureus colony
formation was assessed using the crystal violet method. This
involved washing each well with phosphate-buffered saline
(PBS) to remove nonadherent cells. The remaining adherent
cells were fixed with methanol and stained with 0.1% crystal
violet. After removing the excess stain and allowing the wells to
air-dry, the plate was read at 570 nm following the addition of
an ethanol/acetone mixture. These experiments were con-
ducted in triplicates for consistency.
2.6. Qualitative and Quantitative Biofilm Assay. A

qualitative biofilm assay was conducted to investigate the
impact of duloxetine on S. aureus biofilm formation, following
the method previously described by Gowri et al.25 In this assay,
an overnight culture of S. aureus was spread on Whatman No.
1 filter paper strips and incubated for 96 h. Subsequently, the
filter paper strips were subjected to treatment with a
concentration of 37.5 μg/mL duloxetine for a duration of 1
h, followed by thorough washing with PBS to eliminate
nonadherent bacterial cells. These strips were then fixed by
using glutaraldehyde and dehydrated through an ethanol
gradient. Both treated and untreated filter paper strips were
coated with gold, and their images were captured using SEM
(Supra 55, Carl Zeiss). As a control, untreated filter paper
strips were employed. To quantify the extent of biofilm
inhibition following duloxetine treatment, the crystal violet
method was utilized, in accordance with the procedure
previously outlined.25 In brief, S. aureus biofilm formation
was achieved by culturing S. aureus in 96-well plates for 96 h.
After this incubation period, the biofilm was subjected to
treatment with duloxetine at concentrations of 37.5 and 75.00
μg/mL for 24 h, followed by the removal of nonadherent cells.
The adherent cells were subsequently fixed using methanol,
stained with a crystal violet solution, and allowed to air-dry.
The plate was then read at 570 nm after the addition of an
ethanol/acetone mixture. These experiments were conducted
in triplicate for reliability.
2.7. In Vitro Qualitative Bladder Model. To assess the

antibacterial efficacy of the duloxetine-coated silicone catheter
against S. aureus, an in vitro bladder model was employed,
following the methodology described in a previous study.26
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Concisely, small pieces of the silicone catheter tube were
immersed in a duloxetine solution (37.5 mg/mL) for 1 h. The
air-dried, drug-coated pieces were then placed onto sterile
Mueller−Hinton agar (MHA) plates that had been swabbed
with an overnight S. aureus culture, and the plates were
subsequently incubated. The presence of an inhibition zone
around the well indicated the antibacterial activity of the drug-
coated catheter tube.
2.8. Quantification of the Bacterial Load in the

Bladder Model. The quantification of the bacterial load in
a coated catheter tube was achieved when small pieces of
catheter tubes were immersed in BHI broth cultured with S.
aureus for 120 h. Then, the catheter tubes with the formed
biofilm were immersed in the duloxetine solution (37.5 mg/
mL) for 1 h, and the viable bacterial count was obtained for the
catheter tubes with and without drug coating, by diluting 10-
fold using 100 μL from the drug-coated and uncoated
suspensions and using the spread plate technique on BHI
plates, followed by incubation. Later, the viable count was
determined by counting the CFUs,27 and the untreated tube
served as the control.
2.9. Confocal Laser Scanning Microscopy (CLSM) of

the Bladder Model. To visualize the biofilm formation on a
silicone catheter, the silicone catheter tube was cut into small
square pieces, then immersed in a BHI broth containing an
overnight S. aureus culture, and incubated for 96 h to allow
biofilm formation. Subsequently, the small catheter tube was
washed with PBS and subjected to a 1 h treatment with
duloxetine. Following this treatment, the catheter tube was
stained with FDA and PI for 10 min and allowed to air-dry.
The stained catheter piece was subjected to CLSM (Zeiss LSM
900, U.K.), and the untreated tube served as the control.27

2.10. Morphological Changes Observed by Scanning
Electron Microscopy (SEM). To examine the morphological
changes of S. aureus after treatment with duloxetine, scanning
electron microscopy was performed.25 In brief, an overnight S.
aureus culture was loaded on Whatman No. 1 filter paper
strips, and biofilm formation was allowed for 96 h. Then, the
paper strip was washed and treated with duloxetine for 1 h,
washed with PBS, fixed with glutaraldehyde, and dehydrated
with ethanol gradient. Gold coating was performed for the
treated and untreated paper strips, and the images were
captured using a scanning electron microscope (Zeiss SUPRA
55-VP FEGSEM, U.K.).

