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Neuromorphic device based on silicon
nanosheets

Chenhao Wang 1,7, Xinyi Xu2,3,4,5,7, Xiaodong Pi 1,2, Mark D. Butala 5,
Wen Huang6, Lei Yin1, Wenbing Peng1, Munir Ali2,3,
Srikrishna Chanakya Bodepudi 2,3, Xvsheng Qiao 1, Yang Xu 2,3,4,5 ,
Wei Sun 1 & Deren Yang1,2

Silicon is vital for its high abundance, vast production, and perfect compat-
ibility with the well-established CMOS processing industry. Recently, artifi-
cially stacked layered 2D structures have gained tremendous attention via fine-
tuning properties for electronic devices. This article presents neuromorphic
devices basedon siliconnanosheets that are chemically exfoliated and surface-
modified, enabling self-assembly into hierarchical stacking structures. The
device functionality can be switched between a unipolar memristor and a
feasibly reset-able synaptic device. Thememory functionof thedevice is based
on the charge storage in the partially oxidized SiNS stacks followed by the
discharge activated by the electric field at the Au-Si Schottky interface, as
verified in both experimental and theoretical means. This work further
inspired elegant neuromorphic computation models for digit recognition
and noise filtration. Ultimately, it brings silicon - the most established semi-
conductor - back to the forefront for next-generation computations.

Artificial neural network (ANN) is a new computation paradigm for big
data concurrent processing and machine learning, which have been
demonstrated as valuable tools for classification1, image processing2,3,
and natural language processing4, and many other applications.
However, massive concurrent calculations of ANN are challenges for
traditional computational tools based on von Neumann architectures,
limitedby long latency fordata transition frommemories to arithmetic
units. Therefore, some in-memory computation devices like memris-
tors have been studied and exploited for ANN5–8. Although ANN is
inspired by biological neural networks9, most architectures are not
based on the exact same mechanism of the neurons. In the nervous
system, the signals are event-drivendiscrete spikes, benefiting thehigh
temporal informationdensity while low energy consumption.Whereas
traditional ANN signals transmission based on non-linear mapping of

continuous values, for the sake of algorithms like backpropagation
which are not explainable in biosystem. To inspect the functionality of
the brain and inspire new calculation algorithms, spiking neuron net-
work (SNN), a new type of ANN more closely mimicking the nervous
system, has been received intense interest. SNN adopts discrete spike
signals which carry temporal information including the time intervals
and the rates10. As the nowadays developed calculation tools are not
designed for discrete signals processing, novel synaptic devices and
circuits need to be designed for hardware realization11–14. In this con-
text, neuromorphic devices, including memristors and synaptic devi-
ces, which can well mimic some behavior of the nervous system, are
believed crucial for next-generation computing15–17.

For neuromorphic computing, the simulation of biological
learning patterns is the key target for its fundamental components.
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Unfortunately, this is hard to achieve by the Si and CMOS-based digital
circuits. While many neuromorphic devices were developed based on
organic semiconductors and quantum dots (QDs) and other emer-
gence materials and new processing technology18–20. Moreover, the
functioning mechanisms of these existing devices, including interface
trap-induced neuromorphic behaviors, remained elusive and less
controllable. Thus, it is crucial to investigate materials with neuro-
morphic behaviors and potential compatibility with Si technology, as
well as to elucidate their underlying mechanism for further SNN
applications. Recently, two-dimensional (2D) materials have come to
the fore in materials science research, which demonstrate their
superior fine-tuning electronic properties enabling the feasible device
structure design21–29. Silicon nanosheets (SiNSs) are 2D thin films of Si
which have different crystalline structures than bulk Si, while are
potentially compatible with well-developed Si technology. Compared
with bulk Si, SiNSs have exhibited distinct properties including large
bandgap and quasi-direct bandgap, which potentially enable the fab-
rication of devices for different computation paradigm.

In this work, we demonstrated multifunctional neuromorphic
devices based SiNS stacks. SiNSswere chemically exfoliated fromCaSi2
in an ethanol solution of saturated hydrochloric acid with corre-
sponding surface modification, enabling high quality for device fabri-
cation. We found that the partially oxidized SiNS stacks had large
capacitance and formed Schottky junctions with Au electrodes, which
contributed to the charge storage and release and in turn the key
functions in computational learning. Our devices exhibited the uni-
polar memristor characteristics and fast reset synaptic behavior
without overcharge. Furthermore, the mechanism has been well
investigated and verified by experimental, analytical, and numeric
approaches. The revealed characteristics and mechanism of the devi-
ces have been implemented for pattern recognition and noise sup-
pression by filtration, demonstrating the potential for device
technologies and applications to next-generation neuromorphic
computations.

