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24.1 Introduction

“What we want is a machine that can learn from experience.” Alan Turing said such
words in a public lecture about computer intelligence in 1947. One can say Turing and
other pioneers foresaw the innovations that would come years later, introducing the
notion of machines that could learn how to do a task by extracting information from
the environment.

Artificial intelligence (AI) is widespread in the modern world, from voice and image
recognition software in phones to video games, social media, and self-driving cars. The
development of more powerful computers and the availability of data (Big data) made it
possible for AI to become a fundamental part of many research fields, including computer
vision, natural language processing, and analysis of medical diagnosis. Recently, AI
started to make a bigger impact in the drug discovery process, being incorporated into
pharma’s industry pipelines and hundreds of biotechnology start-ups in the last 10 years.
For instance, in 2020 the first AI-designed drug, developed by the UK-based company
Exscientia, reached clinical trials (Burki, 2020).

In this chapter, we review the contributions of AI to repurpose drugs in the context of
the ongoing Coronavirus disease-2019 (COVID-19) pandemic caused by severe acute
respiratory syndrome-Coronavirus-2 (SARS-CoV-2). Despite the availability of vaccines
as of December 2020, the chemical arsenal to tackle COVID-19 is still lacking in drugs.
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This chapter will also cover selected studies showing different AI strategies to find
approved or investigational drugs that could be used against SARS-CoV-2.

24.2 Artificial intelligence in drug discovery

AI is the study of agents that can learn to perform a task (e.g., classifying images belonging
to one or more classes) by using information about the environment. When used in drug dis-
covery, AI can come in many forms, including estimation of the affinity of small molecules
against a macromolecular target, prediction of binding poses in docking simulations, de novo
design of bioactive molecules, and generation of three-dimensional structures of proteins. In
drug discovery, the main applications of AI consisting of the machine and deep learning (DL)
algorithms that can learn useful information directly from data.

24.2.1 Machine learning overview

Machine learning (ML) is a field of AI that focuses on algorithms and models that can
learn patterns from the data to solve a problem (Butler et al., 2018; Lo et al., 2018; Samuel,
1959; Valletta et al., 2017). The origins of ML in drug discovery can be traced back to early
computational methods to identify bioactive molecules. For instance, molecular descriptors
(e.g., molecular weight, lipophilicity, and structural fingerprints) are used to develop
quantitative structure�activity relationship models (Lo et al., 2018). Another example is
empirical scoring functions, which predict the binding affinity of ligands in docking simu-
lations by adjusting experimentally calculated parameters (Ashtawy & Mahapatra, 2018;
Guedes et al., 2014). Besides the applications mentioned above, ML can also be used to
estimate an array of relevant quantitative parameters in drug discovery, including solubil-
ity, toxicity prediction, and plasma membrane permeability (Boobier et al., 2020; Feinberg
et al., 2018; Gardiner et al., 2020; Mayr et al., 2016).

Another type of problem very common in drug discovery consists of predicting discrete
or categorical values for a given task. For example, ML models can be used to predict if a
given molecule is active or not in a particular protein target or if it elicits or not some tox-
icity endpoint (Jiménez-Luna et al., 2021; Lee & Kim, 2019; Li et al., 2020; Robinson et al.,
2020; Zhang et al., 2017). Thus ML addresses both quantitative and qualitative problems.
What defines which strategy to use is the available data.

Based on the type of chemical or biological data, we can classify the learning paradigm as
supervised or unsupervised. The former is used when the dataset has a set of descriptors (i.e.,
molecular properties, fingerprints, atom types) and an associated label or response (e.g., bioac-
tivity on a protein target, toxicity endpoint) for each data point. On the other hand, unsuper-
vised learning deals with problems that have no explicit response associated with the data. In
the unsupervised setting, the goal is to identify patterns in the data to perform tasks such as
clustering of similar molecules in N groups according to the distance between them.

Supervised and unsupervised learning are the most common methods used in ML.
However, other learning paradigms are also popular. For instance, semisupervised learn-
ing is halfway between supervised and unsupervised and consists of training models with
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only a few labeled data points. An example of this kind of model is generative chemical
models that can create new chemical matter (Bjerrum, 2017; Gupta et al., 2018; Moret et al.,
2020; Santana & Silva-Jr, 2021). In reinforcement learning, the model or agent is trained to
maximize a reward function; for example, to generate molecules with better binding affin-
ity on a protein target (Blaschke et al., n.d.; Olivecrona et al., 2017; Zhou et al., 2020).

24.2.2 From machine learning to deep learning

DL is a subfield of ML that uses multilayered neural networks to learn representations from
raw data to solve a problem (Esteva et al., 2019; Zhou et al., 2020; Zou et al., 2019). The founda-
tions of DL were established decades ago, with the development of algorithms such as stochas-
tic gradient descent (Bottou et al., 2018), the Perceptron model in the 1950s (Rosenblatt, 1958),
and the backpropagation algorithm in 1986 (Rumelhart et al., 1995; Rumelhart et al., 1986).

Despite the basic algorithms used in DL being known for decades, only recently have DL
models started to be widely implemented in practice, including in the drug discovery process.
This surge in DL research was stimulated by the huge amounts of data available today and
the ease of collecting and storing these in databases. For instance, chemical and biological
databases such as ChEMBL (Bento et al., 2014) and PubChem (Kim et al., 2016) contain bioac-
tivity data for millions of molecules across a range of Proteomes. Besides the data availability,
the development of new hardware, such as the graphics processing unit, which were not
available before the 21st century also made DL popular by making models extremely paralle-
lizable and faster to train (Chen et al., 2018; Eraslan et al., 2019). In addition, there is open-
source DL software available that is user-friendly, allowing models to be built and trained
with just a few lines of code, such as Keras (Chollet & Others, 2015), Tensorflow (Abadi et al.,
2016), PyTorch (Paszke et al., 2019, 2017), and Fastai (Howard & Fastai, 2018).

DL is becoming extremely popular in different research fields, with several successful
applications, for instance in image recognition (Liang et al., 2017; Voulodimos et al., 2018),
natural language processing (Alshemali & Kalita, 2020; Howard & Ruder, 2018; Vaswani
et al., 2017; Young et al., 2018), and also computational chemistry (Gawehn et al., 2016;
Goh et al., 2017; Shen et al., 2020; Walters & Murcko, 2020).