3. RESULTS
3.1. Antibacterial Activity of Duloxetine. The anti-

bacterial activity of duloxetine against S. aureus was assessed,
and the zone of inhibition around the well reflected the
antibacterial effectiveness across different concentrations of
duloxetine (125, 150, and 200 μg), as displayed in Figure 1. As
observed in Figure 1, the antibacterial activity was evident even
at the lowest concentration of 125 μg/well of duloxetine
against S. aureus. Furthermore, the activity increased as the
concentration of duloxetine was increased against S. aureus.
3.2. Determination of MIC. The MIC of duloxetine was

determined against S. aureus using the microdilution method,
and the results are illustrated in Figure 2. As displayed in
Figure 2, the calculated MIC of duloxetine against S. aureus
was 37.5 μg/mL.
3.3. Time−Kill Assay. The killing effect of duloxetine was

investigated against S. aureus using the time−kill assay, and the
growth inhibitory effect was calculated based on the colony-

forming units. As observed in Figure 3, S. aureus initially
receiving duloxetine treatment showed no viable cells after 1 h,

whereas the cells that received no treatment produced viable
cells. The growth inhibitory effect of duloxetine proved the
interaction with S. aureus.
3.4. Impact of Duloxetine on Biofilm Formation. The

impact of duloxetine on S. aureus biofilm formation was
assessed using the crystal violet method. Figure 4 displays the
calculated percentage of biofilm formation following treatment
with various concentrations of duloxetine ranging from 150 to
1.15 μg/mL. As depicted in Figure 4, biofilm formation was
not observed up to the MIC level of duloxetine (37.5 μg/mL)
in the polystyrene plate, whereas a gradual increase in the
percentage of biofilm formation was observed above the

Figure 1. Antibacterial activity of duloxetine against S. aureus.

Figure 2. Determination of the MIC of duloxetine against S. aureus.

Figure 3. Time−kill assay of duloxetine against S. aureus.
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duloxetine MIC level, indicating that duloxetine present in the
well at low concentrations can reduce the biofilm-forming
potency of S. aureus.
3.5. Impact of Duloxetine on Mature Biofilms. A

qualitative analysis of the inhibitory effect of duloxetine on the
S. aureus biofilm was conducted using cellulose matrices. The
visual evidence of biofilm inhibition following treatment with
duloxetine is illustrated in Figure 5, wherein the SEM image
shows a negligible number of adherent cells on their surface
after treatment with 37.5 μg/mL duloxetine against S. aureus;
thus, the biofilm was inhibited, whereas untreated matrices
showed a greater number of adherent cells on their surfaces,
indicating no biofilm inhibition. Further, the biofilm inhibition
was calculated quantitatively by the crystal violet method, and
the biofilm inhibition (%) after treatment with duloxetine (1
and 2× MIC) is displayed in Figure 6, wherein 37.5 μg/mL
duloxetine was able to reduce 63% of the biofilm after
treatment, but an increase of up to 70% biofilm inhibition was
observed when treated with a 2× MIC level of duloxetine,
whereas untreated cells showed no biofilm inhibition.
3.6. In Vitro Bladder Model. The antibacterial efficiency

of the duloxetine-coated silicone catheter tube against S. aureus
was examined under suitable conditions, and the inhibition
zones are illustrated in Figure 7. In the figure, the presence of
an inhibition zone around the drug-coated catheter tube clearly
signifies the antibacterial activity of duloxetine against S.

aureus, in contrast to the uncoated catheter tube, which
exhibited no such inhibition zone. Furthermore, the
quantification of the bacterial load from the silicone catheter
tube after drug coating was performed. The growth inhibitory
effect of duloxetine in the bladder model was calculated based
on the colony-forming units (CFUs). Notably, Figure 8 reveals
the minimal number of viable colonies in the drug-coated
catheter tube, while viable colonies were observed in the

Figure 4. Effect of duloxetine on S. aureus biofilm formation.