Results
Design, synthesis, and characterization of the self-assembled 2D
SiNS stacks
We first prepared hydrogen (H)-terminated SiNSs by stripping Ca
atoms off CaSi2 through topological exfoliation. To obtain high-quality
SiNSs for device fabrication, intensive oxidation should be prevented.
The H-terminated SiNSs prone to water-induced oxidation30. There-
fore, instead of traditional water solution of hydrochloric acid31, the
saturated ethanol solution (with a lower ionization equilibrium con-
stant) was applied for the exfoliation in N2 atmosphere (Fig. 1a).

Further, p-fluoroaniline (pFA) was selected as the surface modi-
fier. As a Lewis base, pFA reacted with the H-Si bond of H-terminated
SiNSs (Fig. 1b)32,33. After the modification, energy dispersive spectro-
meter (EDS) mapping, X-ray photoelectron spectroscopy (XPS)
(Fig. S1), and Fourier transform infrared (FTIR) spectroscopy, con-
firmed the absence of Ca and the successful attachment of pFA,
(Fig. S2). The modification was designed and applied for multiple
concerns: oxidation suppression, conductivity improvement, hier-
archical stacking construction of SiNSs, and convenient solution pro-
cessability. To be specific:
1. When capped by the pFA molecules, the steric hindrance miti-

gated the approach of oxygen and water molecules and thereby
further oxidation34.

2. The electron-rich pFA increased the carrier density of the SiNSs
and connected the SiNSs between stacks35,36. In particular, as the
electron-donating group, the lone pairs of electrons of N atoms of
pFA were shared with the SiNSs planes. Meanwhile, the π–π
interaction (red dashed line in Fig. 1b) between pFAs enabled the
electron hopping between layers, enhancing the conductance of
the entire SiNS stacks.

3. Besides π-π interaction, hydrogen bond (blue dashed line in
Fig. 1b)might also facilitate the self-assemblyof SiNS stacks. TheH
atoms connected to N atoms were hydrogen-bond donors. And,
the F molecules served as the hydrogen-bond acceptors (Fig. 1b).
In addition, the pFA modifiers obstructed the direct contacts of
SiNS layers and prevented aggregation of SiNSs.

4. The pFA modified SiNSs were readily dispersed in the pFA as a
colloid for solution processing. After the evaporation of the dis-
persant pFA out of the dropped colloid, homogenous films could
be formed on various nonpolar substrates, such as flexible Poly-
ethylene terephthalate (PET), pristine silicon wafers without
oxide, and silicon wafers with oxide but modified by a silane
coupling agent (Fig. S3).

The obtained SiNSs enabled further device fabrication processes,
including electrode patterning, material deposition, and other tech-
niques potentially compatible with Si technology. Meanwhile, SiNS
stacks possessed different characteristics than bulk Si. Spectroscopic
and microscopic tools were applied before the further design of the
devices.

XRD and HRTEM revealed the crystalline structure of SiNSs. The
XRD patterns of the film exhibited sharp peaks. These peaks did not
completelymatch the standard XRDpatterns of neither bulk Si nor the
starting material CaSi2, implying the formation of new crystalline
phases. The sharp peak at 17.24° might correspond to the periodicity

Fig. 1 | The reaction forpreparationofSiNSs. aThepristine SiNSsb and furthermodificationwith p-fluoroaniline (pFA). Blue dashed lines correspond to hydrogenbonds
and red dashed line corresponds to π–π interaction. H atoms bonded to Si are omitted for brevity.
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of modifier within the sheets, according to literature37. While, the
position of one of the diffraction peaks of SiNS stacks (~28.4° with
d = ~3.14 Å) was close to that of the (111) peak of Si (Fig. 2a). This might
result from the similarity between the Si6 ring arrangement of SiNSs
and (111) plane of bulk Si. Moreover, theHRTEM image also exhibited a
graphene-like arrangement (Fig. 2b). A distance of ~1.80Å was
observed between the lattice fringes. Due to the tendency of forming
staggered ABC stacks of SiNSs as found in other studies (Fig. S4)38, this
observeddistancebetween light spots correspondedwith ~1=

ffiffiffi
3

p
of the

interplanar distance.
Unlike bulk Si as an indirect bandgap semiconductor with poor

response to light, the SiNSs instead exhibited intense photo-
luminescence (PL) peaks. The deep UV excitation band (~280 nm) and
the emission band (~350nm) were observed (Fig. 2c). The transient PL

