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1  |  INTRODUC TION

Local adaptation is the fine-tuning of populations to their local en-
vironment via natural selection (Savolainen et al., 2013). Selective 
forces driven by environmental differences result in locally adapted 
populations with resident genotypes having higher fitness in their 

native habitat (Kawecki & Ebert, 2004). However, the diversifying 
effects of selection will be opposed by the homogenizing effect of 
gene flow (Nosil, 2009). In the marine environment, where seascape 
genetics and genomics have only recently helped “to navigate the 
currents” (Riginos et al., 2016), microgeographical adaptation (adap-
tation at a spatial scale smaller than dispersal; sensu Richardson et al., 
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Abstract
Most marine invertebrates disperse during a planktonic larval stage that may drift for 
weeks with ocean currents. A challenge for larvae of coastal species is to return to 
coastal nursery habitats. Shore crab (Carcinus maenas L.) larvae are known to show 
tidal rhythmicity in vertical migration in tidal areas and circadian rhythmicity in mi-
crotidal areas, which seems to increase successful coastal settlement. We studied 
genome-wide differentiation based on 24,000 single nucleotide polymorphisms of 12 
native populations of shore crab sampled from a large tidal amplitude gradient from 
macrotidal (~8 m) to microtidal (~0.2 m). Dispersal and recruitment success of larvae 
was assessed with a Lagrangian biophysical model, which showed a strong effect of 
larval behaviour on long-term connectivity, and dispersal barriers that partly coin-
cided with different tidal environments. The genetic population structure showed a 
subdivision of the samples into three clusters, which represent micro-, meso- and 
macrotidal areas. The genetic differentiation was mostly driven by 0.5% outlier loci, 
which showed strong allelic clines located at the limits between the three tidal areas. 
Demographic modelling suggested that the two genetic barriers have different origins. 
Differential gene expression of two clock genes (cyc and pdp1) further highlighted 
phenotypic differences among genetic clusters that are potentially linked to the dif-
ferences in larval behaviour. Taken together, our seascape genomic study suggests 
that tidal regime acts as a strong selection force on shore crab population structure, 
consistent with larval behaviour affecting dispersal and recruitment success.
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2014) seems surprisingly common despite the high gene flow poten-
tial of many marine species (Sanford & Kelly, 2011). For instance, 
locally adapted populations have been described in microalgae and 
fish which have planktonic propagules that disperse passively for 
weeks in the water column (Barth et al., 2019; Sjöqvist et al., 2015). 
One of the potential processes driving this differentiation is puri-
fying selection, which acts in each generation following dispersal. 
Purifying selection, also referred to as “phenotype–environment 
mismatch” (Marshall et al., 2010), can maintain allelic differences 
despite high gene flow. Further, the presence of genomic struc-
tural variation reducing recombination between co-adapted alleles 
might favour the maintenance of local adaptation despite high gene 
flow (Barth et al., 2019; Cayuela et al., 2020; Le Moan et al., 2021). 
Alternatively, secondary contact after past isolation might facilitate 
the initial increase in frequency of adaptive variation despite gene 
flow (Ravinet et al., 2017; Rougemont et al., 2017). Finally, plasticity 
in gene expression is also an important factor in local adaptation 
(Kenkel & Matz, 2016). Phenotypic plasticity can provide a short-
term buffer during longer-term genetic adaptation (Munday et al., 
2013). The flip side of plasticity is that selection may be too weak to 
winnow less fit individuals, and therefore no gradual adaptation to 
a changing environment that may finally surpass the range of plas-
ticity (Ho & Zhang, 2018). In contrast to these processes driven by 
selection, there also may be bias in gene flow when genetic variation 
leads to intraspecific variation in behaviour linked to dispersal, gen-
erating gene flow that is nonrandom with respect to individual varia-
tion (Edelaar & Bolnick, 2012). Any nonrandom gene flow can lead to 
local adaptation or it can lead to patterns that resemble local adapta-
tion, but do not involve any fitness differences and/or evolutionary 
processes (i.e., natural selection). Looking at the question from the 
other side of the coin, there is also the issue “when is dispersal for 
dispersal?” (Burgess et al., 2016). The relationship between dispersal 
and fitness may not be as simple and direct as often assumed, and in 
fact in the marine environment dispersal has also often been viewed 
as an incidental by-product of traits selected for other functions 
(Bonhomme & Planes, 2000).

The European shore crab (Carcinus maenas L.) is particularly well 
suited for assessments of the relationship between dispersal and 
adaptation, because of its particular life history and its long history 
as an object of scientific study including dispersal. The shore crab 
is also of global concern since it has successfully invaded several 
continents (Grosholz & Ruiz, 1996) and poses an ecological threat in 
many coastal areas (e.g., Pickering et al., 2017). Shore crabs have a 
lifespan of 3–5 years and a generation time of 2–3 years (Crothers, 
1967). As adults they are mostly solitary and adult dispersal is limited 
to tens of kilometres. Larval dispersal is, however, possible—at least 
potentially—over large geographical distance as the larvae drift for 
4–10 weeks in the water column depending on the water tempera-
ture (Dawirs, 1985; Mohamedeen & Hartnoll, 1989; Yamada et al., 
2015). The population genetics/genomics of C. maenas are relatively 
well studied, but mostly focus has been on parts of the introduced 
range along the west Atlantic coast (Darling et al., 2014; Jeffery, 
DiBacco, Wringe, et al., 2017; Jeffery, DiBacco, Van Wyngaarden, 

et al., 2017; Roman, 2006; Tepolt & Palumbi, 2015). Interestingly, 
shore crab larvae in the native range show a cline in larval behaviour 
(vertical migration) along a gradient in tidal influence from macrot-
idal (>4-m tidal range) areas along the British Isles to microtidal areas 
(<1-m tidal range) in the Skagerrak area of the eastern North Sea 
(Moksnes et al., 2014; Queiroga et al., 2002). In meso- and macrot-
idal areas, shore crab larvae display an inherited endogenous verti-
cal migration rhythm (Duchêne & Queiroga, 2001; Zeng & Naylor, 
1996c), which when synchronized with local tides is believed to facil-
itate cross-shelf transport and recruitment success (Queiroga, 1998; 
Zeng & Naylor, 1996a). Importantly, this tidal rhythmic behaviour 
was even displayed by newly hatched larvae from mothers that had 
been kept in a constant environment for months, but originally came 
from a macrotidal area (Zeng & Naylor, 1996c), suggesting that this 
behaviour is heritable (Zeng & Naylor, 1996b). This endogenous 
tidal rhythm is not present in larvae from microtidal areas, where in-
stead larvae show an exogenous circadian rhythm with migration to 
deeper waters during the day, possibly reducing predation (Moksnes 
et al., 2003, 2014; Queiroga et al., 2002). As the velocity and direc-
tion of coastal ocean currents often vary with depth, the vertical 
position of pelagic larvae may critically affect their dispersal (Corell 
et al., 2012; Moksnes et al., 2014), and this adaptation in behaviour 
is therefore hypothesized to be an optimal strategy between avoid-
ing inshore stranding, enhancing offshore dispersal of the larvae, 
predator avoidance and larval recruitment to shallow nursery areas 
(Moksnes et al., 2014).

