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Abstract
Plasma in the earth’s magnetosphere is subjected to compression during geomag-
netically active periods and relaxation in subsequent quiet times. Repeated compres-
sion and relaxation is the origin of much of the plasma dynamics and intermittency 
in the near-earth environment. An observable manifestation of compression is the 
thinning of the plasma sheet resulting in magnetic reconnection when the solar wind 
mass, energy, and momentum floods into the magnetosphere culminating in the 
spectacular auroral display. This phenomenon is rich in physics at all scale sizes, 
which are causally interconnected. This poses a formidable challenge in accurately 
modeling the physics. The large-scale processes are fluid-like and are reasonably 
well captured in the global magnetohydrodynamic (MHD) models, but those in the 
smaller scales responsible for dissipation and relaxation that feed back to the larger 
scale dynamics are often in the kinetic regime. The self-consistent generation of the 
small-scale processes and their feedback to the global plasma dynamics remains to 
be fully explored. Plasma compression can lead to the generation of electromagnetic 
fields that distort the particle orbits and introduce new features beyond the purview 
of the MHD framework, such as ambipolar electric fields, unequal plasma drifts 
and currents among species, strong spatial and velocity gradients in gyroscale lay-
ers separating plasmas of different characteristics, etc. These boundary layers are 
regions of intense activity characterized by emissions that are measurable. We study 
the behavior of such compressed plasmas and discuss the relaxation mechanisms 
to understand their measurable signatures as well as their feedback to influence the 
global scale plasma evolution.
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1  Introduction

The holy grail of much of modern science is the comprehensive knowledge of the 
coupling between the micro, meso, and macro scale processes that characterize 
physical phenomena. This is particularly important in magnetized plasmas which 
typically have a very large degree of freedom at all scale sizes. The statistically 
likely state involves a complex interdependence among all of the scales. In the geo-
space plasma undergoing global compression during geomagnetically active periods 
the multiplicity of spatio-temporal scale sizes is astoundingly large. The statistically 
likely state has mostly been addressed by global magnetohydrodynamic (MHD) or 
fluid models, which ignore the contributions from the small-scale processes that 
can be locally dominant. This was understandable in the past when the early space 
probes could hardly resolve smaller scale features. Also, single point measure-
ments from a moving platform made in evolving plasma are not ideal for resolving 
the small-scale details of a fast time scale process. Statistical ensembles generated 
through measurements from repeated satellite visits in a dynamic plasma washes out 
many small-scale features that evolve rapidly. Therefore, the need for understanding 
the contributions from the small-scale processes was not urgent.

However, there are pitfalls in relying on global fluid models alone for an accurate 
assessment of satellite measurements that essentially represent the local physics. 
These models ignore the kinetic physics, which often operate at faster time scales 
at the local level and are necessary for dissipation, which is important for relaxa-
tion and feedback to form a steady state that satellites measure. For example, the 
large-scale MHD models cannot account for the ambipolar effects and hence they 
are inadequate for the physics at ion and electron gyroscales, which are now being 
resolved by multi-point measurements from modern space probe clusters, such 
as NASA’s Magnetospheric Multi-Scale Satellite (MMS) (Burch et  al. 2016), the 
Time History of Events and Macroscale Interactions during Substorms (THEMIS) 
mission Angelopoulos (2008), and the European Space Agency’s Cluster mission 
(Escoubet et al. 1997).

Global scale kinetic simulations that can resolve gyroscales are still not practical. 
These simulations suffer perennial issues such as insufficient mass ratios, insuffi-
cient particles per cell, or use implicit algorithms that ignore the small scale fea-
tures. Thus, these simulations are incapable of accurately resolving the gyroscales 
for capturing ambipolar effects, which as we show in Sect. 2, can be critical to the 
comprehensive understanding of the physics necessary for interpreting satellite 
observations. With technological breakthroughs in the future, resolution of gyro-
scales in global models will become possible. It is, therefore, necessary to assess the 
origin of small-scale processes responsible for relaxation and their feedback mecha-
nisms for a deeper understanding and also to motivate future space missions with 
improved instrumentation to search for them in nature. The objective of this article 
is to highlight the fundamental role of plasma compression in the inter-connected-
ness of physical processes at local and global levels in general, and in particular in 
the earth’s immediate plasma environment through specific examples.
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Although the large-scale models are not yet suitable for addressing the smaller 
scale physics, they are necessary for understanding the global morphology and 
global transport of mass, energy, and momentum that creates the compressed 
plasma layers when plasmas of different characteristics interface. In the near 
term, before first principles kinetic global models become practical, the large-
scale fluid models should be extended to include small scale (sub-grid) kinetic 
physics that is discussed in this article so that the effects of natural saturation 
and dissipation of compression can be accounted for on a larger scale. Clearly, 
therefore, the knowledge of large and small scale processes are like the proverbial 
two sides of a coin, both equally necessary for a comprehensive understanding 
of the salient physics. Since the role of smaller scale processes was not central 
to most previous studies we focus our analysis here to their self-consistent ori-
gin and their contributions to the overall plasma dynamics. Arguably, small-scale 
structures will be increasingly resolved by future technologically-advanced space 
probes, so there is now a need to accurately understand their cause and effect.

2 � Equilibirium structure of compressed plasma layers

To understand the physics of compressed layers it is best to consider specific 
examples of such layers that arise naturally. Weak compressions, which are char-
acterized by scale sizes much larger than an ion gyrodiameter and affect both 
the ions and electrons similarly, are not of interest here. Large-scale models can 
address them. The focus of this article is on stronger compressions, character-
ized by scale sizes comparable to an ion gyrodiameter or less, which affect ions 
and electrons differently and lead to ambipolar effects that are beyond the scope 
of electron-MHD (eMHD) frameworks (Gordeev et  al. 1994). To address such 
conditions, we construct the equilibrium plasma distribution function within the 
compressed layers and analyze the field and flow structures they support in the 
metastable equilibrium with self-consistent electric and magnetic fields as well 
as their inherent spatial and velocity gradients. This specifies the background 
plasma condition, which can then be used as the basis to study their stability, 
evolution, and feedback to establish steady-state structures. Such small-scale 
structures, with scale sizes comparable to ion and electron gyroscales, are being 
resolved with modern space probes, e.g., Fu et al. (2012).

We use relevant constants of motion to construct the appropriate distribution 
function subject to Vlasov–Poisson or Vlasov–Maxwell constraints as necessary. 
Given the background parameters the solutions provide the self-consistent electro-
static and vector potentials, which then fully specify the equilibrium distribution 
function, f0(�,�0(x),�(x)) where �0(x) and �(x) are electrostatic and vector poten-
tials. In effect, the potentials are Bernstein–Green–Kruskal (BGK) (Bernstein et al. 
1957) or Grad–Shafranov (Grad and Rubin 1958; Shafranov 1966) like solutions. 
With the distribution function fully specified, its moments readily provide the static 
background plasma features and their spatial profiles. As input parameters, i.e., 
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boundary conditions, we can use the output from global models if they can accu-
rately produce them. But since these layers are on the order of ion gyroradii and 
smaller, which the current generation global models cannot accurately resolve, we 
rely on high-resolution in situ observations to obtain the input parameters. Given the 
boundary conditions we allow the density and the potential to freely develop subject 
to no constraints except quasi-neutrality. This provides the self-consistent distribu-
tion function, as was demonstrated for plasma sheaths by Sestero (1964).