Since DL is a subfield of ML, it is necessary to highlight the difference between them.
A common problem with ML methods is how to represent the dataset to train a model
successfully. Broadly speaking, in ML it might be necessary to introduce expert knowledge
to design an optimal set of features to train a model; for example, by combining the raw
features into more informative types. Regardless of the feature engineering method, these
transformations often require good data engineering skills as well as expertise in the
specific research area.(Chen et al., 2018; Esteva et al., 2019). The main advantage of DL
algorithms is their ability to automatically extract new descriptors from raw input data
(Goh et al., 2017; Jiménez-Luna et al., 2021; Mater & Coote, 2019).

24.2.2.1 Neural networks

The most basic DL model consists of hierarchically organized layers of perceptrons or
neurons, which perform nonlinear transformations on their inputs (Fig. 24.1). This archi-
tecture is also called a fully connected neural network (FCNN).
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Each layer receives them as input the output of the previous layer. Given an input
matrix of descriptors X, a neural network performs the mathematical transformation:

y5 f
XN
i51

wi}xi 1 b

 !

where y is the output, f is a nonlinear function (e.g., softmax, sigmoid, tanh, cosine, reLu),
wi the weights of a neuron, xi represent input features to the neuron and b is a bias term.
Thus in essence, a neural network consists of a set of nonlinear transformations on the
input data parameterized by a set of weights. Different architectures implement these
operations in specific ways, but the general process remains the same.

The nonlinear transformations on the neurons allow the neural network to learn very
abstract concepts about the data (Goh et al., 2017). For instance, in computer vision, the
earlier layers might learn basic shapes, such as corners in the image. As the data flows
through the layers, more complex patterns start to appear, including the distinction
between entities in the image (e.g., eyes, noses, different people) (Yosinski et al., 2015). In
the output layer, the neural network gathers all the learned features to make a prediction.
It is this property of transforming the original data into new representations that make DL
models powerful and bypass the need for feature engineering. A neural network with a
sufficient number of layers can approximate any abstract complex function (Cybenko,
1989; Hornik, 1991), such as those governing the interaction of proteins with small
molecules.

FIGURE 24.1 Fully connected neural
network. Inputs are shown as blue circles
on the left side of the image and outputs
as red circles on the right side. The hidden
layers are positioned between inputs and
outputs.
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24.2.2.2 Examples of neural networks architectures for computational drug discovery

Neural networks come in different flavors and the choice of what kind to use depends
on the specific problem. Problems involving text data require different considerations
from image data in terms of how to train the model and how the learning process works.
In the next section, we will briefly review some of the most used architectures and meth-
ods that are being used to repurpose drugs for COVID-19.

24.2.2.2.1 Recurrent neural networks

The basic neural network consists of neurons of one layer connected to every neuron of
the next layer. Despite the flexibility of this architecture to learn complex functions, when
the problem involves sequence data the model struggles to learn the relationships between
different steps of the sequence. For instance, consider the SMILES representing acetylsa-
licylic acid (i.e., CC(5O)OC15CC5CC5C1C(5O)O) as input to a FCNN. As each char-
acter of the sequence flows through the layers of the network, any information about
previous characters would be lost because the model does not have a memory of the past.

To use sequence data to solve computational chemistry problems, a common strategy con-
sists of taking every character of the sequence as input to predict the next character. Now, the
model can output the probability of sampling the next character in the sequence from a pool
of individual characters available, also called a vocabulary (Olivecrona et al., 2017). This tweak
is similar to introducing a loop during training (Fig. 24.2). The main effect is that every charac-
ter is treated in the information context of characters preceding it.

In practice, basic recurrent neural networks (RNNs) maintain an internal hidden state h,
which holds information about the past of the sequence. At each time step, the state is
updated to predict the next character. Thus RNN’s can be used for sequences of variable
length to learn how each character of the sequence relates to each other.

The architecture described above is an improvement over FCNN’s, but it still suffers
from learning problems (Lipton et al., 2015). The main problem of basic RNN is training
this kind of model. As the input moves through the layers it gets multiplied by the
weights and the gradient is calculated. If the gradient is too small or too large, it will van-
ish or explode, respectively, as training progresses and impair learning (Lipton et al., 2015;
Yu et al., 2019). Therefore basic RNNs layers are rarely used in practice today and two

FIGURE 24.2 Recurrent neural network layer.
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types of modifications are very popular: long short-term memory (LSTM) (Hochreiter &
Schmidhuber, 1997) and gated recurrent neural network (GRU) (Cho et al., 2014).

The LSTM architecture was introduced by Hochreiter and Schimidhuber in 1997. This
architecture introduced another hidden state, called cell state Ct, which gathers informa-
tion from everything that happened to the sequence. In an LSTM layer, four gates modu-
late what will be forgotten or kept by the cell state at each time step (Fig. 24.3).

1. Forget gate: Concatenates the input and the hidden state of the previous time step and
passes the result to a sigmoid function. The output of the sigmoid operation is a matrix
of 0’s and 1’s, values closer to 0 are discarded, and values close to 1 are kept.

2. Input and cell gate: Update the cell state from the previous time step. This is useful to
make the model focus on new information that can be used to solve a task.

3. Output gate: It determines which information of the updated cell state will actually be
used for output.

24.2.2.2.2 Transformer and attention mechanism

In addition to recurrent-based networks, the transformer architecture is also widely used.
The transformer is a DL architecture introduced in a seminal paper (Alshemali & Kalita, 2020;
Howard & Ruder, 2018; Vaswani et al., 2017; Young et al., 2018) that uses an attention mecha-
nism to focus on the most relevant parts of a sequence to predict each time step.

FIGURE 24.3 The long short-term memory unit. The inputs xt and hidden states ht are concatenated and
used to update the cell state (Ct). The different gates in the LSTM control what information will be updated, for-
gotten, and output by the neural network. σ, sigmoid function; tanh, tangent function.
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When dealing with sequence-to-sequence problems (seq2seq), where both input and
output are sequences, a common architecture consists of two parts, an encoder, and a
decoder. Given an input sequence X5 (x2, x2,. . ., xn), the encoder maps the sequence into
an abstract representation Z5 (z1, z2,. . ., zn). Then, the decoder receives the modified input
and transforms it into the output sequence Y5 (y1, y2,. . ., ynÞ. This is a common approach
when solving translation problems and is also being applied to computational chemistry
problems to predict synthetic routes, generate new molecules and predict bioactivity.