spectra monitored at 350 nm also revealed the short lifetime (~0.7 ns)
of emission (Fig. S5, Table S1), which implied its quasi-direct bandgap
nature. This was in contrast to the long PL lifetime of indirect bandgap
Si usually observed (e.g., several tens of microseconds for silicon
quantum dots39). Also, the UV–Vis absorption spectrum showed the
resonance absorption enhancement at the same wavelengths of PL
peaks (Fig. 2d). Estimated from the PL emission peak and Tauc plot of
absorption spectrum (Fig. S6), the wide bandgap energy of SiNSs was
calculated to be around 3.2–3.5 eV, consistent with similar materials
reported in other studies32,33.

We also inspected the energy band properties of SiNS stacks,
which are crucial for device fabrication and analysis. From a Hall
measurement, the n-type conductivity of SiNSs and high carrier
density (~2.5 × 1015 cm−3) were revealed (Table S2). Without
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Fig. 2 | Material characterization. a X-ray diffraction (XRD) patterns of the as-
synthesized silicon nanosheets (SiNSs) with p-fluoroaniline (pFA)modification, and
the references (quartz substrate, bulk Si, CaSi2 powder). b High-resolution trans-
mission electronmicroscopy (HRTEM) image of a SiNS showing lattice fringes, and
the inset figure showing the corresponding image after Fast Fourier Transforma-
tion (FFT). c PL excitation (left) and emission spectra (right) of SiNSs. The emission

spectrum was collected under 280nm excitation, and the excitation spectrum was
collected by using 350 nm as the emission wavelength. d Absorption spectrum of
SiNSs, the blue and red shadows correspond to the resonance absorption peaks for
excitation and emission, respectively. e Ultraviolet photoelectron spectrum (UPS)
of SiNSs, the red shadow corresponds to high energy end for work function cal-
culation and the blue shadow for Fermi level calculation.
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traditional group 5 elements (like P) as donors, the good n-type
conductivities resulted from the electron doping effect of N atoms
of pFA modifiers. Comparably high mobility (~300 cm2 V−1 S−1

Table S2) was observed, which is one magnitude higher than the
value formerly reported for single-layer silicene40. The work
function and Fermi level were estimated by ultraviolet photo-
electron spectroscopy (UPS) (Fig. 2e). Due to the inevitable partial
oxidation, a broad peak of insulating oxide was also observed at
the high binding energy side. Extending the photoemission cut-
off, the work function was calculated to be ~4.06 eV. Besides,
according to the low binding energy side, the Fermi level was
~3.10 eV above the valence band edge, which confirmed the n-type
conductivity.

The coupling of capacitance and Schottky junction based on 2D
SiNS stacks and induced memristor behavior of devices
Based on the energy band and stacking structure of the SiNSs, we
designed two-terminal devices (Fig. 3a, b), that possessed intriguing
hysteretic characteristics and memristor-like behavior. The mechanism
behind the deviceswas different fromcommonmemristors that depend
on conductive filaments or ion migration, or other structures5. The
characteristics of our devices were instead induced by the coupling of
the large capacitance of the partially oxidized SiNS stacks and the
Schottky junctions between the electrodes and SiNSs stacks. To figure
out the underlying physics, a simple model was proposed (Fig. 3d1). In
the model, CNSs corresponds to the capacitance of partially oxidized

SiNSs stacks and Rcon corresponds to the contact resistance. In addition,
we have included RNSs in the model, which corresponds to the gross
resistance in the stacks.

The large capacitance mainly resulted from the hierarchical
microscopic structure of the partially oxidized SiNS stacks. The
thickness of the SiNS film was ~15 μm within an optimal range (Fig. 3c
and Fig. S7). Sheets were assembled into bundles, which in turn were
assembled into stacks. The thickness of the bundles was ~20 nm from
the inset in Fig. 3c. All of these structures collectively contributed to
capacitance, i.e., the transfer of carriers can be hindered by the gaps
and the partial oxidation between lamellar structures, which can be
regarded as tiny plate capacitors.

Moreover, Au was chosen as the electrodes instead of forming an
Ohmic contact. The work function of Au is comparatively high (5.1 eV),
which resulted in two opposite Schottky junctions between Au and
SiNSswith high barriers of ~1.04 eV (Fig. 3i). Besides, as Au is stable and
inert, it is less prone to form conductive filaments and thus avoids
accompanying disruptive behaviors.