2.1 � Vlasov–Poisson system: plasma sheet‑lobe interface

Consider the compressed plasma layer that is observed at the interface of the 
plasma sheet and the lobe in the earth’s magnetotail region (Romero et al. 1990) 
as sketched in Fig.  1a. The plasma sheet boundary layer is one of the primary 
regions of transport in the magnetosphere (Eastman et al. 1984). This layer sepa-
rates the hot (thermal energies > 1 KeV) and dense (density ∼ 1cm−3 ) plasma of 
the plasma sheet, which is embedded in closed magnetic field lines of the earth, 
from the cold (thermal energy ∼ 10’s of eV) and tenuous (density ∼ 0.01 cm−3 ) 
plasma in open field lines in the lobe. During geomagnetically active periods, 
known as substorms, when the coupling of the solar wind energy and momen-
tum to the magnetosphere is strong for southward interplanetary magnetic field, 
the quantity of magnetic flux and the field strength in the tail lobes increases 

Fig. 1   a Model profile of density at plasma sheet-lobe interface. b Particle flux data from ISEE 1 (March 
31, 1979) versus UT for two energy channels (2 keV and 6 keV). b Reproduced from Fig. 1 of Romero 
et al. (1990)
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(Stern 2013; Lui 2013). As the tail lobes grow, increasing stress is transmitted 
to the near earth plasma sheet and the boundary layer becomes narrow approach-
ing gyroscales. The narrow boundary layer is characterized by intense broadband 
emissions (Grabbe and Eastman 1984). Figure 1b is an example as observed by 
the ISEE satellite in which the layer was around half of an ion gyroradius within 
which the density drops by two orders of magnitude (Romero et al. 1990).

2.1.1 � Derivation of the equilibrium distribution function

To obtain the equilibrium distribution function of such boundary layers we consider 
the region (see inset in Fig. 1a) where the magnetic field lines are assumed to be in the 
z direction and the pressure gradient is normal to the magnetic field in the x direction. 
(Note that this is not the Geocentric Solar Magnetospheric (GSM) coordinate system.) 
We consider a small region such that the magnetic field lines are nearly straight and the 
curvature that exists close to the equatorial plane can be neglected. The neglect of the 
curvature may be justified because its scale size, L‖ , is much larger than the gradient 
scale size, L

⟂
 , across the magnetic field, i.e., L

⟂
∼ 𝜌i ≪ L|| , and L‖ = (� log(B)∕�s)−1 

where s is the position along the magnetic field line and �i is the ion gyroradius. Equiv-
alently, the particle gyromotion transverse to the magnetic field is much faster than the 
motion along the magnetic field (either bounce motion on a closed field line or free 
streaming time-scale on open field lines). This simplifies the problem by reducing it to 
essentially one dimension across the magnetic field in the x-direction in which the spa-
tial variation is much stronger than it is along the magnetic field.

To represent the pressure gradient in the x-direction we construct a distribution 
function using the relevant constants of motion, which are the guiding center position, 
Xg = x + vy∕�� , and the Hamiltonian, H�(x) = m�v

2∕2 + q��0(x) , �� = q�B∕(m�c) 
is the cyclotron frequency where the subscript � represents the species, m� is the mass, 
q� is the charge and �0(x) is the electrostatic potential, so that it is approximately a 
Maxwellian far away from the boundary layer on either side:

The electron and ion thermal velocity is given by vt� , T� = m�v
2
t�
∕2 is the tempera-

ture away from the layer, and Q� is the distribution of guiding centers, the shape of 
which is motivated by the observed density structures across the layer and is given 
by

N0�R� and N0�S� are the densities in the asymptotic high (plasma sheet) and low-
pressure (lobe) regions respectively, but in the transition layer the density and its 
spatial profile is determined self-consistently. The quantity |S� − R�| is proportional 

(1)f0�(Xg� ,H�(x)) =
N0�

(�v2t�)
3∕2

Q(Xg�) exp

(
−
H�(x)

T�

)
.

(2)Q𝛼(Xg𝛼) =

⎧⎪⎨⎪⎩

R𝛼 Xg𝛼 < Xg1𝛼

R𝛼 + (S𝛼 − R𝛼)
�

Xg𝛼−Xg1𝛼

Xg2𝛼−Xg1𝛼

�
Xg1𝛼 < Xg𝛼 < Xg2𝛼

S𝛼 Xg𝛼 > Xg2𝛼 .



	 Reviews of Modern Plasma Physics (2020) 4:12

1 3

12  Page 6 of 89

to the pressure difference between the asymptotic regions and |Xg2� − Xg1�| repre-
sents the distance over which the pressure changes. These quantities determine the 
magnitude and the scale-size of the electrostatic potential, which in turn determines 
the characteristics of the emissions that are excited at the boundary, as elaborated 
in Sect. 3. Different values of the parameters Xg1� and Xg2� may be chosen to repro-
duce the observed density profile. Hence, the values of the parameters R� , S� , Xg1� , 
and Xg2� are model inputs determined from observations. These parameters reflect 
the global plasma condition, i.e., the compression. Hence, they causally connect the 
small scale processes to the larger scale dynamics.

The density structure within the boundary layer is obtained in terms of the elec-
trostatic potential as the zeroth moment of the distribution function, Eq. (1):

where

erf is the error function, �1,2� = ��(x − Xg1,2�)∕vt� , and ± refers to the species charge. 
The quasi-neutrality, 

∑
� q�n0�(x,�0(x)) = 0 , then determines �0(x) , which in the 

limit that the Debye length is smaller than the plasma scale length (which is well satis-
fied here) is equivalent to solving Poisson’s equation. The existence of the transverse 
electric field reflects the strong spatial variability and nonlocal interactions that exist 
across the magnetic field due to the difference in the electron and ion distributions 
with their characteristic spatial variations. With �0 determined the distribution func-
tion is fully specified and higher moments can be obtained. This distribution function 
satisfies the Vlasov–Poisson system and is similar to the BGK class of solutions.

As in the previous studies Romero et al. (1990), Ganguli et al. (1994), the tem-
perature variation across the layer is ignored in the above. However, there is a tem-
perature gradient between the plasma sheet and the lobe that can affect the static 
background properties. The effects of the temperature gradient can be accounted 
for by considering two different types of plasma population characterized by their 
respective temperature and density in the asymptotic regions of the plasma sheet 
and the lobe, assuming isothermal condition exists in both the regions away from the 
boundary layer. While the plasma sheet population, denoted by subscript ps, goes 
to zero in the lobe, achieved by setting R�,ps = 1 and S�,ps = 0 , the lobe population, 
denoted by subscript l, does just the opposite in the same interval |Xg2� − Xg1�| by 
setting R�,l = 0 and S�,l = 1.

To obtain �0 quasi-neutrality must be maintained between all populations, that is

(3)n0�(x) ≡ � f0�(�,�0(x))d
3
� = N0�

(R� + S�)

2
exp

(
−
e�0(x)

T�

)
I�(x)

(4)
I�(x) =1 ±

�
R� − S�

R� + S�

��
1

�1� − �2�

�

×
�
�2�erf(�2�) − �1�erf(�1�)

�
+

1√
�

�
exp(−�2

2�
) − exp(−�2

1�
)
�

(5)
∑
�

q�(n0�,ps(x,�0(x)) + n0�,l(x,�0(x)) = 0.
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The assumption that the transition in both density and temperature takes place in the 
same interval is for simplicity and can be relaxed. If the intervals differ somewhat, 
then the details of the spatial variation in the potential profile can be affected. How-
ever, these are higher level details and may not be observable due to averaging by 
the waves that are spontaneously generated by the highly non-Maxwellian distribu-
tion functions that develop as we elaborate in Sect. 3.