Figure 5. Biofilm inhibition was assessed by SEM. (A) More adherent S. aureus cells on cellulose matrices. (B) Adherent cells were reduced after
treatment with duloxetine.

Figure 6. Effect of duloxetine on a mature S. aureus biofilm.

Figure 7. Antibacterial activity of the drug-coated silicone catheter
tube against S. aureus.
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uncoated catheter tube, emphasizing the potent antibacterial
impact of duloxetine.
3.7. CLSM of the Bladder Model. The growth inhibitory

effect of duloxetine against S. aureus in the bladder model was
visualized using CLSM after 1 h treatment, and the calculated
live/dead percentage is presented in Figure 9A−E. As depicted
in the figure, the silicone catheter tube, which had been
contaminated with S. aureus for a period of 21 days, was
observed after staining with fluorescein diacetate (FDA),
which emits green fluorescence in live cells, and propidium
iodide (PI), which emits red fluorescence upon binding to
DNA. Here, the green fluorescence indicates live cells in the
silicone catheter tube, and also, Figure 9B indicates the three-
dimensional structure of the S. aureus biofilm thickness (90
μM) on a silicone catheter tube. However, Figure 9C shows
red fluorescence, indicating the treatment of the contaminated
silicone catheter with duloxetine, which disrupts the S. aureus
cell membrane and binds to the DNA, thereby enhancing the
fluorescence observed. Figure 9D shows that the three-
dimensional structure of the silicone catheter tube reduced
the biofilm thickness after treatment with duloxetine (60 μM).
Here, duloxetine can disrupt the cell membrane when present
at its MIC. The combination of FDA and PI offers visual
evidence of live and dead cells on the silicone catheter tube. By
utilizing the FDA and PI combination, we calculated the
percentage of live and dead cells based on the disruption of the
cell membrane within the entire cell population (Figure 9E).
The result revealed that the drug-coated tube showed 76%
dead cells and 24% live cells, indicating the potency of
duloxetine against S. aureus in the bladder model.
3.8. Morphological Changes Observed by SEM. The

morphological changes of S. aureus after treatment with
duloxetine were examined by SEM and are presented in Figure
10, wherein the cell surface of S. aureus analyzed after
treatment with duloxetine showed cell shrinkage, indicating
internal component leakage when compared with the smooth
surface of untreated S. aureus.

4. DISCUSSION
One of the most common and significant hospital-associated
infections is CAUTI, caused by indwelling catheters, which
results in severe clinical complications and leads to high
morbidity and mortality rates due to the presence of
polymicrobial structures that make the treatment ineffective
and also due to the prevalence of antibiotic-resistant strains,
resulting in severe socioeconomic burden.28,29 Taking all of
these factors into account, our study delves into the

investigation of duloxetine, a repurposed drug, for its
antibacterial, antibiofilm, and antiadhesive properties against
S. aureus, a prominent contributor to CAUTIs. Duloxetine
exhibited promising antibacterial activity against S. aureus.
Additionally, a previous study documented the antibacterial
efficacy of fluoxetine and its impact on the growth of S. aureus,
P. aeruginosa, and E. coli. Furthermore, it was noted that the
antibacterial activity of fluoxetine was enhanced when used in
combination with commercially available antibiotics.30 Sim-
ilarly, the phosphate prodrug, an anticancer drug, was
repurposed for its antibacterial properties against S. aureus
and E. faecalis; the potent antibacterial activities of ebselen,
amlodipine, sertraline, and azelastine against S. aureus were was
also proven.31,32 Likewise, a number of studies by various
groups have reported antibacterial activities of various
repurposed drugs, such as quercetin, curcumin, duloxetine,
ibuprofen, amodiaquine, mitomycin-C, ellargic acid, and
diiodohydroxyquinoline, against S. aureus, E. faecalis, P.
aeruginosa, E. coli, Klebsiella pneumoniae, and Clostridium
difficile.33,34 These studies have promoted the importance of
drug repurposing for various new applications.