As previously mentioned, LSTMs are a natural choice to work with sequence data. However,
in 2017 Vaswani et al., introduced a new architecture that relies entirely on self-attention
mechanisms to solve seq2seq problems. The attention mechanism consists of using key informa-
tion about the sequence to make predictions (Cheng et al., 2016; Lin et al., 2017). Thus a model
with attention can look into specific parts of a sequence and decide if it is important or not.

In the original transformer, the encoder consists of a stack of six identical layers. Each
of these layers has two sublayers: a multihead attention layer followed by a fully con-
nected linear layer. In addition, layer normalization and residual connection between the
sublayers were introduced, allowing the data to flow through undisturbed (He et al., n.d.).
The decoder follows a similar structure, but with the addition of another multihead atten-
tion (encoder attention) layer connected to the output of the encoder (Fig. 24.4).

To assign attention to different parts of a sequence, the transformer uses a set of matrix
multiplications between query (Q), key (K) and value (V) matrices according to:

Attention Q;K;Vð Þ5 softmax
QKtffiffiffi
d

p
k

� �
V

where softmax is a function to scale values between 0 and 1, and dk is the dimension of
the input embedding. The Q, K, and V matrices are generated for each word or character
in the input embeddings. During training, these matrices are multiplied together to gener-
ate weighted vectors (i.e., self-attention) representing the relative importance of each word
during inference. In practice, self-attention is calculated multiple times using the multi-
head mechanism, allowing Q and V to be represented in different ways. In the multihead
layer, the different heads are concatenated into a single matrix and self-attention is calcu-
lated jointly for different representations at different positions in the sequence. The
authors of the original implementation found that multihead improved the performance
compared to a single self-attention calculation.

24.2.2.2.3 Graph-convolutional neural network

Molecules can be represented in different ways, including one-line representations (e.g.,
SMILES), two-dimensional drawings, and three-dimensional geometries showing the spa-
tial arrangement of atoms. However, under the hood of these methods is the molecular
graph, which is how a computer reads the molecular structure. A molecular graph
G5 ðV;EÞ is defined by a set of atoms or nodes V and edges E representing the bonds
between them. In addition to bonds and atoms, the graph can also encode molecular fea-
tures at its nodes and edges, such as bonds and atoms types, aromaticity, chirality, if the
atom is part of a ring, and many others. Thus a molecular graph can represent molecules
concisely to input implicit molecular features into ML models.
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Neural network architectures working directly on molecular graphs evolved with time,
starting with a publication by Duvenaud et al. (2015) describing a neural-based molecular
fingerprint. Further contributions, such as Weave modules and “supernodes” introduced
important concepts to train graph-based neural networks. The main concept of the graph
neural network is that molecular features can be learned directly from the molecular

FIGURE 24.4 The transformer architecture shows the encoder and decoder. The encoder consists of multihead
attention that allows the model to focus on important parts of the import. The decoder also contains attention
layers and processes the context vector output by the encoder. The final layer of the decoder is a fully connected
linear layer and is responsible for the output of the model.
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structure or graph, instead of using explicit descriptors. The learning process using a
graph convolutional neural network (GCNN) has three properties designed to deal with
molecular inputs: (1) the order an atom is represented on the molecular graph does not
change the output of a layer (order invariance); (2) any permutation applied to individual
atoms is also applied to the pairs this atom makes with other atoms in the molecule;
(3) atom pairs can be described as ab or ba (pair invariance) (Kearnes et al., 2016).

Gilmer et al. published a seminal work that generalized the concept of neural net-
works for self-supervised learning on molecular graphs (Gilmer et al., 2017). The main
idea of this work is that the GCNNs on literature at the time could be reformulated
into a common framework called message passing neural networks (MPNNs). In the
MPNN framework, the neural network receives input graphs consisting of nodes fea-
tures xv, edges features evw, and an adjacency matrix A with vector-valued entries to
indicate different bonds in the molecule and the spatial distance for every atom pair.
The node or atomic features consisted of very simple descriptors, including atomic
number, atom types, acceptor/donor of electrons, aromaticity, hybridization, and the
number of hydrogen atoms.

The forward pass of training in the MPNN framework consists of two phases, a
message-passing phase, and a readout phase. During the message passing phase, the hid-
den states at each node are updated according to the functions:

mt11
v 5

X
wANðvÞ

Mtðhtv; htw; evwÞ

ht11
v 5Utðhtv;mt11

v Þ
where, Mt and Ut are the message passing and update functions, respectively, htv is the
hidden state at time step t for node v and evw is the edge feature vector between nodes v
and w. In this phase, each node “messages” its neighbors and aggregates information to
update its own context. After a few iterations of messaging, a readout phase computes a
graph-level (or molecule-level) feature vector using a Readout function R on the learned
features of all nodes:

y5RðfhTv jvAGgÞ
where the readout function R is

R5
X
vAV

σ iðhTv ; h0vÞ
� �

} jðhTwÞ
� �

where i and j are neural networks and } denote element-wise multiplication. The com-
mutative property of the element-wise multiplication on the readout function is essential
for the network to deal with graph isomorphism and be invariant to the permutation of
atoms or nodes on the graph. In the final phase, the learned graph-feature vector is passed
to linear layers for prediction tasks.

The authors demonstrated how previous work could be cast into the MPNN frame-
work, showing the respective message passing and update functions for each model, thus
aggregating much of the knowledge about molecular graph neural networks into a more
elegant form that could be explored in future research (Gilmer et al., 2017).
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24.2.2.2.4 Knowledge graphs

Despite not being a neural network, knowledge graphs are gaining momentum in AI,
especially when combined with ML and DL models. A knowledge graph represents
knowledge using a graph structure, where each node is an entity or object and the edges
between them represent what kind of relationship is present (Bullock et al., n.d.; Kejriwal,
n.d.; Paulheim & Cimiano, 2016). For example, a knowledge graph of the human proteome
could include all druggable proteins and drugs as nodes and the type of bioactivity
(e.g., inhibitor, substrate, antagonist, agonist, etc.) as edges linking drugs to targets.

In the current COVID-19 pandemic, different groups (see Section 24.3) are using knowledge
graphs to extract hidden relations between approved drugs and SARS-CoV-2 and host pro-
teins that could be targeted. For instance, biomedical information from databases such as
PubMed, PubChem, and ChEMBL can be mined to identify molecules already tested against
relevant targets. In this scenario, neural networks can be trained using the information from a
knowledge graph to make predictions for new drugs and targets, accelerating the discovery
of new treatments (Ge et al., n.d.; Richardson et al., 2020; Zeng et al., 2020).