Here we hypothesize that tidal regime exerts a strong selection 
pressure for different vertical migration behaviours of C. maenas lar-
vae, which is probably modulated by gene expression differences in 
clock genes. We further hypothesize that larvae with the “wrong” 
tidal behaviour will have reduced recruitment success, which re-
stricts along-coast dispersal resulting in genetic population differen-
tiation in an isolation-by-distance manner and between geographical 
areas with different tidal regimes. To address these hypotheses, 
we sampled 12 populations along a tidal gradient in the North Sea 
from macro- to microtidal conditions, and used a combination of 
approaches to examine (i) dispersal distances and connectivity of 
the shore crab metapopulation based on biophysical modelling, (ii) 
historical and contemporary patterns of gene flow inferred from 
~24,000 single nucleotide polymorphisms (SNPs) generated with 2b-
RAD sequencing and a demographic model, and (iii) gene expression 
differences of putative clock genes.

2  |  MATERIAL AND METHODS

2.1  |  Sampling

Guided by observed behavioural differences between crab larvae 
of macro- and microtidal environments (Moksnes et al., 2014) and 
a previous genetic assessment of Carcinus maenas in central Europe 
(Roman & Palumbi, 2004), we carried out sampling at 12  sites 
(Figure 1) in September and October 2017 along a tidal cline from 
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macrotidal (>4 m) in Wales (Bangor: 8.6 m) and the English Channel 
(Dunkirk: 7.0  m) to microtidal (<2  m) in the Kattegat (Odense: 
0.22 m, www.tide-forec​ast.com, Table 1). One site in the mesotidal 
area, Hvide Sand, is experiencing a low tidal amplitude due to an 
artificial barrier (Table 1). The sites span a geographical range of 

~2000  km sea-distance between Bangor and Odense. Sampling 
was performed at similar geographical distances among sites and 
males and females were collected in equal proportions at each site. 
For genotyping, 10 males and 10 females were assessed at each of 
the 12 sites, whereas for gene expression analyses, four males and 
four females were used from only six of the sites, including the full 
tidal gradient (Figure 1). The crabs were dredged (Bangor, Yerseke, 
Esbjerg, Hvide Sand and Sylt), caught in fyke nets (Texel) or caught in 
baited traps (Dunkirk, Hooksiel, Tyboron, Kristineberg, Varberg and 
Odense). For genotyping, one leg from each living individual was re-
moved, transferred to ethanol and immediately stored at −20°C. For 
gene expression analyses, leg muscle tissue was directly transferred 
to RNAlater (Ambion, Life Technologies), kept overnight at 4°C, 
transported at −20°C and finally stored at −80°C until RNA extrac-
tion. Crabs were released at the site of capture when possible. We 
additionally sampled shore crab megalopae at the Kristineberg site 
(58.259°N, 11.450°E; Figure 1) in the morning of August 22, 2019 
with a plankton net (500 µm) at 15–20 m depth to verify candidate 
gene expression in larvae.

2.2  |  Biophysical model of multigenerational 
larval dispersal

We used a biophysical model to explore the effects of different lar-
val behaviour strategies on multigenerational dispersal distance and 
to identify possible barriers along the tidal gradient from the English 
Channel to the Kattegat area. Dispersal trajectories were simulated 
with a Lagrangian particle-tracking model (TRACMASS, Vries and 
Döös, 2001) driven off-line with flow fields (3-hr resolution) from an 
ocean circulation model (NEMO-Nordic, Hordoir et al., 2019). The 
model has a horizontal spatial resolution of 3.7 km, 84 vertical lev-
els, a free surface and allows the grid boxes to stretch and shrink 
vertically to model the tides without generating empty grid cells at 

F I G U R E  1  Map of Carcinus maenas sampling locations in the 
North Sea. Site acronyms with a star have been included in the 
gene expression analysis. Acronyms are as follows: O, Odense; V, 
Varberg; K, Kristineberg; T, Tyboron; I, Hvide Sand; E, Esbjerg; S, 
Sylt; H, Hooksiel; X, Texel; Y, Yerseke; D, Dunkirk; B, Bangor. Red 
lines indicate distinctions between micro- (<2 m) in the Skagerrak 
and Kattegat, meso- (2–4 m) in the Wadden sea and macrotidal (>4 
m) in the English channel according to Jänicke et al. (2020). Red 
dotted lines indicate “adaptive barriers” as identified in Figure 4. 
Turquoise, purple and green dotted lines indicate barriers to 
dispersal identified from the multigenerational stepping-stone 
biophysical modelling for the three behaviours: surface dispersal 
(green barrier), circadian behaviour (purple) and tidal behaviour 
(turquoise)
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TA B L E  1  Information on sampling sites of Carcinus maenas included in the analysis and sorted along a geographical line from the Kattegat 
to the Irish Sea

Site Acronym Latitude (°N) Longitude (°E)
Sampling date and time for gene expression 
(for those sampled)

Tidal 
range (m)

Odense O 54.9849 10.6329 Afternoon October 9, 2017 0.22

Varberg V 57.1108 12.2392 0.16

Kristineberg K 58.2499 11.4464 Morning October 6, 2017 0.34

Thyborøn T 56.7062 8.2209 Morning September 30, 2017 2.14

Hvide Sand I 56.0044 8.1296 1.15

Esbjerg E 55.4896 8.4107 2.15

Sylt S 55.0404 8.4591 2.1

Hooksiel H 53.6436 8.0839 3.35

Texel X 52.9968 4.7766 Midday September 26, 2017 2.65

Yerseke Y 51.488 4.0578 3.24

Dunkirk D 51.0464 2.3744 Morning September 25, 2017 7.03

Bangor B 53.2265 −4.1589 Morning October 23, 2017 8.56

http://www.tide-forecast.com
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low tide. To mimic larval vertical behaviour, the vertical position of 
the trajectories was locked at predetermined depths, changing with 
tidal, circadian and ontogenetic periods (Moksnes et al., 2014).