In addition to the transverse electric field, the interface between the plasma sheet 
and the lobe is also characterized by ion and electron bi-directional beams along the 
magnetic field (Takahashi and Hones 1988). In Sect. 2.2.3, we argue that the origin 
of these beams could be related to the curvature in the magnetic field around the 
equatorial region, which we ignored here, and not necessarily due to the reconnec-
tion process as it is usually assumed.

2.1.2 � Equilibrium features

To understand the effects of a temperature gradient in the boundary layer we first 
consider a case where the density and the temperature gradients are in the same 
direction and then in the opposite direction. Figure 2 is a comparison of the attrib-
utes for an equilibrium with only one temperature as was analyzed in Romero et al. 
(1990) and the two temperature model as described in Sect. 2.1.1, i.e., different pop-
ulations in the lobe and the plasma sheet each characterized by their respective tem-
perature and density. The temperature gradient of both populations is in the same 
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Fig. 2   Comparison between an equilibrium with a single uniform temperature, labeled 1 in the figure, 
and an equilibrium with a uniform temperature to the left of the layer and a different uniform tempera-
ture to the right of the layer, labeled 2 in the figure. a Density of two models. b Temperatures across 
the layer for model 2. c Electrostatic potential for both models. d Pressures across the layer for both 
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direction as the density gradient. This example underscores the kinetic origin of the 
equilibrium electric field. In the two temperature model, the temperature reduces by 
a factor of 50 going from the high density side to the low density side, thus the total 
pressure drop from plasma sheet to lobe is larger. From a fluid (eMHD) perspective 
one would expect that the larger pressure gradient must induce a larger electric field 
to maintain the pressure gradient, however, as one sees in panel (c) this is not the 
case. The electrostatic potential and the magnitude of the electric field is reduced. 
This is because the ambipolar effect, which scales as (�i − �e) averaged over the dis-
tribution, has been reduced by the decrease in the temperature, as ambipolar effects 
vanish with temperature. The x-axis of both plots is normalized to the constant ther-
mal ion gyroradius calculated to the left of the layer. However, in the two tempera-
ture model the actual thermal ion gyroradius decreases by a factor of 

√
Tl∕Tps ≃ 0.2 , 

where Tl is the temperature of the lobe plasma and Tps is the temperature of the 
plasma sheet. This means that the ratio of the ion to electron gyroradius has 
decreased and thus the kinetic source of the electrostatic potential has reduced.

As further illustration of the ambipolar effect we show an extreme case in Fig. 3, 
where we have chosen the asymptotic density to be the same on either side of the 
layer by choosing the distribution of the guiding centers, Q(Xg) , to be a constant but 
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have allowed the temperature to fall from Te0 to 0.05Te0 across the layer. We can see 
that the temperature gradient creates a change in the difference between the ion and 
electron gyroradius which generates the ambipolar electric field and the density in 
the layer adjusts to accommodate the ambipolar potential even though the guiding 
center distribution is constant. We note that in this case there is a clear electron flow 
channel within the layer mostly due to E × B drift and sheared flow in both the ions 
and electrons that can be the source of instabilities as discussed in Sect. 3. This also 
implies that for the temperature gradient driven modes (Rudakov and Sagdeev 1961; 
Pogutse and Eksp 1967; Coppi et al. 1967) the effect of the self-consistent electric 
field must be examined.

2.1.3 � Bulk plasma flows in narrow layers

It is important to understand the origin and nature of the flows and currents in the 
compressed plasma layers because they are the sources of free energy for waves that 
determine the nonlinear evolution of the layers. The bulk flow characteristics change 
as the layer widths become less than an ion gyrodiameter. The flows are associ-
ated with the density and temperature gradients and the ambipolar electric field that 
develop in the layer as a consequence of the compression. The resulting E × B drift 
may not be identical for the electrons and the ions as we elaborate in the following.

From the Vlasov equation we can calculate the equilibrium momentum balance 
and using the geometry of our equilibrium we can solve for the fluid (or bulk) flow 
in the y direction as

(6)V� =
−cEx

B
+

c

B

1

q�n�

dP�xx

dx

Fig. 4   Comparison of fluid 
flows and drift velocities. 
a Electron and ion flows, b 
electron drifts, c ion drifts. 
The parameters are as follows 
Xg1i,e = 0, 0 , Xg2i,e∕�i = 0.2, 0.2 , 
Ri,e = 1.0, 1.0 , Si,e = 0.01, 0.01 , 
Te∕Ti = 1.0 , and 
mi∕me = 1836.0
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where the first term is the E × B drift, VE , and the second term is the diamagnetic 
drift, V∇p . While this relationship is completely general for this geometry and applies 
to fluid and kinetic plasmas, the relative strength of each drift may vary between 
fluid and kinetic approaches. This is because individual particle orbits are important 
in the kinetic approach but not in the fluid approach. It is especially important in 
narrow layers when the particle orbits become species dependent (Sect. 3) and the 
ambipolar effects dominate the physics. This leads to unique static background con-
ditions, which influences the dynamics and hence the observable signatures, as we 
shall see in Sects. 3 and 4.

In Fig. 4, we show the fluid flows in panel (a), the electron drift components in 
panel (b), and the ion drift components in panel (c) for the case presented in Fig. 2 
with no temperature gradient. The layer width is larger than the electron gyroradius 
but smaller than the ion gyroradius. Note that the fluid velocity of the electrons is far 
larger than the ions. In addition, the electron E × B drift and the diamagnetic drift 
are in the same direction within the layer whereas for the ions these drifts are in the 
opposite direction. When the ion drifts combine these components within the layer 
mostly cancel and the net ion fluid flow becomes negligible compared to the elec-
trons. Thus the Hall current is mostly generated by the electron flows and localized 
over electron scales. This can be understood in the following way. The ions have a 
large gyroradius compared to the scale size of the electric field and the density gra-
dient. Therefore, the orbit-averaged E × B drift experienced by the ions is a fraction 
of what is expected from the zero gyroradius limit. This shows up in a fluid repre-
sentation as in Eq. 6, by the development of a fluid diamagnetic drift component in 
the opposite direction to reduce the net ion flow. Note that for broader layer widths 
larger than an ion gyrodiameter the ambipolar electric field will be negligible and 
the net current will be due to electron and ion diamagnetic drifts in the opposite 
directions.

Fig. 5   Maximum electric field 
as a function of the layer width 
normalized to the ion gyro-
radius. The ion and electron 
layer locations are the same. 
The parameters are as follows 
Ri,e = 1.0, 1.0 , Si,e = 0.01, 0.01 , 
Te∕Ti = 1 , and mi∕me = 1836.0
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In narrow layers of widths comparable to the ion gyroradius but larger than an 
electron gyroradius the kinetic origin of the electric field from compression of a 
plasma is shown in Fig. 5. In this figure, we keep all parameters of the equilibrium 
the same but vary the width of the layer �x = Xg1 − Xg2 , over which the density 
changes by a factor of 100. As we decrease the layer width the maximum electric 
field seen in the layer increases (as one would expect from fluid theory) until the 
layer width gets below the ion gyroradius and then saturates asymptotically. The 
ambipolar electric field becomes strong when the density gradient scale size, Ln , 
becomes less than an ion gyrodiameter. Consequently, on average there are insuf-
ficient electrons, with much smaller gyroradii, to charge neutralize the ions over 
their large gyro-orbit. As a result, a charge imbalance is generated proportional 
to ( �i − �e ) averaged over the distribution, which leads to the electric field. As �x 
reduces, this imbalance increases because there are fewer electrons that can overlap 
the larger extent of the ion orbit. When �x falls below an ion gyroradius then there 
are hardly any electrons that can do the job and, as a result, the value of the aver-
aged ( �i − �e ) reaches saturation asymptotically. Hence, the electric field saturates 
and its scale size, L, becomes independent from Ln . In contrast, in a fluid model 
(e.g., eMHD) L∕Ln = 1 remains valid throughout the layer, even as Ln → 0 , because 
the electric field is directly proportional to the density gradient for constant tem-
perature. The proportionality of the electric field with the pressure gradient breaks 