24.3 Selected drug repurposing strategies

Several computational approaches have been explored to quickly respond to the
COVID-19 pandemic and the necessity to find possible treatments. A selection of cases
employing AI methods is listed in Table 24.1.

Ge and coworkers developed a data-driven drug repositioning by combining seven
networks with information about drug�target and protein�protein interactions, molecule
similarity, and sequence similarity of human and viral sources to predict drugs targeting
SARS-CoV-2 (Ge et al., n.d.; Richardson et al., 2020; Zeng et al., 2020). The authors used well-
known publicly available databases, such as DrugBank (Wishart et al., 2006), ChEMBL (Bento
et al., 2014), BindingDB (Gilson et al., 2016), and UniProt. The final knowledge graph was
assembled by merging the nodes and edges of the individual networks, where each node repre-
sented drugs or targets, while the edges between them described the identified interactions,
including similarity (i.e., molecular and primary sequence) and drug-target or target-target inter-
actions. Thus by aggregating the information between nodes the final graph could be used to
select an initial list of potential drug candidates that could be used to treat COVID-19.

A graph convolutional network (GCN) was used to learn and extract the hidden infor-
mation from the knowledge graph, allowing the authors to access novel drug-target and
target-target interactions and find molecules that could be repurposed to SARS-CoV-2
(Ge et al., n.d.; Richardson et al., 2020; Zeng et al., 2020). GCN’s are powerful neural net-
works that can access the rich information within the nodes of a graph (Torng & Altman
2019; Zhang et al., 2019) by allowing the nodes to exchange information (or messages),
which are updated every iteration of the algorithm.

Given a graph, the nodes can exchange messages mt during training of a GCNN:

mt
v 5

X
rAR

X
uANrðvÞ; e5 ðu;v;rÞAE
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where au;v;r represent the weights v, u; and r associated with edge e5 ðv;u; rÞ. Au;v;r is the
aggregation function to gather the messages arriving at a node and is given by

TABLE 24.1 Potential repurposable drugs against Coronavirus disease-2019.

Repurposed drug

candidates

Previous

use Method Predicted targets Experimental validation

Mefuparib
hydrochloride
(CVL218)

Cancer Knowledge-graph,
docking in vitro and
in vivo assays

The nucleocapsid (N
protein)

Mefuparib achieved an EC50

of 5.12 µM

Clomiphene,
Toremifene and
Bazedoxifen,
Indomethacin,
Dexamethasone,
Melatonin,
Chloroquine, and

Hydroxychloroquine Multiple Knowledge-graph, docking
in vitro and in vivo assays

Multiple targets of
human and
Coronaviruses

Antiviral
activities
against

Coronaviruses have
been described for
selective estrogen
modulators
(toremifene) and
antiparasitic
(chloroquine and

hydroxychloroquine). In
addition, antiinflammatory
agents may help alleviate
the inflammation caused by
SARS-CoV-2 infection.

Atazanavir and
Efavirens

HIV Molecule transformer
drug-target
interaction (MT-DTI)

SARS-CoV-2 3C-like
protease (Mpro)

Atazanavir can be found in
lungs after administration
and have shown inhibitory
activity against Mpro 2

Baricitinib Rheumatoid
arthritis

Knowledge-graph Human AP2-
associated protein
kinase 1 (AAK1)

A pilot trial indicated that
baricitinib improved clinical
parameters (e.g., cough and
dyspnea) in a small group of
patients3.

Temsirolimus,
Sirolimus,
Bremelanotide,
Everolimus,
Deutetrabenazine,
Latamoxef,
Cefazolin,
Cefoxitin,
Bacampicillin,
Pheneticillin,
Enoxacin, Linezolid
and Colchiceine

Multiple The proprietary DL
model for drug-target
interaction (Ligand
Designt by Cyclica)

SARS-CoV-2 3C-like
protease (Mpro) and
Spike protein.
TMPRSS2 and
Cathepsin B

Sirolimus is currently under
clinical trials against COVID-19
(NCT04461340, NCT04341675,
NCT04371640, NCT04482712,
and NCT04374903). Colchicine
is under clinical trial for the
treatment of moderate
symptomatic COVID-19
patients (NCT04527562).

Aðu; v; rÞ5 aðu; v; rÞP
uaðu; v; rÞ
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The hidden state ht for node v at time step t is given by

htv 5
reluðWtconcatðht21

v ;mt
vÞ1 ht21

v 1 btÞ
reluðWtconcatðht21

v ;mt
vÞ1ht21

v 1btÞ
�� ��

2

The final knowledge graph was mined to gather an initial list of drugs, which was further
refined by extracting drugs that could be related with SARS-CoV-2 from 20 million texts from
PubMed using a DL method called Biomedical Entity Relation Extraction and manual inspec-
tion. Briefly, the authors encoded pairs of drugs and SARS-CoV-2 in a bag of sentences
Sðe1; e2Þ, where each entry corresponded to sentences containing drug e1 and target e2. This
bag of sentences was then used as input to a DL model containing self-attention modules and
gated recurrent units (GRU) to generate a sentence representation hs that could be used to
calculate the contribution of each sentence to the relation prediction:

β 5 softmax ðW}hsÞ
where a softmax function is used to scale β to the range [0, 1], with values closer to 1 indi-
cating more relevant weights. Finally, a binary classifier was used to predict the relation
re1;e2 drugs and targets:

re1;e2 5 classifier ðβ}hÞ
The final list of drug candidates was further refined using the connectivity map approach

based on transcriptome analysis of 10 SARS-CoV patients. To validate the text extraction
approach, the authors conducted a retrospective study on SARS-CoV and Middle East respira-
tory syndrome-Coronavirus (MERS-CoV), which are two Coronaviruses that are similar to
SARS-CoV-2. Interestingly, drugs previously described as active against these viruses were
among the top of the list of predicted results, demonstrating that the knowledge graph
method can predict drugs with some degree of activity against Coronaviruses.