We included three different larval behaviours in this modelling 
effort (tidal, circadian and surface). Particles, simulating larvae, were 
released from 1360 model grid cells spanning the tidal cline from the 
English Channel to the Kattegat. Grid cells adjacent to land were as-
sumed to include shallow-water habitat typical for adult shore crab 
and suitable for spawning and settling; a few offshore grid cells, with 
a mean depth ≤6 m, were also included. Release of a total of 600,000 
particles occurred at the end of June to coincide with a peak recruit-
ment period of juvenile crabs in July and August in Northern Europe 
(Breteler-Klein, 1976; Moksnes, 1999). The release was repeated for 
three years (1989, 1996 and 2003), representing two opposite ex-
tremes and one neutral year in the North Atlantic oscillation cycle 
(Hurrell & Deser, 2010). The number of release time points between 
and within years was a compromise in the modelling effort. In a pre-
vious study of dispersal of C. maenas larvae (Moksnes et al., 2014), 
we showed that dispersal metrics (distance to shore after dispersal 
and recruitment success) mainly depended on larval behaviour and 
the geographical location of release. Release time played a minor 
role, with variation between years more important than between 
months during the reproductive season. In this study of the full con-
nectivity between shallow areas we therefore only included inter-
annual variation. The dispersal simulations included a fixed pelagic 
larval duration of 40 days, consisting of 25 days of zoeal stages and 
15  days of the megalopal phase (Mohamedeen & Hartnoll, 1989). 
Trajectories of the tidal behaviour shifted depths according to the 
selective tidal stream transport hypothesis (Queiroga et al., 1994), 
and were located at the surface (0.3 m depth) during ebbing tides 
and at 20 m depth during flooding tides for the first 25 days. For 
the last 15 days of the larval phase, the trajectories were given the 
opposite vertical migration pattern. The tidal migration was syn-
chronized with the principal lunar semidiurnal tidal constituent (M2; 
12.42-hr period), which is the dominant tidal signal in the North Sea 
(Hill, 1995). The tidal behaviour further changed its rhythm to be in 
phase with the local tide. Trajectories for the circadian behaviour 
shifted depth according to the sea-breeze hypothesis (Shanks, 
1995), and were located at the surface (0.3 m depth) during night 
and twilight conditions and at 20 m depth at daylight hours for the 
first 25 days with the opposite pattern for the last 15 days. Particles 
that dispersed according to the surface behaviour drifted at 0.3 m 
depth during the entire larval duration of 40 days.

From these trajectories the dispersal probabilities between all 
1360  grid cells were calculated and summarized in a connectivity 
matrix (Jonsson et al., 2020). We also calculated the multigeneration 
connectivity where stepping-stone dispersal is allowed over many 
single-generation dispersal events, and summed over all possible 
dispersal routes (White et al., 2010). Such multigeneration con-
nectivity may be used to infer the long-term connectivity between 
populations (e.g., exploring barriers to gene flow) (Jahnke et al., 
2018). Multigeneration connectivity was calculated by multiplica-
tion of the connectivity matrix across 64 generations, which seemed 

an appropriate time span to potentially disperse from the English 
Channel to the Kattegat (~1200 km).

2.3  |  DNA extraction and 2b-RAD library 
preparation

DNA was extracted with RNAse treatment, and four out of 20 indi-
viduals from each locality were also used as technical replicates (i.e., 
replicated extraction, library preparation and sequencing). DNA ex-
traction was followed by an ethanol/isopropanol precipitation. DNA 
quantity and quality were assessed using a Qubit ds DNA BR or HS 
AssayKit (Invitrogen–ThermoFisher Scientific) and on a 1% agarose 
gel.

2b-RAD libraries (Wang et al., 2012) were prepared following a 
laboratory protocol available at https://github.com/z0on/2bRAD_
denovo, using the restriction enzyme BcgI. Libraries were individ-
ually barcoded, and fragment selection was performed by excising 
the amplicon band from an agarose gel. Gel fragments were cleaned 
using a MinElute Gel Extraction Cleaning Kit (Qiagen) and pooled 
equimolarly (as assessed by the Qubit ds DNA HS AssayKit) into 
population sets of 24 individuals (20 individuals plus four techni-
cal replicates) per sequencing lane. In total, 240 crab samples from 
12 sites and 48 technical replicates were sequenced in 12 libraries on 
the Illumina HiSeq2500 platform, generating 50-bp single-end se-
quences, at the Science for Life Laboratory (SciLifeLab)—Genomics, 
SNP&SEQ Technology Platform in Uppsala University, Sweden.

2.4  |  Bioinformatics pipeline

Bioinformatics were performed using the computer cluster 
“Albiorix” at the University of Gothenburg, Sweden. The analysis fol-
lowed a modified de novo pipeline available at https://github.com/
z0on/2bRAD_denovo. Reads were “demultiplexed” based on bar-
codes. Restriction sites were trimmed off, followed by quality filter-
ing using the fastx-toolkit (stating that 100% of bases should have 
a quality score of at least 20, which means a 1% error rate). After 
trimming and quality filtering, a total of 1,352,415,682 reads were 
retained across the 12 libraries. Individual trimmed fastq files were 
merged to collect tags found in at least two individuals with a mini-
mum depth of five for genotyping. Reads that had more than seven 
observations but lacked reverse complement reads were removed. 
Tags were then clustered with cd-hit (Li & Godzik, 2006) allowing for 
up to three mismatches, followed by the creation of a “reads-derived 
reference” based on 30 fake chromosomes. Individual trimmed fasta 
files were mapped back to the references. Then, genotyping was 
performed using The Genome Analysis Tookit version 3.1-1 (GATK) 
(McKenna et al., 2010). A first round of putative variants was gener-
ated using GATK’s UnifiedGenotyper, followed by base quality score 
recalibration (BQSR/BaseRecalibrator and PrintReads) based on a 
high-confidence (>75th quality percentile) SNP set. The realigned 
and recalibrated reads were used to generate a second round using 

https://github.com/z0on/2bRAD_denovo
https://github.com/z0on/2bRAD_denovo
https://github.com/z0on/2bRAD_denovo
https://github.com/z0on/2bRAD_denovo


1984  |    JAHNKE et al.