Fig. 6   Equilibrium where the 
guiding center density falls by 
a factor of two from the left to 
the right and the temperature in 
the right asymptotic region is 
twice as high as the temperature 
in the left asymptotic region. 
a Density and Pressures. b 
Density and Temperatures. c 
Electron and ion fluid veloci-
ties. d Electron drift velocities 
normalized to the electron 
thermal velocity defined to 
the left of the layer. e Ion drift 
velocities normalized to the ion 
thermal velocity defined to the 
left of the layer. The parameters 
are as follows Xg1i,e = 0, 0 , 
Xg2i,e∕�i = 0.2, 0.2 , Ri,e = 1, 1 , 
Si,e = 0.5, 0.5 , Te∕Ti = 1.0 , and 
mi∕me = 1836.0 and the tem-
peratures to the right of the layer 
is Te,i1∕Te,i = 2.0, 2.0
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down as the ambipolar electric field saturates for gradient scales smaller than an ion 
gyroradius.

In Fig. 6, we consider the case in which the temperature and the density gradients 
in the transition layer are in the opposite directions. We model this by two plasma 
populations in either side of the layer with characteristic density and temperatures. 
While the guiding center density (i.e., Q(Xg) ) of the low temperature population in 
the left of the transition region drops by a factor of two across a layer that has a 
width of �x = 0.2�i , the guiding center density of the high temperature population in 
the right of the layer rises by a factor of 2 in the same interval. The pressures are the 
same in the asymptotic regions to the left and the right of the layer. Quasi-neutrality 
determines the details of the spatial variation of the density and temperature of each 
species in the layer. Panel (a) shows the electron and ion pressures and the densities. 
One can see that the ion pressure falls across the layer, while the electron pressure 
rises. This can be understood in the following way. Since the layer width is much 
larger than the electron gyroradius the population on the left and right effectively 
mix only within the layer. While the electron temperature increases across the layer, 
the density falls. However, the density reduction does not fall as much as the guid-
ing center density because it is partly compensated by the ambipolar electric field. 
Consequently, the electron pressure inside the layer rises. Since the ion gyroradius 
is much larger than the layer width the ions effectively mix on a scale larger than the 
layer width. So the ion temperature change is much smaller than the electrons across 

Fig. 7   Equilibrium where the 
guiding center density falls by 
a factor of two and the ion tem-
perature in the right asymptotic 
is twice as high as the tempera-
ture in the left asymptotic region 
but the electron temperature is 
only 1.5 times less. a Density 
and Pressures. b Density and 
temperatures. c Electron and 
ion fluid velocities. d Electron 
drift velocities normalized to 
the electron thermal veloc-
ity defined to the left of the 
layer. e Ion drift velocities 
normalized to the ion thermal 
velocity defined to the left 
of the layer. The parameters 
are as follows Xg1i,e = 0, 0 , 
Xg2i,e∕�i = 0.2, 0.2 , Ri,e = 1, 1 , 
Si,e = 0.5, 0.5 , Te∕Ti = 1.0 , and 
mi∕me = 1836.0 and the tem-
peratures to the right of the layer 
is Te,i1∕Te,i = 2.0, 1.5
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the layer. However, quasi-neutrality forces the ion density to be identical to the elec-
trons, which decreases across the layer from left to right. The combination of these 
two effects lowers the ion pressure in the layer. Panel (b) shows that the net electron 
fluid flow dominates the net ion flow. The individual drift components are plotted 
in panels (c) and (d). Both the ion and electron E × B and diamagnetic drifts are in 
opposite directions. In contrast, Fig. 4 showed that in the absence of a temperature 
gradient the electron E × B and diamagnetic drifts were in the same direction. This 
was because both the ions and electrons experienced the identical pressure gradient 
within the layer. In this case, from panel (a) in Fig. 6, we see that the electron and 
ion pressure gradients are in the opposite directions within the layer even though 
asymptotically the pressure is constant on either side of the layer.

While setting the asymptotic pressure to be equal on either side of the layer was 
not a sufficient condition to avoid the production of a pressure gradient in the layer, 
by reducing the asymptotic electron temperature (i.e., pressure) on one side it is pos-
sible to create a region where the electron pressure is almost constant across the 
layer. We illustrate this in Fig. 7. In this case the electron pressure is almost constant 
across the layer and consequently the electrons have only a small diamagnetic drift 
as can be seen in panel (c) even though, asymptoticly, there is a pressure differ-
ence. From panel (d) we see that the ion � × � and the diamagnetic drift cancel 
each other leading to negligible net ion flow as seen in panel (b). Thus, the net flow 
within the layer is primarily due to electron � × � drift. This shows that depending 
on the boundary condition, as in this case with different pressures in the asymp-
totic regions, it is possible to generate a layer with no diamagnetic current but an 
electron Hall current. This is typically, the situation in the dipolarization fronts 
as we shall discuss in Sect. 2.2 (See also Fu et  al. 2012). Also, as we will see in 
Sect. 3, this condition can lead to waves around the lower hybrid frequency driven 
by the gradient in the electron � × � flow that can be misinterpreted to be the lower 
hybrid drift instability, which results in a different nonlinear state that is measur-
able. Interestingly, the eMHD description of such layers with a negligible pressure 
gradient would predict a stable condition. This underscores the importance of the 
kinetic details of compressed plasma layers for accurately analyzing satellite data 
and assessing the salient physics. Satellites measure the local physics that operates 
in the layers where the fluid concept does not hold.

Fig. 8   Equatorial dipolarization 
front geometry
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2.2 � Vlasov–Maxwell system: dipolarization fronts

In Sect.  2.1, we considered compressed plasmas in which electromagnetic cor-
rections could be ignored. This may not be possible for all compressed plasma 
systems, especially when the ratio of the plasma kinetic pressure to the magnetic 
pressure, � , is large such as a dipolarization front (DF) (Nakamura et al. 2002a, 
2009; Runov et al. 2009). The typical geometry of a DF is sketched in Fig. 8. DFs 
are observationally characterized by a rapid rise in the northward component of 
the magnetic field, a large earthward flow velocity, a sharp drop in the plasma 
density, and the onset of broadband wave activity (Deng et  al. 2010). These 
changes in plasma parameters are due to a flux tube rapidly propagating past 
the observing spacecraft. DFs are often observed during bursty bulk flow (BBF) 
events (Angelopoulos et  al. 1992; Runov et  al. 2009), during which large-scale 
magnetic flux tubes that have been depleted of plasma by some event (likely tran-
sient reconnection) propagate rapidly towards the Earth so that the quantity pV5∕3 
(Chen and Wolf 1993) is equalized to the plasma surrounding the transported 
flux-tube, where p is the plasma thermal pressure and V is the flux tube volume. 
Flux tubes that have been depleted more than neighboring flux tubes will have a 
larger earthward velocity, leading to a compression of the plasma at the edge as 
the faster moving flux tube overtakes the slower moving flux tube (see Fig.  9). 
This compression maintains the plasma gradients in a narrow layer with widths 
comparable to an ion gyroradius or smaller as the flux tube propagates Earthward. 
A kinetic equilibrium solution to the Vlasov–Maxwell system is necessary since 
the change in the magnetic field by compression in DFs can be sufficiently large 
especially in high � plasmas (Fletcher et al. 2019).