The in silico process returned the poly-ADP-ribose polymerase 1 (PARP1) inhibitor,
Mefuparib hydrochloride (CVL218), currently in Phase I clinical trials, as a potential drug
for repurposing against SARS-CoV-2. Inhibition assays showed that CVL218 inhibited
SARS-CoV-2 replication by 35.16% at 3 µm, which was higher than the inhibition exhibited
by Arbidol (21.73% at 3 µm), one of the standard treatments for COVID-19 in China. In
addition, the authors showed that the antiviral activity of CVL218 was dose-dependent,
with no obvious cytopathic effects on treated cells. Time-of-addition assays further demon-
strated that CVL218 displayed potent inhibitory activity during the course of the assay,
with a mild inhibition at entry and significantly inhibiting replication postentry.

In vivo studies showed that CVL218 significantly inhibited the production of IL-6
induced by the CpG oligodeoxynucleotide 1826 (CPG-ODN1826) in peripheral blood
mononuclear cells (PMBC), indicating it might be an alternative to treat proinflammatory
action by SARS-CoV-2 infection. CVL218 also showed favorable pharmacokinetics and tox-
icity profiles in rats and monkey models. Taken together, these findings show how com-
bining AI with wet-lab tests can accelerate drug discovery, especially in critical scenarios
such as the COVID-19 pandemic.

Zeng and coworkers developed CoV-KGE, a network-based approach to identify poten-
tially repurposable drugs based on the interactions between their human targets and
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Coronavirus-associated proteins (Zeng et al., 2020). CoV-KGE is an extensive knowledge
graph of 15 million edges including 39 types of interactions (e.g., activation, inhibition,
blockage, etc.) connecting drugs, genes/proteins, and diseases. Using this approach, the
authors identified 41 drugs that could be tested for the treatment of COVID-19 in clinical
trials.

To develop CoV-KGE, the authors gathered drug2gene interactions, gene2gene interac-
tions, drug2disease associations, and gene2disease information from the Global Network
of Biomedical Relationships (GNBR). In addition, drug2drug interactions, mechanism of
action, pharmacodynamics, side effects, drug anatomical therapeutic chemical (ATC)
codes, and toxicity information for 3481 FDA-approved and clinically investigational
drugs from DruBank that overlapped with GNBR were also included. Finally, experimen-
tally Coronaviruses2gene relationships and known genes associated with other
Coronaviruses are included in the knowledge graph.

A DL model called RotatE was used to learn and extract the embeddings of the knowl-
edge graph, which contained information about interactions between the nodes, such as
how a drug interacts with a given gene/protein from Coronaviruses. Briefly, the knowl-
edge graph can be described as triplets ðh; r; tÞ, where the head (h) and tail entities (t) inter-
act via some type of relation (r). The RotatE model defines a relation type as a rotation of
the head to the tail in a complex vector space. More specifically, given a triplet ðh; r; tÞ, the
tail can be described as:

t5 r}h

where h, r, tA Ck are the embeddings of the knowledge graph. During training, the loss
function is optimized to minimize the distance dr between positive (existing) relations,
while maximizing the distance between negative (nonexisting) relations.

drðh; tÞ5 h}r2 tj j

L52logσðγ2 drðh; tÞ2
Xn
i51

pðhi; t; riÞ

where σ is the sigmoid function, γ is a margin parameter and hi; ri; ti is the ith negative
triplet.

On a retrospective validation using COVID-19 clinical trials data (https://covid19-
trials.com/), CoV-KGE displayed high performance, being able to identify 14 types of
drugs annotated by their ATC code. For instance, Toremifene, Indomethacin, and
Niclosamide were identified among the top drugs, which is consistent with their previ-
ously described activity on other Coronaviruses. In total, 41 repurposable drug candidates
were selected based on the CoV-KGE predictions and availability of clinical evidence
against SARS-CoV-2. The most interesting drug types included selective estrogen receptor
modulators (clomiphene, toremifene, and bazedoxifene), antiinflammatory agents (indo-
methacin, dexamethasone, and melatonin). The antiparasitic chloroquine and hydroxy-
chloroquine were also among the top predicted drugs, but due to their low efficacy in
clinical trials and potentially serious side effects (e.g., prolongation of QT), the authors
highlight that further experimental results are warranted to explain the discrepancy
between their antiviral activity and low efficacy.
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Overall, CoV-KGE is a promising A. I approach to accelerate the discovery of known
drugs that can be used in critical moments, such as the COVID-19 pandemic. However,
the authors highlight some potential limitations, such as noise from different experimental
settings in the training data, the lack of pharmacokinetics data, and dose-dependent pro-
files on SARS-CoV-2.

Beck et al. (2020) used a transformer-based approach to predict the binding affinity of
3410 commercially available antivirals against different protein targets from SARS-CoV-2,
including 3CLpro, spike protein (S), RNA-dependent RNA-polymerase (RdRP), helicase,
endoRNAse, 30-to-50-exonuclease and 20-O-ribose methyltransferase. The Transformer is a
DL architecture that uses a self-attention mechanism to prioritize specific parts of a
SMILES sequence during inference; the model can focus on relevant atoms or fragments
from a molecule. Therefore the premise of the approach is analogous to understanding
texts in different languages, for instance by learning the semantic relationships of words to
execute a task, such as predicting the most probable word in a text or the sentiment
expressed by it (Lecun et al., 2015; Young et al., 2018). Attention has been extremely suc-
cessful in NLP, allowing models to achieve state-of-the-art results in language translation,
Q&A tasks, sequence classification, and other language-based tasks.

Their model, called Molecular transformer�drug�target interaction (MT-DTI) was pre-
trained on approximately 1 billion SMILES strings and the FASTA sequences of target pro-
teins, which bypass the need for three-dimensional structures (e.g., X-ray) of protein-target
complexes (Shin et al., n.d.) By using a pretrained model, the authors explored the transfer
learning capabilities of MT-DTI, allowing the model to adapt previously learned features
to make predictions for new tasks (Cai et al., 2020; Tan et al., 2018), which is especially
important when not enough data is available, which was the case for SARS-CoV-2 inhibi-
tors at the time.

Therefore the task consisted of training the model to understand the chemical sequences
of small compounds and protein targets to predict the binding affinity. The authors found
that atazanavir, remdesivir, and efavirenz were potential inhibitors of Mpro, while atazana-
vir also yielded nanomolar predicted binding affinity for RdRP, helicase, endoRNAse,
30-to-50-exonuclease, and 20-O-ribose methyltransferase (Beck et al., 2020). It is important to
highlight that although these drugs were predicted as nanomolar inhibitors, experimental
confirmation is essential to validate the computational analysis. In the case of atazanavir,
there is experimental evidence of weak Mpro inhibition (Fintelman-Rodrigues et al., 2020;
Mahdi et al., 2020). Remdesivir has been shown to inhibit SARS-CoV-2 replication in vitro,
despite its mechanism of action not being elucidated (Choy et al., 2020; Wang et al., 2020).