The model was verified by consecutive experiments. First, a suf-
ficient heat treatment (200 °C for 30min in an N2 filled glove box) was
applied, which thermodynamically and kinetically facilitated rearran-
gement, thus a better contact between SiNS layers with the stacking
structure retained (Fig. S8). Therefore, less oxidation and higher con-
ductivity of SiNS stacks were achieved (Fig. S9). In this case, the small
RNSs short-circuited CNSs (shown in the dashed line box, Fig. 2d).
Therefore, symmetric I–V curves without hysteresis loops were
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observed (Fig. 3e), which corresponded to the typical pattern of back-
to-back Schottky junctions.

In contrast, different characteristics were observed if the devices
were annealed to a less extent (100 °C for 10min in a glove box).
Smaller current signals and largerRNSs andRconwere observed (Fig. 3f),
which resulted from the partial oxidization of SiNS stacks. The hys-
teresis loops were observed, due to the large CNS. When the applied
scanning voltage was within 1 V, Rcon was assumed as a constant value
due to the low voltage across junctions (Fig. 3d1). Using the constant
Rcon model, the output current followed Eqs. (1) and (2), which well
described the experimental result:

ids vds
� �

=
V0CNSsRNSsRcon

t0 RNSs +Rcon

� �2 1� e
�RNSs +Rcon

CNSsRcon
2

t0
V0

vds
� �

+
vds

RNSs +Rcon
+ i0 ðupper curveÞ

ð1Þ

ids vds
� �

=
V0CNSsRNSsRcon

t0 RNSs +Rcon

� �2 e
�RNSs +Rcon

CNSsRcon
2

t0
V0

vds � 1
� �

+
vds

RNSs +Rcon
+ i00 ðlower curveÞ

ð2Þ

where ids was the channel current, vds was the applied voltage, and i0
was the small deviation of the leakage current from CNSs.

The derivation can be found in Fig. S10. Using this equation for
fitting, theCNSs,RNSs,Rcon were extrapolated to be ~7 × 10−7F, ~1 × 109Ω,
and ~6 × 107 Ω (Fig. S11 and Table S3). Additionally, considering the
physical dimensions of the device and SiNSs, the capacitance was
estimated as ~1 × 10−7F, which was close to the extrapolated result
found from fitting.

After confirming the model, we further explored memristor-like
behavior. When we increased the range of scanning voltage, the I–V
curves gradually deviated from Eqs. (1) and (2) (Fig. 3g). The devia-
tion was due to the varying contact resistance (rcon) of the Schottky
contacts (Fig. 3d2). The larger voltage across the Schottky contacts
caused the breakdown and the decrease of rcon. When further
increasing the applied voltage, the significantly increased avalanche
(or tunneling) current also caused the negative differential resistance
(NDR) effect of rcon41.

Taking advantage of the NDR and the capacitance of SiNS stacks,
the unipolar memristor-like behavior was achieved (Fig. 3h), as the
resistance of the device was controlled by the value other than the
direction of the voltage. Unlike the common memristors, which
begin in the high resistive state (HRS) and then transform to the low
resistive state (LRS), our devices instead showed the LRS first. When
the increasing applied voltage caused the NDR of the Schottky
junction, the voltage of junction (vcon) suddenly decreased while the
current (ids) still increased. Therefore, the voltage (vNSs = vds−vcon)
across SiNSs (also CNSs) suddenly increased. Then, the quickly
increasing charging current of CNSs was observed, which corre-
sponded to the LRS (Fig. 3j, k). When the CNSs was gradually charged,
the current of the device then decreased quasi-exponentially, as per
Eq. (2), and the device shifted to the HRS. After this, the device
remained as HRS, when the applied voltage decreased to zero. That
resulted in the charges in the CNSs that reduced the Schottky barrier
height (Fig. 3k), and the breakdown and NDR effect could not take
place. The difference in current between the LRS and HRS was over
one order of magnitude, which promised the differentiation between
these two states (Fig. 3h inset). When flipping the direction of the
applied voltage, the same behavior was observed, which corre-
sponded to the unipolar behavior of the device. The overall process
only involved reversible charge/discharge of the CNSs and the
breakdown/recovery of the Schottky junction (rNSs) without struc-
tural changes. Therefore, the I–V curves of the consecutive cycling
tests overlapped well (Fig. 3h).

Also, the mechanism of the devices proved to be universal, which
was verified by replacing the Si substrate with PET (Fig. S12) and
reproducing the I–V curve by commercial electronic components
(Fig. S13). Meanwhile, some non-idealities, like the circle-to-circle
coherency still require improvement (the first circle was different from
others, Fig. S14).