To address such conditions the model discussed in Sect. 2.1 can be generalized to 
include the electromagnetic effects by considering the Vlasov-Maxwell set of equa-
tions instead of the Vlasov–Poisson system of Sect. 2.1 as shown below:

Fig. 9   Profile of PV5∕3 in 
typical magnetotail. Some 
event depletes flux tubes with 
some maximum depletion. The 
earthward speed of the DF is 
proportional to �PV5∕3 which 
causes the front to steepen as it 
propagates
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In the frame of the DF propagating towards the earth, the variation in the normal 
direction (with scale size of an ion gyroradius) is orders of magnitude stronger than 
in the orthogonal directions. Hence,, for small scale physics, it becomes essentially 
a one-dimensional model, similar to the plasma sheet lobe interface discussed in 
Sect. 2.1. The local magnetic field is in the z direction and varies in the x direction, 
i.e. � = B(x)�z , while a nonuniform electric field also varies in the x direction, i.e., 
Ex(x) as sketched in Fig. 7. We introduce a vector potential, � , where � = � × � 
and � = A(x)�y . The Hamiltonian is

where px , py , and pz are the canonical momenta. The Hamiltonian only depends on 
x and is independent of t, y, and z so H, py , and pz are constants of motion, where 
py = m�vy + m���a(x) . Since the system has only one degree of freedom, the 
dynamics are completely integrable. With a(x) = A(x)∕B0 and B0 is the upstream 
background magnetic field it follows that the guiding center position:

is a constant of motion as well.

2.2.1 � Derivation of the equilibrium distribution function

The construction of the distribution function is similar to that described in 
Sect. 2.1.1, except that we now obtain the moments as a function of a(x) and then 
solve a(x) as a function of x to obtain the spatial profiles of the parameters of interest 
(Fletcher et al. 2019). Similarly, the constants Xg1,2� become a1,2� . The moments of 
the distribution provide the physical attributes of the equilibrium configuration, in 
particular their spatial variations. The zeroth moment (density) is

Note the dependence of various quantities on a(x) in Eq. 10, instead of just x as in 
Sect. 2.1; a(x) will be determined from the first moment (i.e., the current density). 
The electrostatic potential is found via quasineutrality, ne ≃ ni , as before:
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Because ∇n ≠ 0 and ∇B ≠ 0 , and the electric field, � = −∇�0(a) , are in the x direc-
tion, the only nonzero component of the flow is in the y direction. The flow is

and includes the diamagnetic drift, ∇B drift and � × � drift.
The magnetic field produced by the current density inherent in the equilibrium 

distribution function is found by the Ampere law:

where jy =
∑

� q�n�uy� is the current density. With Bz , the vector potential is found 
via
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log

[
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Fig. 10   Electromagnetic effects 
on equilibrium. a Magnetic 
field for different values of �e . 
b Density. c Maximum electric 
field seen over the layer as 
as function of �e . d Vector 
potential as a function of posi-
tion. The legend in panel (d) 
refers to panels (a, b, and d) . 
The parameters are as follows 
a1i,e = 0, 0 , a2i,e∕�i = 0.2, 0.2 , 
Ri,e = 1.0, 1.0 , Si,e = 0.01, 0.01 , 
Te∕Ti = 1.0 , and 
mi∕me = 1836.0
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with appropriate initial conditions. Eqs.  13 and 14 effectively forms the Grad—
Shafranov equation and may not have a readily apparent closed-form solution but 
can be integrated numerically. The current density in Ampere’s law can be written 
explicitly as a function of the vector potential a(x). Thus we can numerically solve 
Eqs. 13 and 14 for the function a(x) which then provides a mapping to x. All plasma 
parameters that have been determined as a function of a(x) can now be found as a 
function of x. An electrostatic approximation is equivalent to specifying a(x) explic-
itly (e.g., for a uniform magnetic field, a(x) = x).

We can continue and consider higher order moments. For the pressure tensor 
all off diagonal terms vanish and p�xx = p�zz = n�T� . The remaining component, 
p�yy , which we do not repeat here involves an integral over vy and can be per-
formed in a manner similar to Eq. 12.

2.2.2 � Electromagnetic correction to the equilibrium distribution function

Figure 10 shows the electromagnetic effects on the static background structure. 
To illustrate the difference we choose the input parameters to be the same as in 
Fig. 2 but we increase �e . As seen from panels (a, c), the electric and magnetic 
fields increase with �e . Panel (b) indicates that the density gradient steepens with 
increasing �e , which explains the increase in the electric field. Panel (d) shows 
that as long as �e is less than unity the electromagnetic effects on static structures 
are minimal. Hence, the use of the simpler electrostatic model of Sect. 2.1.1 to 
understand the static background features is sufficient. However, in dipolarization 
fronts higher �e is typical. Ganguli et  al. (2018) and Fletcher et  al. (2019) have 
analyzed the MMS data in detail and illustrated the difference between the elec-
trostatic and electromagnetic models for a specific observation.

Fig. 11   Geometry along the 
magnetic field line of a DF. 
In a typical DF the variation 
of plasma parameters across 
the magnetic field is stronger 
than the variation along the 
magnetic field which reduces 
the problem to 1D. Since the 
plasma parameters (T,|B|) are 
different at the two points the 
electrostatic potentials assumes 
different values, which leads to a 
potential difference ( �0,2 −�0,1 ) 
along the magnetic field causing 
the parallel electric field



	 Reviews of Modern Plasma Physics (2020) 4:12

1 3

12  Page 18 of 89

2.2.3 � Effects of magnetic field curvature: generation of parallel electric field

In the above discussion of the equilibrium structure of a DF, we considered 
the stronger variation normal to the magnetic field and ignored the slower vari-
ation along the field. For a typical DF the transverse electric field is strongest 
at a particular point; for example marked P1 in Fig.  11. As we move from this 
point along the magnetic field, to point P2 , the x and z coordinates rotate by an 
angle � as indicated in Fig. 11. Since the local values of the magnetic field, tem-
perature, density, etc. are different at positions P1 and P2 along the magnetic 
field, the electrostatic potential will vary, giving rise to an electric field along 
the magnetic field direction proportional to the potential difference between 
the two positions, �02 −�01 . Since �0 ≃ �0(B(s)) , the parallel electric field is 
E‖(s) ≡ −��0(B(s))∕�s = (x∕L‖)Ex(x) . Figure  3c of Ganguli et  al. (2018) shows 
that E‖ peaks in the electron layer and varies in x for a typical DF. Non-thermal 
plasma particles subjected to E‖ will be accelerated along the magnetic field to 
form inhomogeneous beams or flows. The generation of the beam along the field 
line by this process provides the physical basis for a non-reconnection origin of 
the observed beams and its causal connection to the global compression.

Existence of E‖ indicates that the off-diagonal terms of the pressure tensor, 
�� = m� ∫ (� − �)(� − �)f0�d

3
� , are non-zero and are necessary to balance it in 

equilibrium, that is

where �x = sin(�) and �z = cos(�) , and to leading order �∕�y = �∕�z → 0 , because 
the spatial variation is strongest in the x direction at a given location along the mag-
netic field. These equilibrium features along the magnetic field can also be impor-
tant to the dynamics of the compressed plasma layers and affect the measurable 
quantities such as spectral character of the emissions and particle energization. This 
is discussed in Sects. 3.3.2 and 4.3.