The UK-based company BenevolentAI (https://www.benevolent.com/) used a knowl-
edge graph containing different biomedical sources to explore new strategies for SARS-
CoV-2 (Richardson et al., 2020). Among the drugs identified by mining the hidden
information within the graph, there were 378 inhibitors of the P2-associated protein kinase
1 (AAK1), a regulator of viral endocytosis in AT2 alveolar epithelial cells. Inhibitors of
AAK1 could then potentially block viral entry into alveolar cells. However, the authors
argued that only one of these drugs, baricitinib, a Janus kinase inhibitor, had an
acceptable safety profile. In addition, the low therapeutic dosing of baricitinib (2mg or
4mg daily) makes it a promising drug for repurposing (Richardson et al., 2020). Pilot stud-
ies in COVID-19 patients showed that baricitinib in combination with other antivirals had
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no significant adverse effects and improved clinical parameters (Cantini et al., 2020; Kalil
et al., 2021). Baricitinib is currently under clinical trials (NCT04393051, NCT04421027, and
NCT04399798) for patients with moderate to serious COVID-19.

Gupta and Zhou adopted a hybrid approach by combining classical and neural
network-based molecular dynamics (MD) force fields to prioritize FDA-approved drugs
against SARS-CoV-2 Mpro, which consists of an interesting strategy to explore Newtonian
mechanics and quantum properties of the system (Gupta & Zhou, 2020). The authors used
a structure-based pipeline consisting of an initial docking of 1615 FDA-approved drugs
against Mpro, followed by MD simulations to select the most promising compounds. After
molecular docking, 62 promising drugs were selected, followed by 100 ns MD simulations
using the CHARMM36 force field which filtered the list to 26 drugs. In the next step,
5 ns MD was carried out using a neural network-based force field to model the interac-
tions between each drug and the protein-solvent system.

The neural network called ANI-2x (Accurate NeurAl-2x) was trained on small mole-
cules their density functional theory (DFT) energies. The local atomic environment of each
molecule was defined using Behler and Parrinello symmetry functions (Behler, 2011):

Gx
i 5 ðG1;G2;G3;GmÞ

where Gi represents radial and angular degrees of freedom of the ith atom, which can be
used to calculate the potential energy surface of the molecule. The Gi functions are trans-
formations of the Cartesian coordinates to account for movements that do not change the
energy (e.g., translation and rotation). If Cartesian coordinates were used, the neural net-
work output and consequently the energy of the system would not be invariant to transla-
tion or rotation of the molecules. In summary, the ANI-2x neural network receives as
input local information about each atom of the molecule to predict the total energy of the
system. Extensive validation of ANI-2x showed similar accuracy to DFT calculations. In
addition, ANI-2x predictions were 106 times faster than DFT, allowing it to be used in MD
simulations along with classical force fields.

The hybrid ANI/MM approach estimated the total potential energy of the system as the
sum of drug- and target-based potentials and the interaction between these terms:

Ur 5UANIðrANIÞ1UMMðrMMÞ1UANI=MM rANIðrMMÞ
where the UANI=MM rANIðrMMÞ represents the nonbonded interactions between the drugs
and the system, including Coulombic and Lennard-Jones interactions.

In the last step of the protocol, the drug list was filtered based on the free energy of binding
estimation using MM/PBSA simulations. In total, 9 drugs, including dihydroergotamine, midos-
taurin, ziprasidone, etoposide, apixaban, fluorescein, tadalafil, rolapitant, and palbociclib were
identified as potential inhibitors of Mpro. Among the selected drugs, tadalafil (Kd5 52.2 µM), mid-
ostaurin (Kd5 43.5 µM), and dihydroergotamine (Kd5 107.6) had measured bioactivity against
Mpro. In addition, the authors did not find Mpro inhibition data for a random list of 62 drugs fil-
tered off by the docking step, indicating that the computational protocol was able to find mean-
ingful biochemical features to make bioactivity predictions.

Polypharmacology is another paradigm in drug discovery that explores the interactions
of drugs with multiple targets. In this scenario, Redka and coworkers explored the poly-
pharmacology of approved drugs against SARS-CoV-2 and host targets to prioritize
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treatments for COVID-19 (Redka et al., 2020). The dataset consisted of three sources of
information: (1) small molecules with annotated clinical safety data, (2) a panel of 15 host
proteins associated with SARS-CoV and MERS-CoV infection, and (3) homology models of
SARS-CoV-2 Mpro and spike protein (at the time of writing no experimental structures
were available at the Protein DataBank). To predict potential drug�target interactions, a
proprietary DL model called Ligand Design was used, which supports both structure-
based and de novo designs.

The Ligand Design approach works by iteratively selecting molecules (children) from
the initial population (parents) to optimize an objective function. In their study, the
authors used an objective function called MatchMaker, which is a DL model trained with
structural and experimental data of the whole human proteome to predict drug-target
interactions. In total, the authors screened 10,224 drugs over more than 8700 protein tar-
gets of interest. This collection of drugs and targets was labeled PolypharmDB.

The top approved drugs predicted hits for SARS-CoV-2 Mpro and spike protein con-
sisted mainly of mTOR-signaling pathway modulators and antibiotics (Table 24.1). An
extended list of 338 hits showed a miscellaneous collection of classes, including calcium
channel blockers (e.g., diltiazem), serotonin receptor antagonists (e.g., sumatriptan) and
HIV protease inhibitors (e.g., nelfinavir and saquinavir), ACE inhibitors (e.g., lisinopril)
and histamine antagonists (e.g., cimetidine).

Among host targets included in PolypharmDB, transmembrane protease serine 2
(TMPRSS2) and cathepsin B were described in the literature as essential for SARS-CoV-2
infection. Different drug classes were predicted to inhibit TMPRSS2, cathepsin B, and dual
inhibition of these targets, including monoamine oxidase inhibitors (e.g., Phenelzine,
Selegiline, and Isocarboxazid), cholinesterase inhibitors (rivastigmine), a nonsteroidal aro-
matase inhibitor (anastrozole), and an antihistamine drug (antazoline).