Synaptic behavior for the spiking neural networks
Next, based on the revealed mechanism, we further investigated the
synaptic behavior of the device, by applying consecutive voltage
spikes (Fig. 4). The applied spike voltage was 1 V to ensure low energy
consumption without the NDR effect (Fig. S15). Also, using the pre-
viously extrapolated values of CNSs, RNSs, and Rcon with some mod-
ification (Fig. S16), numerical simulations were conducted for
comparison. In this work, we mainly focused on the proof of concept
and mechanism, and we are still working on improving the device
performance (Fig. S17).

Subjected to spikes of the same direction, the synaptic weight
continuously decreased. The originally large synaptic weight was due
to the charging current of CNSs. After continuous excitations, CNSs was
gradually charged, which led to the lower current and depression
(Fig. 4a, b). During the interval without spikes, only small leaky cur-
rents were found (Fig. S18), due to the large Rcon and long lifetime of
stored carriers. The paired-pulse depression (PPD) of our devices was
thus found, as the two successive spikes were applied. Also, for the
leakage, the PPD index increased when the interval period lengthened
(Fig. 4c). Moreover, excited by the spikes of the opposite polarity, the
current enhanced in that opposite polarity, and the synaptic weight
reset immediately. The restorationwas due to the depletion of carriers
in the CNSs under negative bias (Fig. 4a, b).

Furthermore, we experimentally and theoretically evaluated long-
term memory (LTM) of the devices. We plotted the synaptic weight
versus the number of spikes. The positive excitation number denotes
the spikes of the same direction, and the negative one denoted that of
the opposite polarity corresponding to the final inspected spike
(Fig. 4d). From the experimental result, the synaptic weight change
agrees with a quasi-exponential pattern versus increasing numbers of
applied spikes. Using the constant Rcon model (Fig. 3d1), the analytical
synaptic weight followed Eq. (3) (the detailed derivation is in Fig. S19).

4w nð Þ= idsn � ids0
ids0

=

A1 1� e

n
CNSsRcon

2

2tspk RNSs +Rconð Þ

0
@

1
A ðn >0Þ

�A1 1� e

n
CNSsRcon

2

2tspk RNSs +Rconð Þ

0
@

1
A ðn<0Þ

8>>>>>>><
>>>>>>>:

ð3Þ

where ids0 was the device current without former spikes, idsn was the
device current excited by n former spikes. A1 was a constant value
relevant to CNSs, RNSs, Rcon, and applied spike voltage (Vspk = 1 V, tspk =
1 s). The simulation results agreed with the analytical expression and
qualitatively agrees with the experiment results. Note that the
experimental curve was not completely symmetric about the original
point. It was due to the impedanceof the Schottky barrier varied by the
direction of the last spike. The deviations from the experimental
curves could be attributed to the actually non-constant nature of rcon
discussed previously, i.e., when the last spike was of opposite polarity,
the Schottky barrier was built up, leading to a smaller resistance.

Benefiting from LTM, our devices can mimic non-associative
learning (NAL), an important behavior for biological adaptation to
external stimuli42. The twoprimary patterns ofNAL arehabituation and
sensitization. Habituation corresponds to the diminution of the
response after continuous exposure to repetitive stimuli. Sensitization
corresponds to the enhancement of the response upon a newdifferent
stimulus. LTM of consecutive spikes mimicked habituation, whereas
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large voltage excitation of the opposite polarity reset the device.
Especially, thefirst 1 or 2 points could be sensitized andhigher than the
original value, and then followed by normal habituation again. The
larger the applied opposite voltage, themore significant enhancement
of the first several spikes. The synaptic weight after opposite spikes
could be even higher than the original state (Fig. 4e), as the opposite
spike depleted the charges and then recharged the device in the
opposite direction. The simulation also revealed the same phenom-
enon (Fig. 4f).

For synaptic devices, immediate restoration without over-
compensation is important. For our devices, a complete reset could
be easily achieved by tuning the energy band structure. Besides
negative voltage spikes on the drain, the sensitization and complete
reset could be achieved when a positive voltage spike was applied on
the back gate (the heavily doped silicon wafer substrate) (Fig. 4e
orange line). It added up the voltage across the depletion region of
Schottky junctions. A comparably low back gate voltage (Vg = 1 V) was
enough to facilitate the tunneling current of the Schottky junction and
depletion of the carriers in the CNSs, and thus sensitization (Fig. S20).
Different from the negative spike applied on the drain, it eliminated
the recharging of the opposite carriers and over-sensitization. There-
fore, for the measurements, we used this method to reset devices.