2.3 � Vlasov–Maxwell System: field reversed geometry in the magnetotail

While the electromagnetic effects of compression are important in DFs, especially 
when the plasma � is large, electromagnetic effects are essential for the magnetic 
field reversal geometry and current sheets. Current sheets are important in magnetic 
fusion experiments and magnetospheric, solar, and astrophysical dynamics because 
the reversed magnetic field geometry can lead to magnetic reconnection and thus a 
large-scale reconfiguration of the system. The formation of the current sheet is the 
result of a global compression on a plasma layer. When this layer includes opposing 
magnetic fields it can lead to magnetic reconnection, which is often further driven 
by compression of a large fluid scale current sheet down to kinetic scales (Schindler 
and Birn 1993; Sitnov et al. 2006; Nakamura et al. 2002b; Artemyev et al. 2019). 
Tokamak and space plasma researchers have made extensive studies on a related 
problem, namely forced magnetic reconnection (Hahm and Kulsrud 1985; Vekstein 
and Kusano 2017). In this idealized problem (the “Taylor problem”), an equilibrium 

(15)en(x)E‖ = −(� ⋅ ��(x)) ⋅ � = −(�xpxx�x + �xpxz�z),
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current sheet is perturbed at the boundary and the fluctuations induce magnetic 
reconnection often in the MHD context. In this section, we focus instead on the 
kinetic equilibrium that may arise due to global compression just prior to reconnec-
tion and not the forced reconnection process itself.

We extend the boundary layer methodology described in Sects. 2.1 and 2.2 to the 
case of a current sheet with magnetic field reversal (Crabtree et al. 2020) to investi-
gate the effects of an inhomogeneous ambipolar electric field resulting from global 
compression that cannot be transformed away. Traditionally the field reversed case 
has been addressed by the Harris equilibrium (Harris 1957, 1962) which is restric-
tive because it is a specialized distribution designed to produce density and potential 
gradients such that there is no net electric field by using a transformation to a uni-
form velocity frame (described below). As a result, this distribution is inflexible and 
unable to account for the observed spatially localized structures such as embedded 
(McComas et al. 1986; Sergeev et al. 1993; Sanny et al. 1994) and bifurcated cur-
rent sheets (Hoshino et  al. 1996; Asano et  al. 2004; Runov et  al. 2004; Schindler 
and Hesse 2008) that develop during active periods when the plasma sheet thins 
due to large scale compression causing the current sheet to form such structures. We 
remove this inflexibility by constructing a solution to the Vlasov equation that is a 
generalization of the Harris equilibrium (1962) with the inclusion of a non-uniform 
guiding-center distribution: Q�(xg�),

where the definitions of the various quantities are as before. For Q� → 1 Eq.  16 
reduces to the Harris distribution while for U� → 0 it reduces to the compressed 
layer distribution discussed in Sects. 2.1 and 2.2 . The inclusion of the inhomogene-
ous guiding center distribution allows the Harris equilibrium the freedom to develop 
inhomogeneous structures, such as localized current sheets, as a response to external 
compression. As in Sects. 2.1 and 2.2 , we specify only the global compression level 
through the choice of Xg1,2� (or equivalently a1,2� ) and allow the system to develop 
the density, flows, current, and temperature structures self-consistently.

We can compute the density of each species:

where
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As in the Harris equilibrium (1962) we choose Ue∕vte = −Ui∕vti(�e∕�i) by trans-
forming to the frame where this is satisfied, and use quasi-neutrality to solve for the 
electrostatic potential. Interestingly, the potential does not depend on U� and has a 
similar form to the cases considered for the plasma sheet-lobe interface and for the 
dipolarization front:

In the Harris equilibrium, the choice of transformation to a uniformly drifting frame 
is typically made so that quasi-neutrality may be satisfied without an electrostatic 
potential. This choice corresponds to a uniform drift where the inhomogeneity in 
the � × � drift is balanced by the inhomogeneity in the diamagnetic drift so that 
this transformation can be done globally. While the mathematical simplicity and ele-
gance of the transformation is appealing, it constrains the system from developing 
substructures as the current sheet thins due to global compression. Introduction of 
the guiding center distribution, Q� , relaxes this constraint and allows for nonuniform 
flows to develop in response to global compression. Nevertheless the transformation 
still can be made to simplify the expressions.

Next, we calculate the current density using the second moment as

where

Considering a single ion species and electrons we can write down from Ampere’s 
law the equation:

where �i = 8�N0iTi∕B
2
0
 , �i0 = vti∕�i0 , and �i0 = |e|B0∕(mic) . B0 is a reference mag-

netic field value, which in the following, takes the value of the magnetic field in 
the asymptotic limit away from the layer for Q� = 1 in the Harris limit. Unlike the 
potential, the density and current depend on U� . We note that Eq. 22 has the form of 
an equation of motion, where x is the time-variable and a is the position like vari-
able. With the solution of Eq. 22 (using Eq. 19) the equilibrium is fully specified. In 
the limit of constant guiding center distribution, � = 0 , N0i = N0e , Ji = Ui∕vti and 
Je = Ue∕vte , and Ampere’s law becomes

(19)
e�

Te
=

1

1 +
Te

Ti

log

(
N0iIi(a)

N0eIe(a)

)
.

(20)jy� = q� ∫ dvy vyf0� = q�N0�vta exp

(
−
q��

T�
−

U�m���a

T�

)
J�(a)

(21)J�(a) =
1

(�v2t�)
1∕2 ∫ dvy

vy

vt�
Q�

(
a +

vy

��

)
exp

(
−
(vy − U�)

2

v2t�

)
.

(22)
�i0

d2a

dx2
= �i

[
exp

(
−
e�

Ti

)
Ji(a(x))

−
N0evte

N0ivti
exp

(
e�

Te

)
Je(a(x))

]
exp

(
−
Ui2a(x)

vti�i0

)



1 3

Reviews of Modern Plasma Physics (2020) 4:12	 Page 21 of 89  12

where LH = �i0vti∕Ui is the single scale size associated with the Harris equilibrium 
(1962). Equation  23 has solutions a(x) = LH log(cosh(x∕LH)) + LH∕2 log(�i + �e) . 
This is the usual Harris sheet vector potential Harris (1962). Because the Harris 
sheet has only one length scale, LH , it is unable to develop substructures in response 
to the compression. Introduction of another scale, L, associated with Q� , in the gen-
eralized Harris equilibrium, Eq. (16), removes this limitation. L is dependent on the 
compression through the parameters, xg1,2� as discussed in Sects. 2.1 and 2.2. This 
makes the generalized Harris equilibrium a more accurate representation of reality.

Using the same linear ramp functions Q�(xg�) as used in Sects. 2.1 and 2.2 we can 
calculate explicity the functions I� and J� , for the generalized Harris equilibrium

where we have normalized distances by �i0 so that ai� = xgi�∕�i0 and we have defined 
�i� = (−b�u� − a∕�i + ai�)∕b� where u� = U�∕vt� and b� = sign(q�)��∕�i0 is nega-
tive for electrons.

There are two general cases of the differential equation where the effects of the 
non-uniform flow are important. Both are achieved by choosing a1� , a2� such that 
the guiding center distribution changes on a scale comparable to the ion gyroradius. 
This leads to a current due to an ambipolar electric field drift, which corresponds to 
a global compression on the current sheet, in addition to the current that supports the 
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Fig. 12   Phase plane analysis 
for the case when the cur-
rent due to the density layer 
is in the same direction as the 
Harris current. For this case 
a1i,e = 1.1, 0.9 , a2i,e = 0.3, 0.6 , 
Ri,e = 0.1, 0.1 , Si,e = 1.0, 1.0 , 
Ui∕vti = 0.2 , Te∕Ti = 1.0 , and 
mi∕me = 1836.0
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current-sheet in the Harris equilibrium due to the drift U� in the distribution func-
tions. There are two cases to consider (1) when this additional current is in the same 
direction as the Harris current or (2) when it is in the opposite direction to the Harris 
current. In this paper, we only review the case when these currents are aligned. For 
the alternative case see Crabtree et al. (2020).