UnifiedGenotyper. We then used the variant quality score recalibra-
tion (VQSR) step, to generate an adaptive error model using the SNPs 
that were reproducibly genotyped across the technical replicates. 
When applying the recalibration we chose the tranche with 95% 
truth sensitivity, which had a Ti/Tv ratio of 1.784, to call all SNPs 
from the overall data set. The final filtration step was performed in 
vcftools (Danecek et al., 2011) to remove under-sequenced samples 
(set to fewer than 95  000  sites, which removed three individuals) 
and to select biallelic loci genotyped in at least 90% of individuals, 
and with a maximum heterozygosity of 50%. This resulted in a final 
data set of 81,389 loci for 240 unique individuals.

2.5  |  Population genetic analyses

2.5.1  |  Population structure

Population genetic analyses were performed on the Rackham clus-
ter of the Swedish National Infrastructure for computing (SNIC). 
The final data set was thinned in order to keep one SNP per RAD 
locus with maximal allele frequency (script thinner.pl with criterion 
= maxAF, https://github.com/z0on/2bRAD_denovo), resulting in 
24,273 loci. Individual genetic variation was visualized by a principal 
component analysis (PCA) using the R package adegenet (Jombart, 
2008). bayescan (Foll, 2012) was used to identify putative loci under 
selection with prior odds set to 100, using a relaxed threshold of 
q = 0.5 and a stringent threshold at q = 0.00011 (see Figure S1 for 
bayescan plot). In an attempt to annotate the 128 outlier loci, we first 
blasted the short 36-bp 2bRAD fragments against the C. maenas 
Transcriptome Shotgun Assembly (TSA), and then used the blastn al-
gorithm to query the longer-sequence TSA hits. Sea distances with-
out crossing land were calculated in the R package marmap (Pante 
& Simon-Bouhet, 2013). Pairwise Weir and Cockerham's FST and 
linkage disequilibrium were calculated among sites using vcftools 
(Danecek et al., 2011) for outlier and putatively neutral loci. We ex-
plored the variation of allele frequency across geographical distance 
for the outlier loci using cline model fitting with the R package HZAR 
(Derryberry et al., 2014). For each outlier, we calculated the slope of 
the cline by calculating the differences in allele frequency estimated 
by the model on each side of the cline, and dividing this difference 
by the cline width. The slope values were then represented against 
the position of the cline centres estimated from the model using the 
R package ggplot2 (Wickham, 2016). We tested for isolation-by-
distance (IBD) between the pairwise FST (of all loci, neutral loci and 
outlier loci) and sea distance as well as dispersal probability obtained 
with the biophysical model using Mantel tests with the R package 
ncf (Bjornstad, 2009) with 100,000 replicates. For visualization, 
connectivity networks based on FST (neutral and outlier loci) and 
biophysical dispersal probability (three behaviours: surface drifting, 
migrating in rhythm with day/night or in rhythm with the tides) were 
drawn using the R packages igraph (Csardi & Nepusz, 2006) and 
popgraph (Dyer, 2014). All edges are shown for estimated dispersal 
probabilities, while for FST several cut-offs were explored, and those 

that resulted in still connected networks are shown (similar to the 
percolation threshold). For IBD and network analyses, we removed 
the site Bangor from the analysis, as it lies beyond the oceanographic 
model domain.

2.5.2  |  Demographic history

In addition to the contemporary connectivity patterns, we evalu-
ated historical population connectivity using the software moments 
(Jouganous et al., 2017). Inferences were conducted between two 
pairs of sampling sites representative of the main genetic clus-
ters: Dunkirk (D, macrotidal) vs. Sylt (S, mesotidal), and Sylt vs. 
Kristineberg (K, microtidal, Figure 1). The data were filtered to keep 
one random SNP per RAD tag with a minor allelic count of at least 
two among the three geographical sites. The folded version of the 
Site-Frequency-Spectrum (SFS) was used to compare contrasted 
models of demographic history. Four basic models of population 
splits were compared: Strict Isolation (SI), Isolation with Migration 
(IM), Ancestral Migration (AM) and Secondary Contact (SC). These 
models were further tuned to include changing effective popula-
tion sizes either in the ancestral population (model “ac” for ancient 
change) or, after the split, in one of the daughter populations (model 
“rc” for recent change). In addition, models of heterogeneous effec-
tive population size (model “2N”) and heterogeneous migration rate 
(model 2 m in the model with gene flow: IM, SC, AM) resulting from 
the effect of selection at linked sites and intrinsic barriers to gene 
flow, were included (Table S1). The models were adjusted to the 
data following the three-step optimization procedure developed by 
Portik et al. (2017) adapted to the software moments by Momigliano 
et al. (2021). The fit of each model was replicated 10 times to con-
trol for parameter convergence. In total, the fits of 44 demographic 
scenarios were compared using Akaike's information criterion (AIC) 
value, the ΔAIC (AICbest−AICi), and the weighted AIC (see Rougeux 
et al., 2017). The estimates of divergence time were converted 
into years following Rougeux et al. (2017) using a mutation rate of 
1 × 10−8 per generation, and a generation time of 3 years (Crothers, 
1967).

2.6  |  Candidate gene approach for gene 
expression analyses

Using a candidate gene approach, we also looked at gene expression 
differences of insect candidate clock genes, probably involved in the 
differing crab larvae behaviour between tidal and atidal sites. We 
extracted RNA from ~100 mg of muscle tissue from eight individu-
als (four males and four females) each at six sites with the RiboPure 
kit (Life Technologies) according to the manufacturer's instructions. 
For the extraction of larval RNA, 50  megalopae were combined. 
We used the high-capacity cDNA Reverse transcription kit (Applied 
Biosystems) with 500  ng of RNA as input material to synthesize 
cDNA according to the manufacturer's instructions.