Spike timing-dependent plasticity (STDP)43 was also demon-
strated. The depression or potentiation was induced by two aligned or
opposing direction pulses, respectively. Also using the constant Rcon
model, the synaptic weight changed exponentially when varying the
interval between spikes (Δt) (Fig. S21), as shown in Eq. (4).

4w 4tð Þ=
ids 2tspk +4t

� �
� ids0

ids0
=

A2e
� 4t

CNSsRcon
2

RNSs +Rcon ðopposite directionÞ

�A2e
� 4t

CNSsRcon
2

RNSs +Rcon ðsame directionÞ

8>><
>>:

ð4Þ

where ids(2tspk + Δt) was the current after two coupling spikes and A2

was another constant value that was also relevant to CNSs, RNSs, Rcon,
Vspk = 1 V and tspk = 1 s.

The STDP of the synaptic devices could be exploited in SNNs, as
they map the temporal information to weight changes. A similar
asymmetry of the experimental curve was due to the same reason-
ing given for LTM. Meanwhile, a larger discrepancy between the
experimental result and simulation was found for STDP (Fig. 4g).
This was because the capacitance of CNSs varied under different
excitation frequencies. For the STDP case, the interval between
spikes could be as small as 0.1 s, which resulted in smaller CNSs.
Comparing the experimental and simulation result of spike rate-
dependent plasticity (SRDP), the deviation from the simulation was
also found (Fig. 4h).

Spiking neural network simulations
Our devices had a similar STDP pattern as biologic synapses and thus
were used to build an SNN to investigate the potential for unsu-
pervised neuromorphic computing to deal with samples without
labels. This brian-inspired STDP algorithmwas based on the automatic
change of synapse weights when subjected to different stimuli or
inputs. When the synapse-connected two neurons are firing sequen-
tially, the weight of the connected synapse increases according to the
interval between the two fires. The shorter the interval, the larger the
weight change. Then, after many stimuli, the network canmake better
and better responses.

To illustrate the potential for neuromorphic computing, we
did a simple proof-of-concept demonstration using a small set of
actual devices (Fig. S22), which demonstrated the potential clas-
sification application of the device-comprising neuron network.
Furthermore, to explore the theoretical potential, we carried out
simulation experiments based on the device STDP for a more
complicated task, i.e. the Modified National Institute of Standards
and Technology database (MNIST) handwritten digits44 recogni-
tion based on an unsupervised SNN (Fig. 5a)45. Three different
simulations were implemented and compared based on the
characteristic of the device: only potentiation input encoding,
both potentiation and depression input encoding, and the
abnormal NDR effect induced by high voltage input spikes,
respectively. To bemore specific, the first simulation (S1) encoded
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Fig. 4 | Experimental and numeric simulation results of the synaptic behavior
of the devices. a The experimental result and b the simulation result of depression
and restoration of the synaptic devices. c Paired-pulse depression (PPD). d Long-
termmemory (LTM), where the red line is the experimental result and the blue line
is the simulation result. eThe experimental result and f the simulation result of non-

associative learning (NAL) behavior of the devices. g Spike timing-dependent
plasticity (STDP), and h spike rate-dependent plasticity (SRDP) of devices, where
the red line is the experimental result and the blue line is the simulation result.
In figures, the blue shadow regions correspond to the inhibition and red shadow
regions for excitation.
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only potentiation spike sequences, which corresponded to the
second quadrant of the STDP pattern, (Fig. 4g). Meanwhile, the
second simulation (S2) considered both the potentiation and
depression STDP pattern (second and fourth quadrants in Fig. 4g).
Therefore, we expected S2 would have higher accuracy than S1.
Then for the third simulation (S3), we investigated the special
STDP pattern found for devices under large spike voltage while
with the same encoding method as S1. Due to the NDR, the device
synaptic weight first exhibited an abnormal inverse pattern
(Fig. S15d). Compared to S1, anti-noise properties were expected
for S3 as the low level of grayscale noise could be filtered by the
first inverse spikes.

Some of the trained synapses were visualized in Fig. 4b to
demonstrate the learning efficiency of different simulations. Com-
paring the visualized synapses of bi-directional S2 to simplest S1, an
apparent edge effect was found due to the bi-directional STDP
encoding (Fig. 5b). The edge increased the contrast between the pat-
tern and background, which improved the recognition accuracy. Fur-
thermore, the abnormal-inverse S3 was compared to S1. Even though
the encoding strategy is the same, the visualized synapses of S3 appear
“darker” than that of S1 (Fig. 5b), as the stimulus should be stronger to
strengthen the synapse for the first inverse spikes. Therefore, higher
accuracy of S2 over S1 or S3 could be expected. To validate the anti-
noise properties, images with Gaussian noises were further applied as
training sets (Fig. S23b). Obviously, compared with S1, the visualized
synapses of S3 were found to filter more noises and have greater
fidelity to the original digits, which verified the anti-noise ability of S3
over S1(Fig. 5c).