In this case, we can examine the possible categories of equilibria by examin-
ing the phase-plane analysis of Eq. 22. We do this by solving the differential equa-
tion numerically and plotting da∕dx = Bz∕B0 vs a∕�0 . In Fig.  12 we show the 
phase–plane figure for the case when the currents are in the same direction. In this 
case, we find three different kinds of equilibria that are determined by the choice 
of initial conditions for Bz∕B0 and a∕�0 . The choice of the initial point, e.g., the 
value of a at Bz = 0 , is in general arbitrary. In nature, all initial values are possible. 
The choice of a particular one depends on the global condition, which is beyond the 
purview of this model but may be obtained from a global model. However, once the 
initial condition is determined our model can predict the resulting sub-structures of 
the current sheet corresponding to the level of the global compression. This level is 
represented by both the initial point and the choice of parameters a1,i,e and a2,i,e in 
the guiding center density function Q� . The particular choices of the a1,i,e and a2,i,e 

Fig. 13   Embedded thin current 
sheet. a Vector potential, a∕�i , b 
density, c potential, and d elec-
tron current density across layer. 
In all panels the blue curve cor-
responds to the case with a den-
sity gradient achieved by setting 
Ri,e = 0.1, 0.1 and the orange 
curve shows the Harris sheet 
achieved by setting Ri,e = 1 
and the rest of the parameters 
are as follows a1i,e = 1.0, 0.94 , 
a2i,e = 0.3, 0.56 , Si,e = 1, 1 , 
Ui∕vti = 0.2 , Te∕Ti = 1.0 , and 
mi∕me = 1836.0
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Fig. 14   Embedded thin current 
sheet. a Electron drifts and the 
total fluid velocity across the 
layer normalized to the electron 
thermal velocity. b Ion drifts 
and total fluid velocity normal-
ized to the ion thermal velocity. 
The parameters are the same as 
in Fig. 13
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are indicated by vertical lines in the figure. The first type of solution (in black) is a 
Harris-like equilibrium because the solutions remain in the asymptotic regime of 
the guiding center distribution (i.e., where Q� ≃ const. ) so there is no significant 
additional current. The second type of solution (in blue) reaches its turning point at 
Bz = 0 within the guiding center distribution gradient and has solutions that are flat-
tened in the phase plane. The third type of solution (in red) completely traverses the 
gradient region and becomes elongated in the phase plane.

In Fig. 13, we show the equilibrium attributes corresponding to the blue region 
of curves in Fig.  12. For reference, we added the Harris solution in orange. The 
density gradient scale is comparable to the ion gyroradius and is self-consistently 
determined. This generates an ambipolar electrostatic potential that cannot be trans-
formed away [panel (c)]. The small dip in density (as opposed to a peaked density) 
is necessary to create the electric field in the proper direction (away from the current 
sheet) to generate a current that is in addition to the Harris current. Also note that 
around x = 0 , where the magnetic field vanishes and hence magnetic confinement of 
the particles becomes weak, the electrostatic potential peaks. Consequently, around 
this point the particles can be electrostatically confined. As a result, the velocity pro-
file peaks around the null point, which is midway between the turning points of the 
electrostatic potential (Fig. 14). This creates an ideal situation in which the veloc-
ity gradient driven waves (Sect. 3) can originate in the vicinity of the null region 
and contribute to anomalous resistivity (Romero and Ganguli 1993) necessary for 
the magnetic reconnection process. Further details are discussed in Crabtree et al. 
(2020). The case without a density gradient, i.e. the Harris case, is shown in orange 
in the figure and correspondingly has no electrostatic potential. In panel (d) we 
show that the current density across the layer consists of a thin central current sheet, 
of scale size ∼ L , due to the electron Hall current, embedded in a broader current 
sheet of scale size ∼ LH due to the bulk drifting component of the distribution func-
tion (the U� drift). This solution resembles an embedded thin current sheet which 
are commonly observed in situ by spacecraft (McComas et al. 1986; Sergeev et al. 
1993; Sanny et al. 1994). In Fig. 14 we show the individual drift components. The 
electrons have a small gyro-orbit compared to the electric field scale size and thus 
have a standard E × B drift in the ambipolar electric field. The ions have a larger 
orbit and thus the orbit averaged electric field sampled is smaller, thus the total flow 
of the ions is reduced. This is the source of the additional current.

The existence and the magnitude of the electrostatic potential around the mag-
netic null (Fig. 13c) leads to another interesting question, i.e., how does the electro-
static potential affect the individual particle orbits around the magnetic null? For the 
1D equilibria considered here, the particle orbits are all integrable and the details 
of how the figure eight orbits (Speiser 1965) are modified by the electric field are 
discussed in Crabtree et al. (2020). An open question remains with the addition of a 
Bx (north-south component in our coordinates), so that the magnetic field becomes 
approximately parabolic. Will the orbits still be chaotic near the null-sheet as they 
are in the case without an electric field (Chen and Palmadesso 1986)? If so, how 
does the electrostatic potential affect the extent of the region over which they are 
chaotic? How does the electrostatic potential affect the onset condition for chaos if 
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chaotic orbits can still survive? These questions remain to be debated and answered 
in the future.

Current sheet thinning, which is the result of a global compression, is often 
observed in the magnetotail just prior to the onset of reconnection (Schindler 
and Birn 1993; Sitnov et al. 2006; Nakamura et al. 2002b; Artemyev et al. 2019). 
With a thin embedded current sheet there are narrow layers of electron flow with 
large flow shear which can drive many kinds of instabilities, that would not exist 
in a standard Harris equilibrium. These shear-flow driven instabilities (discussed 
in Sect. 3) can provide a source of anomalous resistivity for the onset of magnetic 
reconnection. Lower-hybrid drift instabilities (LHDI) have been extensively stud-
ied in Harris sheets (Huba et  al. 1980; Huba and Ganguli 1983; Daughton 1999; 
Tummel et  al. 2014) because of their potential to provide a source of anomalous 
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Fig. 16   Bifurcated current 
sheet. a Electron drifts and the 
total fluid velocity across the 
layer normalized to the electron 
thermal velocity. b Ion drifts 
and total fluid velocity normal-
ized to the ion thermal velocity. 
The parameters are the same as 
in Fig. 15
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resistivity, however, these studies were done in a Harris equilibrium where the 
LHDI is confined away from the magnetic null, because LHDI favors strong mag-
netic field and strong density gradients. With compression we expect current sheets 
to develop kinetic scale features as shown here, and also observed in the in situ data, 
such that the source of the instability can be closer to the magnetic field reversal 
region and thus can play a significant role in reconnection. This is a topic for further 
investigation.

In Fig. 15, we show the vector potential in panel (a), the density in panel (b), 
the electrostatic potential in panel (c) and the electron current density in panel (d) 
as a function of the distance across the layer where the magnetic field reversal is 
located at x = 0 . The orange curves correspond to the Harris sheet solution with 
no ambipolar electric field and the blue curves correspond to the new generalized 
Harris solution. This solution corresponds to the class of red curves in Fig.  12 
where we chose a = 0 at the field reversal. Figure 15 shows that near the guiding 
center gradient on either side of the field reversal there is a strong electron Hall 
current that is stronger than the current of scale size LH supported by the uni-
formly drifting component of the distribution function (i.e., the current due to U� ) 
but in the same direction. In Fig. 16 we show the electron drifts (in panel a) and 
ion drifts in panel (b) as well as the total fluid velocities. We see that the E × B 
drift of the electrons (panel a) is in the same direction as the diamagnetic drift in 
the layer which leads to a strong net sheared flow of electrons. Whereas with the 
ions (panel b) they are in opposite directions. This figure shows that the electrons 
experience a significant E × B drift but the ions do not because narrow electric 
fields exist on scales a fraction of the ion gyroradius.