In addition to assessing its antibacterial properties, our study
investigated the impact of duloxetine on various stages of
biofilm formation by S. aureus. This investigation encompassed
qualitative and quantitative analyses of biofilm formation on
cellulose matrices and polystyrene surfaces using in vitro
models. Catheter insertion allowed the entry of uropathogens
for microbial colonization, resulting in urinary tract infection
and microbial attachment on the surface of the catheter, in turn
providing an opportunity to form complex structures that can
shelter the bacteria from various external sources such as
antibiotic treatment, thus leading to the emergence of
antibiotic-resistant strains, which made CAUTI management
crucial.35,36 Therefore, our study mainly concentrated on every
stage of biofilm formation, from attachment to the formation
of matured biofilms, to prevent biofilm formation on the
catheter surface.37 Initially, duloxetine was studied for its effect
on S. aureus biofilm formation and inhibition using cellulose
matrices and polystyrene surfaces. The results exhibited the
effectiveness of duloxetine in inhibiting S. aureus biofilm
formation, as corroborated by SEM imaging and the crystal
violet method. Similarly, the antibacterial and antibiofilm
activities of three repurposed drugs, such as etoposide-A,
sertraline, and penfluridol, were investigated against S. aureus
biofilm formation on cellulose matrices and hydroxyapatite
pellets. The results revealed that the tested repurposed drugs
demonstrated the ability to both reduce and inhibit biofilm

Figure 8. Quantification of bacterial load from a catheter tube treated with duloxetine.
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formation on matrices and hydroxyapatite after treatment with
duloxetine.38 Various studies reported the antibiofilm potency
of repurposed drugs against S. aureus biofilm formation.

Later, duloxetine was investigated for its antiadhesive
properties against S. aureus using an in vitro bladder model,
which was used to study the prevention of biofilm formation
on the catheter surface. The catheter surface was coated with
an antibacterial agent for some time to delay or prevent
bacterial attachment on the surface, and this method also
prevented the attachment of uropathogens. Therefore, this
study aimed to mitigate biofilm formation on catheter surfaces
by applying a duloxetine coating. The antiadhesive quality was
validated through the inhibition zone observed around the

drug-coated silicone catheter tube. Additionally, we assessed
catheter tubes with ZnO and Ag NPs against S. aureus, E
faecalis, and E. coli over a span of 7 days and found sustained
and remarkable antibacterial activity throughout this dura-
tion.39 Also, CLSM was employed to visually corroborate the
impact of duloxetine on biofilm formation on catheter surfaces.
This analysis, after staining with FDA and PI, provided
compelling evidence of the excellent activity of duloxetine,
offering insights into the live and dead microbial presence on
t h e c a t h e t e r s u r f a c e . S i m i l a r l y , a s i l v e r p o l y -
(tetrafluoroethylene) nanocomposite-coated catheter showed
enhanced antibacterial and antiadhesive properties against two
CAUTI strains, S. aureus and E. coli; when compared to the

Figure 9. CLSM analysis of the catheter tube: (A) S. aureus biofilm on the uncoated catheter tube. Here, green fluorescence indicates live cells. (B)
Three-dimensional structure of the S. aureus biofilm on a catheter tube. (C) Biofilm reduction after treatment with duloxetine was observed from
100 to 60 μM. Here, red fluorescence indicates dead cells. (D) Three-dimensional structure of a silicone catheter tube upon reduced biofilm
thickness after treatment with duloxetine (60 μM). (E) Graph indicating the percentage of live/dead cells.
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uncoated catheter, the silver polytetrafluoroethylene nano-
composite-coated catheter showed a reduction of bacterial
adhesion up to 55.2 and 60.3% for the two strains,
respectively.40 Overall, this study confirmed the bioactivity of
the repurposed drug for new applications.

5. CONCLUSIONS
The antibacterial and antibiofilm activities of duloxetine, a
repurposed drug, were investigated against S. aureus, a
predominant microorganism involved in CAUTIs. The study
efficaciously determined the antibacterial activity and the
minimum inhibitory concentration of duloxetine. Remarkably,
duloxetine demonstrated the ability to inhibit biofilm
formation and reduce mature biofilms on both cellulose and
polystyrene surfaces. This antibiofilm activity was confirmed
through SEM imaging and crystal violet methods. In addition,
the antiadhesive properties of a duloxetine-coated catheter
tube were assessed against S. aureus. Furthermore, the
antibiofilm activity of duloxetine was substantiated through
CLSM. Altogether, duloxetine presents a viable alternative as
both an antibacterial and an antibiofilm agent against S. aureus
implicated in CAUTIs.
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