Overall, the collection of molecules selected from PolypharmDB is interesting because it
spans a variety of chemical classes. However, the reported results should be used cau-
tiously. According to the authors, the prospective performance of the MatchMaker and
Ligand Design approach was not validated at the time, which adds a degree of uncertainty
to the results for new targets. In addition, the use of homology models for SARS-CoV-2
targets introduces another bottleneck to prediction confidence. It is worth mentioning the
authors did submit the experimental structures of Mpro and spike proteins to the same
protocol after publishing the manuscript and found 88.7% overlap in predictions.

24.4 Future perspectives and challenges

In this chapter, we summarized AI approaches used to repurpose drugs against SARS-
CoV-2. The AI literature is in constant change, with new models, datasets, and strategies
being published every week. Remarkable progress was made since the beginning of the
COVID-19 pandemic, where different research groups developed methods to find promis-
ing drugs in the chemical space haystack. However, the true applicability of the suggested
molecules is yet to be investigated. Even if a molecule is predicted to be active; the real
success story will come after clinical trials, and we are yet to see AI-tailored drugs being
approved.
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Another possible step forward is the prediction of new pandemics. We might still be far
away from predicting the exact date a pandemic will start, but data such as social media
posts, social and geographic events, medical records, and previous pandemics data could
be used to alert authorities about possible disease outbreaks. Using AI to predict epi-
demics is still in their infancy, but some companies have already shown that it’s a promis-
ing technology, such as BlueDot alert about SARS-CoV-2 seven days before the global
alert by WHO (Niiler, 2020), and Metabiota predictions that Japan, Thailand, Taiwan, and
South Korea would be at risk (Allam et al., 2020).

AI could also prove useful in the prediction of new viral targets and their three-
dimensional structures. AI have already achieved great success as exemplified by AlphaFold
outperforming current methods for protein structure prediction (Jumper et al., 2021).
Expanding on this success story, some companies are already investing in the prediction of
structures for whole proteomes and how to use this knowledge for bioactivity prediction. An
example of this kind of approach is the Human3DProteome platform by the Wales-based
company Moleculomics (https://human3dproteome.com/private/). When the next pandemic
strikes, we might be able to access important targets and focus on drug discovery strategies to
gain insight on optimization strategies to deliver more potent and safer drugs.

24.5 Conclusions

AI is reshaping the drug discovery process. The amount of chemical and biological infor-
mation in databases allows researchers to use ML and DL algorithms to extract previously
hidden relationships between drugs and biological targets. In this chapter, different AI meth-
ods were introduced but it is important to highlight that there is no privileged methodology.
The choice between, for example, LSTM-based models and graph models, depends on a num-
ber of variables, including the type of data, computational power, and user expertise. We rec-
ommend the reader experiment with different methods to understand how they work and
carefully design their projects to select the most appropriate to solve a specific task.

As shown in the selected examples, drugs with very different indications (e.g., estrogen mod-
ulators, kinase inhibitors, and cancer) are being predicted as potential treatments of COVID-19
patients, as coadjutants, or with potential antiviral activity against SARS-CoV-2. In addition,
some predicted drugs have associated experimental evidence against other Coronaviruses, indi-
cating that AI is not simply finding random noise but learning meaningful patterns from data.

The ability of AI methods to find patterns from raw data are outstanding. However, the
real validation of these methods is yet to come, in the form of a repurposed drug for
COVID-19.
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protease inhibitors against SARS-CoV-20s main protease. Virology Journal, 17(1). Available from https://doi.
org/10.1186/s12985-020-01457-0.

Mater, A. C., & Coote, M. L. (2019). Deep learning in chemistry. Journal of Chemical Information and Modeling,
2545�2559. Available from https://doi.org/10.1021/acs.jcim.9b00266.

Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S., & DeepTox. (2016). Toxicity prediction using deep learn-
ing. Frontiers in Environmental Science and Engineering China, 3.

Moret, M., Friedrich, L., Grisoni, F., Merk, D., & Schneider, G. (2020). Generative molecular design in low data
regimes. Nature Machine Intelligence, 2(3), 171�180. Available from https://doi.org/10.1038/s42256-020-0160-y.

Niiler, E. (2020). An AI epidemiologist sent the first warnings of the Wuhan virus. ,https://www.wired.com/story/
ai-epidemiologist-wuhan-public-health-warnings/..

Olivecrona, M., Blaschke, T., Engkvist, O., & Chen, H. (2017). Molecular de-novo design through deep reinforce-
ment learning. Journal of Cheminformatics, 9(1). Available from https://doi.org/10.1186/s13321-017-0235-x.

Paszke, A., Gross, Massa, F., Lerer, A., Bradbury, J., Chanan, et al. (2019). An imperative style, high-performance deep
learning library. arXiv.

Paszke, A., Gross, S., Chintala, S., Chanan, G., DeVito, Y. E., et al. (2017). Automatic differentiation in PyTorch.
Paulheim, H., & Cimiano, P. (2016). Knowledge graph refinement: A survey of approaches and evaluation meth-

ods. Semantic Web, 489�508. Available from https://doi.org/10.3233/SW-160218.
Redka, D. S., MacKinnon, S. S., Landon, M., Windemuth, A., Kurji, N., & Shahani, V. (2020). PolypharmDB, a

deep learning-based resource, quickly identifies repurposed drug candidates for COVID-19. ChemRxiv.
Available from https://doi.org/10.26434/chemrxiv.12071271.v1.

Richardson, P., Griffin, I., Tucker, C., Smith, D., Oechsle, O., Phelan, A., & Stebbing, J. (2020). Baricitinib as poten-
tial treatment for 2019-nCoV acute respiratory disease. The Lancet, 395(10223), e30�e31. Available from
https://doi.org/10.1016/S0140-6736(20)30304-4.

Robinson, M. C., Glen, R. C., & Lee, A. A. (2020). Validating the validation: Reanalyzing a large-scale comparison
of deep learning and machine learning models for bioactivity prediction. Journal of Computer-Aided Molecular
Design, 34(7), 717�730. Available from https://doi.org/10.1007/s10822-019-00274-0.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain.
Psychological Review, 65(6), 386�408. Available from https://doi.org/10.1037/h0042519.

Rumelhart, D., Durbin, R., Golden, R., Chauvin, Y., & Backpropagation. (1995). The basic theory. Backpropagation:
Theory, Architectures and Applications, 1�34.