https://github.com/z0on/2bRAD_denovo
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Searches for C. maenas clock genes were conducted using a 
protocol previously applied to discover circadian genes/proteins in 
other crustaceans (Biscontin et al., 2017; Christie et al., 2018). First, 
tblastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to search 
through the “Transcriptome Shotgun Assembly (TSA)” database of 
“Carcinus (taxid: 6758).” Known circadian proteins, primarily those 
from the fruit fly Drosophila melanogaster, were used as query se-
quences in tblastn (15 circadian proteins from D. melanogaster and 
two circadian proteins from Danaus plexippus). In addition, we se-
lected four genes that have been suggested to be tidally linked in 
the limpet Cellana rota (Schnytzer et al., 2018; see Table S2). Primers 
for gene expression analyses with quantitative real-time polymerase 
chain reaction (qPCR) were designed with primer3 (http://prime​r3.ut.
ee). Design conditions included primer length (18–23 bp), Tm (~60°C), 
GC content (≥50%) and a product size of 150–200 bp. In qPCRs we 
used the Fast Sybr Green Master mix (Applied Biosystems) as per the 
manufacturer's instructions and a thermal profile of 95°C for 20 s, 
followed by 40 cycles of 95°C for 1 s and 60°C for 20 s. All qPCRs 
were conducted in technical triplicates and each assay included 
three no-template negative controls (NTCs). Primer sequences, per-
centage efficiencies (E) and regression coefficients (R2) of the candi-
date and reference genes are reported in Table S3. Three reference 
genes, elongation factor (cm-ef2), elongation factor-1 (camelf1a) and 
Ubiquitin-conjugating enzyme E2 L3 (camubce2) (Abuhagr et al., 
2014; Alexander et al., 2018), were selected to normalize the tran-
scription profiles of the 21 candidate genes for each sample. stepone 
software version 2.3 was used to calculate raw threshold cycle (Ct) 
values and to analyse the endogenous control genes. To analyse 
differences in gene expression among samples (n =  48) and sites 
(n =  6), the sample maximization method according to Hellemans 
et al. (2007) was established. The significance of gene expression 
differences among populations and clusters was tested with the rest 
2009 software (Pfaffl et al., 2002), followed by Benjamini–Hochberg 
false discovery rate corrections (Benjamini & Hochberg, 1995). Linear 
mixed models (LMMs) were performed using the function “lmer” in 
the lme4 package in R (Bates et al., 2014), with tidal gradient (scored 
1–6), latitude, sampling date (days after equinox) and sampling time 
(morning, midday or afternoon) as fixed effects that were fitted to 
the dependent variable (normalized relative quantity [NRQ] of each 
of the 21 candidate genes separately). As a random effect, we had 
intercepts and random slopes for sex at each site (12 levels). Visual 
inspection of residual plots did not reveal any obvious deviations 
from homoscedasticity or normality. By examining backward re-
duced random-effect tables generated with the package “lmerTest” 
(Kuznetsova et al., 2017), we found that latitude and sex at each site 
were not a significant factor for gene expression differences in any 
of the candidate genes (Table S4). These two factors were removed 
for the final full model, which used tidal gradient, sampling time and 
sampling date as fixed factors using “lm” of the stats package. A top-
down approach was then used for each candidate gene separately 
to compare the fit of the fully fitted model to (i) a model without the 
tidal gradient, (ii) without date and (iii) without sampling time, with 
analysis of variance (ANOVA). This analysis allowed us to identify 

candidate genes that exhibited a significant transcriptional response 
to the three factors that might affect circadian clock gene expres-
sion. To assess trends of overall gene expression, we performed a 
PCA to reduce the data based on all candidate genes, all clock genes, 
core clock genes, clock-associated genes and putative tidal cyclers. 
Finally, we used the PC1s as input for lm for overall changes in gene 
expression of each gene group. A heatmap was created with the 
gplots R package (Warnes et al., 2009) using population NRQ val-
ues standardized to the microtidal population from Odense and the 
genes cyc and pdp1.

3  |  RESULTS

3.1  |  Biophysical model of multigenerational 
stepping stone larval dispersal

The biophysical model of multigeneration, stepping-stone dispersal 
predicted some potential barriers to gene flow in the North Sea–
Skagerrak–Kattegat transition. The number, strength and geographi-
cal position of potential barriers depended on the simulated vertical 
larval behaviour (Figure 1; Figure S2). Larvae drifting in surface 
water during the full 40-day period showed the highest level of 
connectivity, and stepping-stone dispersal over 64 generations pre-
dicted only one asymmetric barrier on the mid-Dutch coast (green 
barrier in Figure 1; Figure S2). Stepping-stone dispersal for the circa-
dian behaviour showed a strong barrier on the south Jutland coast 
(purple barrier in Figure 1), and a few weaker, asymmetric barriers 
along the Dutch, Belgian and French coasts (Figure S2). The model of 
tidal vertical behaviour predicted three strong barriers (Figure S2) on 
the north Jutland coast, in the German Bight and on the mid-Dutch 
coast (turquoise barriers, Figure 1).

3.2  |  Seascape genomic analyses

The first two axes of the PCA with all 24,273 loci showed 2.23% of 
the total inertia and distinguished three genetic clusters (Figure 2a). 
PC1 (1.26%) separates individuals sampled in the microtidal area of 
the Kattegat and Skagerrak (O, V and K), while PC2 (0.96%) shows 
differentiation between the individuals from the mesotidal sites of 
the North Sea, and the macrotidal sites from Bangor and Dunkirk (B 
and D). bayescan identified 500 putative outlier loci at q = 0.5 and 
128 outlier loci at q = 0.00011 (see Figure S1). These putative out-
lier loci represent 2% and 0.5% of all loci. Removing those outlier 
loci led to weaker differentiation among sites (Figure 2b), while the 
outlier loci also drew the same three distinct clusters (Figure 2c). 
Pairwise FST values among sites were low, ranging between 0 and 
0.02 based on all loci (see Figure S3) and between 0 and 0.009 for 
neutral loci. In contrast, FST ranged between 0 and 0.363 for the 
128 top outlier loci. FST was highest between the microtidal and the 
macrotidal cluster, which are also the most geographically distant 
sites. We did not find any differentiation related to sex (Figure S4). 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://primer3.ut.ee
http://primer3.ut.ee
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IBD between FST and sea distance was significant for all data sets 
(all loci: r2 = 0.81, neutral loci: r2 = 0.76 and outlier loci: r2 = 0.82, 
all p < 0.0001). There was no significant relationship between FST 
and multi(64)-generational dispersal probability from the biophysi-
cal modelling for any of the three behaviours. The network analyses 
based on FST were in line with the PCAs, showing no clear patterns 
of population structure for neutral loci, but three clusters for outlier 
loci (Figure 3a,b). The networks for the biophysical dispersal prob-
abilities among the sampling sites showed large differences in con-
nectivity estimates among the three dispersal behaviours with no 

clear structure for the surface drifting larvae, but three clusters for 
larvae with tidal behaviour (Figure 3c–e).