Finally, we compared the recognition accuracy and anti-noise
capabilities of three simulations. The overall accuracies to identify the
originalMNISThandwrittendigitswithout additional noisewere nearly
90%, (in all cases 88.50%, 92.80%, and 91.50% for S1 through S3,
respectively Fig. 5d). For the accuracies of individual digit categories,
we found that S2 had a higher average recognition accuracy (> 80% for
eachnumber). In comparison, S1 andS3had the lowest accuracyof 75%
for the digit “7” and 70% for the digit “9”, respectively. In addition, S3
had higher recognition accuracy when confronted with noises. When
the noise level increased (Gaussian noise with variances of 0.01, 0.02,
and 0.04), the accuracy of S1 decreased rapidly while that of S3
reduced only slightly (Fig. 5e).

Discussion
This work demonstrated the versatile SiNSs-based neuromorphic
device, which extended Si technology to next-generation computation
like SNN, a crucial step towards cognitive integration in artificial
intelligence systems. We investigated the unipolar memristor-like
behavior based on the NDR and device capacitance, as well as the
synaptic response with effective reset ability based on the high capa-
citance originated from the layered structure and the rectification
behavior of SiNSs-Au junctions. Then, we analytically described char-
acteristics, including LTM, STDP, which were essential for neuro-
morphic calculations. Finally, we demonstrated an SNN inspired by
device behaviors, whichwas proved effective for digit recognition and
noise filtration.

In addition, we envision other emerging research areas to
encourage in-depth investigation for the potential of SiNSs in SNN
and their integration with Si-based electronics. First, photoemis-
sion of SiNSs demonstrated the possibility for optoelectronic.
Second, given the compatibility with the solution process on soft
substrate like PET, our SiNSs demonstrate the possiblility for flex-
ible device fabrication46,47. Third, the CMOS-compatible SNN arrays
are attractive for fabrication with existing Si technology. These
exciting topics require further study to bridge the gap between
technologies of artificial intelligence and the well-established Si
industry.

Methods
Material preparation
The ethanol solution of saturated hydrochloric acid was prepared by
using 50mL ethanol (Sinopharm Chemical Reagent Co. Ltd) to absorb
the bubbled-through hydrogen chloride gas generated by mixing 10 g
sodium chloride with 10mL 98% sulfuric acid.

For obtaining SiNSs, about 0.5 g of CaSi2 crystallites (Sigma-
Aldrich) was immersed in the ethanol solution of saturated hydro-
chloric acid (50mL) in a Schlenk flask. The mixture was stirred con-
tinuously for 3 days under the N2 atmosphere to obtain the
H-terminated SiNSs without modification. The mixture was then fil-
tered in the Schlenk line. The filter residue was mixed with 50mL
p-fluoroaniline (pFA) (Macklin) also in a Schlenk flask. Themixture was
then stirred continuously for 7 days at room temperature under the N2

atmosphere to obtain the modified SiNSs. The mixture was then col-
lected and stored in a glove box filled with N2.

Device fabrication
Theheavily p-doped<100> siliconwafer (ρ<0.02Ω cm)with a 200nm
SiO2 field oxide layerwas chosen as the substrate and cut into 1 × 1 cm2.
The surface of the wafers was functionalized to be nonpolar by
immersion in a toluene solution of (3-aminopropyl) trimethoxysilane
(1.25mLmL−1) (Macklin) at 60 °C for 4min in a glove box of N2 atmo-
sphere. Excessivemoleculeswere removedby rinsing and sonicating in
toluene, and isopropanol. These substrates were then dried and col-
lected. The active layer of pFAmodified SiNSswas formed by dropping
80μLmixture of and SiNSs and pFAonto thewafer in a glove boxofN2

gas. The solvent of pFA was evaporated, and the active layer was fur-
ther thermally treated on a hot plate at 100 °C for 10min or 200 °C for
30min to achieve moderate or sufficient annealing in a glove box.
Further, 120 nm thick gold electrode was then thermally evaporated
on the active SiNSs layer via a shadow mask, leading to 100 μm long
and 1000 μm wide channels.