556 24. Artificial intelligence methods to repurpose and discover new drugs to fight the Coronavirus disease-2019 pandemic

Computational Approaches for Novel Therapeutic and Diagnostic Designing

to Mitigate SARS-CoV-2 Infection

https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/genes10110906
https://doi.org/10.1021/acs.jmedchem.9b00855
https://doi.org/10.1109/BIBM.2016.7822567
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1186/s12985-020-01457-0
https://doi.org/10.1186/s12985-020-01457-0
https://doi.org/10.1021/acs.jcim.9b00266
http://refhub.elsevier.com/B978-0-323-91172-6.00016-9/sbref41
http://refhub.elsevier.com/B978-0-323-91172-6.00016-9/sbref41
https://doi.org/10.1038/s42256-020-0160-y
https://www.wired.com/story/ai-epidemiologist-wuhan-public-health-warnings/
https://www.wired.com/story/ai-epidemiologist-wuhan-public-health-warnings/
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.3233/SW-160218
https://doi.org/10.26434/chemrxiv.12071271.v1
https://doi.org/10.1016/S0140-6736(20)30304-4
https://doi.org/10.1007/s10822-019-00274-0
https://doi.org/10.1037/h0042519
http://refhub.elsevier.com/B978-0-323-91172-6.00016-9/sbref49
http://refhub.elsevier.com/B978-0-323-91172-6.00016-9/sbref49
http://refhub.elsevier.com/B978-0-323-91172-6.00016-9/sbref49


Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors.
Nature, 323(6088), 533�536. Available from https://doi.org/10.1038/323533a0.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and
Development, 210�229. Available from https://doi.org/10.1147/rd.33.0210.

Santana, M. V. S., & Silva-Jr, F. P. (2021). De novo design and bioactivity prediction of SARS-CoV-2 main protease
inhibitors using recurrent neural network-based transfer learning. BMC Chemistry, 15(1). Available from
https://doi.org/10.1186/s13065-021-00737-2.

Shen, C., Ding, J., Wang, Z., Cao, D., Ding, X., & Hou, T. (2020). From machine learning to deep learning:
Advances in scoring functions for protein�ligand docking. Wiley Interdisciplinary Reviews: Computational
Molecular Science, 10(1). Available from https://doi.org/10.1002/wcms.1429.

Shin, B., Park, S., Kang, K., & Ho, J. C. (n.d.). Self-attention based molecule representation for predicting drug-target
interaction. ArXiv, 2019, 1�18.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer learning. In Lecture notes
in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
(Vol. 11141, pp. 270�279). Springer Verlag. Available from https://doi.org/10.1007/978-3-030-01424-7_27.

Torng, W., & Altman, R. B. (2019). Graph convolutional neural networks for predicting drug-target interactions.
Journal of Chemical Information and Modeling, 59(10), 4131�4149.

Valletta, J. J., Torney, C., Kings, M., Thornton, A., & Madden, J. (2017). Applications of machine learning in animal
behaviour studies. Animal Behaviour, 124, 203�220. Available from https://doi.org/10.1016/j.anbehav.2016.12.005.

Vaswani, S., Parmar., Uszkoreit, J., Jones, G., et al. (2017). Attention is all you need. Advances in neural information
processing systems, 30, 5998�6008.

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief
review. Computational Intelligence and Neuroscience, 1�13. Available from https://doi.org/10.1155/2018/7068349.

Walters, W. P., & Murcko, M. (2020). Assessing the impact of generative AI on medicinal chemistry. Nature
Biotechnology, 38(2), 143�145. Available from https://doi.org/10.1038/s41587-020-0418-2.

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir
and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research,
30(3), 269�271. Available from https://doi.org/10.1038/s41422-020-0282-0.

Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006).
DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34,
D668�D672. Available from https://doi.org/10.1093/nar/gkj067.

Yosinski, J., Clune, J., Nguyen, Fuchs, T., & Lipson, H. (2015). Understanding neural networks through deep visualization.
Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural

language processing [Review Article]. IEEE Computational Intelligence Magazine, 13(3), 55�75. Available from
https://doi.org/10.1109/MCI.2018.2840738.

Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architec-
tures. Neural Computation, 31(7), 1235�1270. Available from https://doi.org/10.1162/neco_a_01199.

Zeng, X., Song, X., Ma, T., Pan, X., Zhou, Y., Hou, Y., Zhang, Z., Li, K., Karypis, G., & Cheng, F. (2020).
Repurpose open data to discover therapeutics for COVID-19 using deep learning. Journal of Proteome Research,
19(11), 4624�4636. Available from https://doi.org/10.1021/acs.jproteome.0c00316.

Zhang, L., Tan, J., Han, D., & Zhu, H. (2017). From machine learning to deep learning: Progress in machine intelli-
gence for rational drug discovery. Drug Discovery Today, 22(11), 1680�1685. Available from https://doi.org/
10.1016/j.drudis.2017.08.010.

Zhang, S., Tong, H., Xu, J., & Maciejewski, R. (2019). Graph convolutional networks: a comprehensive review.
Computational Social Networks, 6(1), 1�23.

Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing.
The Lancet Digital Health, 2(12), e667�e676. Available from https://doi.org/10.1016/S2589-7500(20)30192-8.

Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., & Telenti, A. (2019). A primer on deep learning in
genomics. Nature Genetics, 51(1), 12�18. Available from https://doi.org/10.1038/s41588-018-0295-5.

557References

Computational Approaches for Novel Therapeutic and Diagnostic Designing

to Mitigate SARS-CoV-2 Infection

https://doi.org/10.1038/323533a0
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1186/s13065-021-00737-2
https://doi.org/10.1002/wcms.1429
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1016/j.anbehav.2016.12.005
http://refhub.elsevier.com/B978-0-323-91172-6.00016-9/sbref55
http://refhub.elsevier.com/B978-0-323-91172-6.00016-9/sbref55
http://refhub.elsevier.com/B978-0-323-91172-6.00016-9/sbref55
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1038/s41587-020-0418-2
https://doi.org/10.1038/s41422-020-0282-0
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1021/acs.jproteome.0c00316
https://doi.org/10.1016/j.drudis.2017.08.010
https://doi.org/10.1016/j.drudis.2017.08.010
https://doi.org/10.1016/S2589-7500(20)30192-8
https://doi.org/10.1038/s41588-018-0295-5