The genetic cline analysis of the 128 outlier loci identified barri-
ers to gene flow with obvious clustering of loci with steeper allelic 
clines at two geographical locations: ~1000 km (between the geo-
graphically close sites of Dunkirk and Yerseke) and 1700 km (sep-
arating the Skagerrak from the North Sea) from Bangor (Figure 4). 
These two barriers to gene flow closely reflect the separation into 
micro-, meso- and macrotidal areas (Figure 1). An LDna analysis 
(Kemppainen et al., 2015) did not indicate the presence of genomic 

F I G U R E  2  Principal component 
analyses for (a) all 24,273 loci (PC1: 1.26% 
inertia, PC2: 0.96% inertia), (b) all neutral 
loci, that is after removal of potential 
outlier loci identified in bayescan with very 
relaxed q = 0.5 (n = 500; PC1: 0.84% 
inertia, PC2: 0.8% inertia), and (c) the 128 
putative outlier loci identified in bayescan 
with q = 0.00011 (PC1: 14.59% inertia, 
PC2: 10.84% inertia). Site acronyms and 
coloration as in Figure 1

(a)

O KO V  T  I E S   H X  Y X  D  B 

(b) (c)

F I G U R E  3  Networks of genetic distance (based on FST [a and b]) and oceanographic distance (based on dispersal probability from the 
biophysical model over 64 generations [c–e]) constructed for 11 sampling sites (Bangor was not included as it falls out of the oceanographic 
model domain) of Carcinus maenas in the North Sea. Lines indicate connectivity in terms of gene flow (a and b) and dispersal probability (c–e) 
and nodes (dots) are shown at their geographical location
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islands nor did it indicate that the loci at the tidal breaks shown in 
Figure 4 are in linkage disequilibrium (Figure S5). The number of 
markers showing evidence of clear allele frequency clines was higher 
along the transition from meso- to microtidal (15  loci with slope 
>0.002) than from macro- to mesotidal (four loci). Interestingly, de-
mographic inferences suggested that different demographic histo-
ries were involved during the formation of the two barriers (Table 2 
and Figure 5). Inferences performed between the meso- vs. microt-
idal sites showed relatively strong support for a secondary contact 
(SC) model including an expansion in the ancestral population and 
heterogeneous effective size across the genome (SC_ac_2N, with 
WAIC =0.97, Table 2). The estimated contact period (~14 thousand 
years ago in the best model) was six times shorter than the isolation 
period (estimated to be 96,000 years, Table 2). In contrast, the SC 
model (including a recent expansion and heterogeneous effective 
population size across the genome, SC_rc_2N) and the isolation with 
migration (IM) model (including both ancient and recent expansion 
and heterogeneous effective population size or migration rate along 
the genome, IM_ac_rc_2N and IM_ac_rc_2 M) had a similar support 
for the meso- vs. macrotidal sites (ΔAIC < 2 for the three best mod-
els, Table 2). However, the parameter estimated for the SC model in 
the meso- vs. microtidal comparison were biologically unexpected 
(long divergence time >1 million years or isolation phase 50 times 
shorter than the secondary contact). Thus, an IM model is more 
likely to explain the divergence between the meso- vs. macrotidal 
site (Figure 5a). The two IM models differ only in the way genomic 
heterogeneity is captured and estimated similar parameter values 
(Table S1).

In our blast search of the 36-bp fragments of all 128 putative 
outlier loci, we only encountered 10 matches on the Carcinus maenas 

TSA database, and blasting these longer contigs resulted in 41 blastn 
hits (Table S5). The hits were for five crustacean species and for a 
parasitic barnacle of the European shore crab (Sacculina carcini). 
Only a few predicted genes, all from Homerus americanus, were en-
countered. This is perhaps not surprising, as there are few genome 
references for crustaceans. One of these genes was mucin-3A-like, a 
glycoprotein component of a variety of mucus gels in humans, which 
may also be involved in ligand binding and intracellular signalling 
(UniProt). Other annotated outlier genes include the transposable 
element-derived protein 4-like piggyBac, a WD repeat-containing 
protein 19-like, and most interestingly two sterol O-acyltransferase 
1-like transcripts. This acyl-transferase is also called ACAT1, and is 
one of the candidate genes we tested below, as differential expres-
sion of this genes has been shown in Cellana rota in a circa-tidal man-
ner. The potential function of interest may be gravity impact (Casey 
et al., 2015; Frigeri et al., 2008; Schnytzer et al., 2018). However, the 
primer pair designed to amplify C. maenas acat1 did not bind to any 
of the 10 TSA outlier sequences.

3.3  |  Gene expression of putative clock genes

We were able to identify—for the first time in C. maenas—the ortho-
logues of most clock components known from Drosophila as well as 
from other crustaceans. We identified and verified 21 orthologues 
of clock-related proteins, corresponding to insect core clock, clock-
associated and clock input proteins (see Table S2). We found an 
“ancestral clock” in C. maenas with both cry1 and cry2 present in 
the transcriptome and expressed in crabs at all locations and in both 
megalopae and adults.

F I G U R E  4  Geography of the genetic clines based on the slopes and centres of the allele frequencies of the 128 putative outlier loci as a 
function of sea distance from the site Bangor (B), the site with the highest tidal range. The dashed lines indicate the identified two barriers 
that separate macrotidal sites (B and D), mesotidal sites (Y, X, H, T, I, S, E) and the microtidal sites in the Kattegat/Skagerrak (K, V, O). 
Geographical locations of the sampling sites are approximate. Site acronyms are as in Figure 1. The inset panels show the clines of the loci 
with the strongest slopes at both barriers over the same geographical distance as shown in the main panel. The colour of the clines indicates 
the respective slope of the outlier locus in the same colour

B D Y X H T I S E K V O
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After Benjamini–Hochberg corrections, four out of the 21 candi-
date genes were significantly up- or down-regulated in at least one 
pairwise comparison of the six assessed sites (see Table S6). The lin-
ear model revealed a significant effect of the tidal gradient on gene 
expression of two genes: pdp1 and cyc (Table S7). Both genes were 
generally down-regulated with increasing tidal amplitude and their 
patterns are very similar (Figure 6).

Other genes were significantly affected by the sampling date ex-
pressed in days after equinox (used as the reference, as at this date 
all sites experienced 12 h of daylight), and sampling time of the day 
(Table S7). The experiment was not designed to test for seasonal 
and daily expression patterns, but we have accounted for them in 
our linear model, and the identified genes may be interesting for 

further investigations into the circadian clocks in C. maenas. In a 
data-reduction approach based on PCAs, tidal gradient had signif-
icant effects on expression of the core clock genes comprising tim, 
cyc, clk, cry2 and per (Table S8, Figure S6).