Characterization
The X-ray diffraction (XRD) patterns were obtained by using a SHI-
MADZU LabX XRD6000 diffractometer with Cu Kα (λ = 1.5406Å)
radiation. The JEM 2100F transmission electron microscope with an
acceleration voltage of 200 kVwas used to obtain TEM images. The PL
system (F920, Edinburgh Instruments) was used for collecting PL.
During the transient PL measurements, a 280nm wavelength pulsed
excitation source with a frequency of 50Hz (µF920H) was used. The
optical absorption was obtained from a UV–vis–NIR spectrometer
(HITACHI U-4100). X-ray photoelectron spectroscopy (XPS) measure-
ments were performed by an x-ray photoelectron spectrometer (Kra-
tos AXIS Ultra DLD). UPS measurements were performed by using
Thermo Scientific ESCALAB 250Xi with a 21.2 eV He-Ia source. FTIR
spectrometer (JASCO FT/IR-6100) operated in the transmission mode
with a resolution of 4 cm−1 was used to measure all the samples. The
hall measurement was conducted on a Lakeshore 7604. The cross-
section SEM images of a typical device were obtained by using a
scanning electron microscope (HITACHI S4800) at an acceleration
voltage of 5 kV. The device performances were measured by the
semiconductor parameter analyzer (FS480, PDA Co. Ltd). For the
quasi-static I–V scanning, the time interval between two sample points
was 0.04 s, and between 0 and maximum applied voltage, there were
100 evenly distributed sample points. For I-t scanning, the time
interval between the sample points was also 0.04 s, and the time for
voltage spike (1 V) was 1 s.

Simulation
The quasi-static I–V curve and synaptic behavior of devices were
simulated by using the model of capacitors and resistors on Simulink
(Matlab R2020a). The value of the resistors was extracted in the quasi-
static I–Vmeasurement: RNSs, Rcon were set as ~1 × 109 Ω and ~6 × 107 Ω,
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respectively, whereas the CNSs was modified to be 1 × 10−7F for better
agreement with the experiment result.

SNN training
The SNN consisted of 2 layers with 784 input neurons and 300 output
neurons, respectively (Fig. 5a). The 784 × 300 synapses connected
those two layers. First, the images with 28 × 28 (784) pixels were
processed by a convolution with a receptive-field kernel (Fig. S23a) to
generate corresponded spike sequences by input neurons according
to grayscale48. Then, the output neurons were updated subjected to
programmed input spikes following the STDPmodels of our devices in
order to represent different digital categories. Three different simu-
lationswere carried outwith different input encoding. For S1, the spike
frequency was proportional to the grayscale of the corresponding
pixel, and no spikes were applied for grayscale ≤ 0. For S2, the grays-
cale higher than 0 was encoded with potentiation spike sequences
while lower than 0 was encoded with depression spike sequences. For
S3, the encoding strategywas similar to S1 but showedan inverse effect
in the first several input spikes. Finally, according to the leaky-and-
integrate-fire (LIF) model49 and winner-take-all strategy, the output
neuronwith themost firing spikes was selected to give the recognition
result. The SNN training in our simulations mainly consisted of two
steps. One was the synapses weights updating and the other one was
categories labeling. For the weights updating step, the membrane
potential of output neurons are accumulated according to the input
spikes and the weights from their corresponding synapses. At the time
if the potential of one output neuron exceeded the threshold and fires,
the connected synapses who translated input spikes that contributed
to the firing behaviors will be strengthened, in which case the changes
of the weights were proportional to the interval between firing time
and the pre-synapse spiking time given by the STDP model in Fig. 5b.
Instead, synapses that didn’t contribute to the firing neuron will be
weakened. Besides, the variable threshold and lateral inhabitation
were also considered which means if an output neuron fired, its
threshold would be increased to keep the homeostasis among other
neurons and it would also lower down the membrane potential of
other output neurons. In the category labeling step, fixing the
threshold and the trained weights, the training set is presented to the
trained network again and the output neurons are labeled to the pat-
terns categories according to its most firing times to the correspond-
ing input image2. Furthermore, the decay values of membrane
potential and the threshold for each neuron are 0.8 and 0.4, relatively.

Data availability
All figure data supporting this study are available within the article and
its Supplementary Information. The raw figure data generated in this
study have been deposited in the Figshare database under accession
code [https://doi.org/10.6084/m9.figshare.20436558].

Code availability
The codes used for the simulations are described in [https://github.
com/xuxinyigege/SNN-demo.git] or are available from the corre-
sponding author upon reasonable request.
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