4  |  DISCUSSION

We set out with the hypothesis that tidal regime is a strong selection 
force on shore crab population structure, mostly driven by the fact 
that shore crab larvae show different vertical migration behaviours 
depending on the tidal amplitude. Vertical migration of Carcinus mae-
nas larvae occurs with an endogenous tidal rhythm in tidal areas, and 

TA B L E  2  Summary of the demographic inferences showing the three best demographic histories inferred between populations from 
macro- vs. meso-, and meso- vs. microtidal sites

Data set Model likeli. AIC ΔAIC WAIC P TS TSC

Macro vs. Meso SC_rc_2N −591 1201 0 0.480 0.23 232 10,864

Macro vs. Meso IM_ac_rc_2N −591 1202 1 0.177 0.29 108 —

Macro vs. Meso IM_ac_rc_2m −590 1202 1 0.177 0.16 116 —

Meso vs. Micro SC_ac_2N −617 1255 0 0.973 0.34 95 16

Meso vs. Micro IM_ac_rc_2N −619 1259 4 0.018 0.36 123 —

Meso vs. Micro SC_ac_rc_2N −619 1260 5 0.007 0.25 83 14

Note: The table shows, in order of appearance, the population pairs, the best model (IM = isolation with migration, SC = secondary contact, rc and 
ac = recent and ancient change in effective size, 2N = heterogeneous effective size along the genome, 2m = heterogeneous migration rate along the 
genome); the AIC of the model, the difference of AIC with the best model (ΔAIC), the weighted AIC (WAIC), the proportion of the genome affected by 
low migration rate or low effective size (P), the time of split (Ts), and the time of secondary contact (Tsc) given in thousands of years. Other parameters 
estimated by the models are available in Table S1.

F I G U R E  5  Result from the most likely scenario associated with the population divergence between (a) the macro- vs. mesotidal 
environment, and (b) meso- vs. microtidal environment. The graphs on each rows show the observed SFS, the schematic representation of 
the best demographic scenario (IM_ac_rc_2N: isolation with migration with change in effective size in ancestral and derived populations 
and with heterogeneous effective size along the genome; SC_ac_2N: secondary contact with change in effective size in the ancestral 
population and heterogeneous effective size along the genome), the fitted SFS and the residual of the model (containing the distribution of 
the residuals)

(a)

(b)
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an exogenous circadian rhythm in microtidal areas (Moksnes et al., 
2014; Queiroga et al., 2002). This tidal rhythm is heritable (Zeng & 
Naylor, 1996b), and we hypothesize that it may be regulated by clock 
genes, which are well described in insects and have also been found 
in some crustaceans (Biscontin et al., 2017; Christie et al., 2018). This 
behaviour has an impact on dispersal potential because according 
to the selective tidal stream transport hypothesis, vertical migration 

between layers of opposite current directions is thought to facilitate 
cross-shelf transport and increase return of larvae to shallow nurs-
ery habitats (Duchêne & Queiroga, 2001; Zeng & Naylor, 1996a). 
Thus, “wrong” tidal behaviour may reduce recruitment success and 
thereby restrict dispersal between areas with different tidal regimes.

In our study we were able to show with oceanographic model-
ling of multigeneration, stepping-stone dispersal that larval vertical 
migration had a large effect on predicted long-term connectivity in 
the assessed geographical area. We found barriers to dispersal for all 
three modelled behaviours, with a barrier in the eastern Wadden Sea 
for both tidal and circadian behaviour, and with an additional barrier 
for tidal migration in the western Wadden Sea and at the border 
between the North Sea and Skagerrak (Figure 1).

Similar to previous population genetic assessments of the 
European and Mediterranean shore crab (Pascoal et al., 2009; 
Schiavina et al., 2014) we found weak FST (FST = 0–0.009 for neutral 
loci). Despite little population structure after removing 500 puta-
tive outliers (2% of all loci), we were able to detect a signal of IBD, 
suggesting that local recruitment patterns contribute to genetic 
differentiation in neutral loci. However, we did not find significant 
isolation-by-oceanography (IBO) based on multiple generation (64) 
dispersal probability for any modelled behaviour. Instead, the bio-
physical modelling indicates several strong barriers to dispersal 
(Figure 3) rather than a linear gradient in connectivity.

Using all ~24,000 SNPs and the 128 outlier loci, the shore crab 
samples clustered into three distinct groups (Figure 2a,c), driven by 
allele frequency clines at multiple loci whose centres are clustered at 
two localities (Figure 4). This suggests the presence of two main bar-
riers to gene flow. These barriers spatially coincide with shifts in tidal 
regime (macro- vs. meso- vs. microtidal), but the two barriers seem 
to be shaped by different demographic histories (Figure 5). The bar-
rier between micro- and mesotidal sites (i.e., between the Skagerrak 
and North Sea) seems to be a secondary contact zone between pop-
ulations that have diverged in total isolation for about 90,000 years 
and then came in contact again (Table 2). The timing of secondary 
contact estimated here (14,000  years) approximately matches the 
ice retreat from the northern hemisphere (Hewitt, 2000), and is sim-
ilar to the estimate obtained for the sand goby for secondary contact 
between North Sea and Baltic Sea populations (Leder et al., 2021).

A previous study exploring the genetic diversity of mitochondrial 
DNA in C. maenas described a genetic clade found only in popula-
tions from northern Europe, which could suggest the presence of a 
northern glacial refugium for the species (Roman & Palumbi, 2004). 
While it is not possible to infer the exact locations where isolation 
took place, one possibility to explain the secondary contact ob-
served between the meso- and microtidal environment could involve 
a dual colonization of the North Sea – Baltic Sea system. Indeed, this 
area was mostly covered by land during the last glacial maximum, 
and was only accessible to marine life after the last deglaciation 
(about 15,000 years ago). Therefore, this secondary contact could 
correspond to the meeting point of two colonization waves, one 
coming from a northern refugium, and the other coming from the 
south, through the English Channel, as already previously suggested 

F I G U R E  6  Effect of tidal amplitude on gene expression. Relative 
gene expression (normalized relative quantity [NRQ], standardized 
to individual D7F, a female from Dunkirk with generally low gene 
expression of many candidate genes) of genes significantly affected 
by the tidal gradient for (a) pdp1 and (b) cyc along the tidal gradient 
from microtidal to large tidal amplitudes, and (c) heatmap of relative 
gene expression (NRQ, standardized to microtidal population from 
Odense) for both genes at all sites, assigned to their micro-, meso- 
or macrotidal location. Red indicates high expression. D, Dunkirk; B, 
Bangor; X, Texel; T, Thyborøn; K, Kristineberg; O, Odense
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for this species (Marino et al., 2011). These contact zones are ex-
pected to be stabilized at environmental or physical barriers to gene 
flow through coupling effects (Barton, 1979; Bierne et al., 2011). In 
agreement with the coupling hypothesis, our biophysical dispersal 
modelling suggests a strong oceanographic dispersal barrier for lar-
vae with tidal migration behaviour at the transition zone between 
meso- and microtidal environment (Figures 1 and 3e). Interestingly, 
the alleles of some loci which showed a sharp frequency cline at the 
transition zone to the microtidal environment were also found at 
high frequency in Bangor (e.g., locus in blue and purple in the inset 
to Figure 4).

In contrast, our biophysical modelling does not suggest an 
oceanographic barrier spatially coinciding with the other genetic 
break present in the English Channel (i.e., the transition between 
meso- and macrotidal). Demographic modelling suggested isolation 
with migration over ~100,000 years at this genetic barrier, which is 
in line with previous estimates of ~470,000 years for the European 
ancestors of the two introduced lineages now found on the east 
coast of the USA (Jeffery, DiBacco, Wringe, et al., 2017). Altogether, 
the absence of complete historical isolation and the lack of an ocean-
ographic barrier suggests that adaptation, and notably adaptation to 
tidal environments, contributes to the genetic differences observed 
between macro- and mesotidal sites. While our data suggest that 
tidal amplitude plays a major role in both barriers, other environ-
mental drivers could also contribute. Temperature has been shown 
to play an important role in shaping population differentiation in 
several crustaceans, such as in American lobster (Benestan et al., 
2016) and northern shrimp (Jorde et al., 2015), and a genomic island 
has been identified in the shore crab which might be associated with 
rapid temperature adaptation (Tepolt et al., 2021; Tepolt & Palumbi, 
2020). The geographical area assessed here is located in the middle 
of the native distribution of C. maenas, which makes it less likely that 
physical factors such as temperature and salinity play a major role 
in shaping population genetic structure. Indeed, we do not find any 
evidence that salinity seems to drive the observed population struc-
ture of C. maenas, despite a strong salinity gradient from the North 
Sea going into the Skagerrak and Kattegat (see Figure S7). In the 
North West Atlantic, one barrier to connectivity has been described 
in Nova Scotia at a temperature gradient for multiple species, includ-
ing C. maenas (Jeffery, DiBacco, & Wyngaarden, 2017; Stanley et al., 
2018). However, their identified multispecies barrier also coincides 
with a tidal regime shift from macro- to mesotidal (Flemming, 2012), 
and we here argue for the importance of differences in recruitment 
success in larvae adapted to different tidal regimes, affecting dis-
persal, rather than temperature as also suggested by Pringle et al. 
(2011).

Finally, the detected differences in gene expression for two clock 
genes—probably involved in regulating circadian behaviour of crab 
larvae—could be part of the explanation for the maintenance of the 
two identified barriers to gene flow associated with tidal regime. 
Based on the data obtained here, it appears that shore crabs possess 
a circadian clock that relies on many of the same molecular com-
ponents as other, better understood, invertebrate circadian clocks. 

While the clock machinery for circadian rhythms is relatively well 
known (e.g., Crane & Young, 2014), little is known about which genes 
may be involved in tidal rhythms. The few studies investigating both 
circadian and lunar cycles (either for 12.4-h or 29-day periods) indi-
cate that the two systems work independently and that lunar-related 
rhythms may not be generated by the canonical circadian clock genes 
(Bulla et al., 2017). Our results here confirm that circadian genes and 
putative tidal cyclers occur in transcriptomes of C. maenas, and that 
they are expressed in both adult and megalopae phases. With lin-
ear models, we identified two genes, the core clock gene cyc and 
the clock-associated gene pdp1, that may help explain behavioural 
differences among crab larvae from microtidal and tidal sites (mac-
ro- and mesotidal). In Drosophila constant high or low PDP1  levels 
disrupt locomotor activity rhythms, and although its function as a 
circadian oscillator is unknown, this suggests that PDP1 regulates 
oscillator output (Benito et al., 2007). This hypothesis is supported 
by our data, which showed that crabs that experience tides and do 
not follow a circadian rhythm (but a tidal rhythm) have a lower level 
of pdp1 transcripts. Additionally, acat1 may be a promising candidate 
gene for tidal cycling, as it was previously detected as a candidate 
“tidal cycler” in Cellana rota, and was among our few annotated out-
lier loci. However, we could only detect a weak effect of tidal gradi-
ent on gene expression of acat1 (Table S4).

A driving question for our research was to investigate the prox-
imal causes for the adaptation of differences in timing of vertical 
migration of crab larvae according to tidal regime. Overall, the line 
of evidence in this study is a large step towards understanding the 
contribution of behaviour to local adaptation. While this study is an 
integrativeassessment of different approaches, there are neverthe-
less gaps in our line of evidence that make conclusions uncertain. 
For the gene expression analysis, we are able to show a correla-
tion of gene expression with tidal gradient for two candidate clock 
genes, but we are not able to determine if the difference is driven by 
a plastic response or if it is heritable, for instance due to allelic dif-
ferences. Moreover, we infer patterns of expression of clock genes 
in larval stages from analyses of adult crabs. However, we show that 
the clock genes are also expressed in megalopae, and while sensing 
and reacting to changes in light and tide may be particularly rele-
vant in crab larvae, both light and tide have also been shown to alter 
behaviour and activity in adult shore crabs (Naylor, 1958; Queiroga 
et al., 1994; Zeng & Naylor, 1997). In the future, the availability of 
a C. maenas reference genome and using larger genomic coverage, 
combined with experimental work establishing the direct link be-
tween different larval behaviours and gene expression over time 
(particularly circadian and circa-tidal), hold exiting potential to more 
fully understand the role of larval behaviour on the population struc-
ture of shore crabs. In particular, such assessments would help to 
conclude with more certainty that there are indeed locally adapted 
larval behaviours in C. maenas along a tidal gradient, which are medi-
ated by genetic differences in clock gene alleles or their regulation. 
Additionally, such work could establish whether the identified clock 
genes (pdp1 and cyc) do indeed directly or indirectly control larval 
behaviour.
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Finally, selection for larval behaviour that increases return to 
near-coast habitats may explain regional differences and local adap-
tations of behaviour synchronized to regional hydrodynamic trans-
port (Moksnes et al., 2014). In line with the perspective in Burgess 
et al. (2016), the pelagic larval stage may not only increase life-long 
fitness through access to food and reduced predation in the water 
column, but also be under selection for increased dispersal. Indeed, 
larval behaviours (e.g., synchronized with the tide) promote return 
to adult habitats, which may also reduce along-shore dispersal, and 
facilitate the evolution of locally adapted larval behaviours.
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