The current sheet solution shown in Figs.  15 and 16 resembles a bifurcated 
current sheet that has been commonly observed by spacecraft in the magnetotail. 
Such bifurcated current sheets have also been observed in 1D particle in cell sim-
ulations (Schindler and Birn 1993). In these simulations the starting point was a 
Harris equilibrium and then the layer was compressed by applying time-depend-
ent in-flows at the boundaries (in x in our coordinate system). A steady state was 
reached in the simulation after compression that resembled the bifurcated equi-
librium shown here in Fig. 15d. Thus, there are simulation studies showing that 
by further compressing a Harris current sheet one can develop ambipolar electric 
fields which drive an electron current and form a bifurcated current sheet that are 
consistent with the Vlasov equilibrium solutions discussed here.

As in Sects. 2.1 and 2.2, we find that even in the field reversed magnetic field 
geometry as the plasma is compressed an electrostatic potential is self-consistently 
generated. This introduces plasma flows that are highly sheared. As we study in Sec. 
3 below, such sheared flows have a natural tendency to relax through emissions that 
ultimately leads to a new reconfigured steady state. Further details of the current 
sheet behavior during active periods and its importance to the magnetic reconnec-
tion process is discussed in Crabtree et al. (2020).
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3 � Plasma response to compression

From Sect. 2, we can conclude that in collisionless environment plasma compression 
generates an ambipolar electric field across the magnetic field when the layer width 
becomes less than an ion gyrodiameter. It also describes some natural examples of 
plasma compression but this can also happen in laboratory devices. The amplitude 
and gradient of the ambipolar field is proportional to the intensity of the compres-
sion, which also creates the pressure gradient that forms in the layer. It is reasonable 
to identify the transverse ambipolar electric field as a surrogate for the compression 
for practical purposes. It is interesting that the electric field is a better surrogate for 
the compression than the pressure gradient because, as we discussed in Sect. 2.1, 
density and temperature gradients could combine to reduce the pressure gradient in 
the layer but still lead to intense electric fields as the scale size of the layer reduces 
with increasing compression. With this identification it becomes possible to quanti-
tatively address the plasma response to compression by studying the variety of linear 
and nonlinear processes that are triggered by the transverse electric field.

At the kinetic level the collective behavior in plasma is sensitive to the individual 
particle orbits. The particle orbits are affected by the electric field gradient, which 
develops self-consistently as a result of the compression. The orbit distortion could 
be quite substantial and can affect the character of the waves emitted and their non-
linear evolution as well as saturation properties. Hence, we review the particle orbit 
modifications due to inhomogeneous transverse electric field.

3.1 � Particle orbit modification due to localized transverse electric field

In a uniform magnetic field the charged particle orbit modification to the gyro-motion 
introduced by a uniform transverse electric field is a uniform � × � drift and this elec-
tric field can be transformed away in the moving frame. Since the � × � drift is mass 
and charge independent, both the electron and ion drifts are identical, which implies 
that there is no net transverse current. This is no longer true for an inhomogeneous 
electric field and has implications for plasma fluctuations. In realistic plasmas, both in 
nature and the laboratory, the transverse electric field encountered is inhomogeneous. 
For example, we found in Sect. 2 the ambipolar electric field that arises self-consist-
ently due to plasma compression is highly nonuniform. Therefore, we analyze the mod-
ifications to particle orbits that such electric field inhomogeneity introduces.

Consider a uniform magnetic field, �0 , in the z direction and an inhomogeneous 
electric field, �0(x) , in the x-direction. The energy per mass for a charged particle 
in this field configuration is K(x) = v2

x
∕2 + v2

y
∕2 + e�0(x)∕m , where �0(x) is the 

external electrostatic potential, i.e., E0 = −d�0(x)∕dx . The equations of motion for 
a charged particle in the x- and y-directions are

(25)v̇x =𝛺vy −𝛺VE(x),

(26)v̇y = −𝛺vx,
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where VE = −cE0(x)∕B is the �0(x) × � drift and dots imply time derivative. Inte-
grating Eq. 26 we obtain a constant of motion Xg = x + vy∕� , which is the guid-
ing center position when the electric field is absent. Expressing vy = �(Xg − x)and 
using it in a Hamiltonian formulation, we get

Minimizing the pseudo potential G(x) at x = �

we obtain the guiding center position � = x + (vy − VE(�))∕� , when an electric field 
is present. For an inhomogeneous electric field this expression is an implicit func-
tion for � and is valid for all particles with the accuracy determined by the number of 
terms in the expansion used below. These definitions help understand the modifica-
tion to the � × � drift due to the inhomogeneity in the electric field.

At steady state the time-averaged y-drift can be obtained from Eq.  25, i.e., 
⟨v̇x⟩ = 0 = 𝛺⟨vy⟩ −𝛺⟨VE(x)⟩ . Expanding around the guiding center position using 
1/L as the expansion parameter (implying weak shear) and retaining terms up to 
O(1∕L2) , where L is the scale size of the transverse electric field, the time averaged 
y-drift is

The first order term, ⟨(x − �)⟩ , is oscillatory and vanishes on time averaging and ⟨vy⟩ 
is time independent. Thus, in general vy = uy + ⟨vy⟩ , where uy is the oscillatory com-
ponent of the velocity in the y-direction. Using the definition of the guiding center, 
x − � = −(vy − VE(�))∕� , in Eq. 29 we can express ⟨vy⟩ as

where �(�) = 1 + (dVE(�)∕d�)∕� . The parameter � is a comparison of the influ-
ences of the electric and magnetic fields on particle orbits. It is also a measure 
of the velocity shear strength, and hence of the plasma compression. � − 1 is the 
ratio of the shear frequency, �s = dVE∕dx , and the gyrofrequency, � . In the limit 
�s → −� the particle orbits become ballistic as in a field free environment. In the 
limit 𝜔s ≫ 𝛺 , the particles execute trapped orbits in the electrostatic potential and 
the electric field dominates. In between the particles respond to both electric and 
magnetic fields. Because of spatial variability there may be regions where each of 
these effects could be pronounced. This makes the typical particle orbits much dif-
ferent from the ideal gyro-orbits in a magnetic field, which can affect the collective 
plasma dynamics. Besides the usual � × � drift represented by the first term in the 
right hand side of Eq. 30, there is also a mass dependent second order term. While 
there is no transverse current in the zeroth order, a second order current arises due to 
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x

2
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2
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electric field curvature, which is proportional to the magnitude of the compression. 
This is an important modification to the mean or bulk plasma transverse flow, which 
is a fluid property. We shall see in Sect. 3.3 that this term is an important contributor 
to plasma collective effects and hence cannot be ignored with respect to the order 
unity term in Eq. 30.

There is another important kinetic effect due to the electric field inhomogene-
ity that affects the individual particle orbits. To understand this we cast the equa-
tion of motion in the guiding center frame Ganguli et al. (1988):

Taking the time derivative and multiplying by u̇y , Eq. 32 becomes u̇yüy = −𝛺u̇yv̇x . 
Substituting v̇x from Eq. 31 yields another constant of motion:

which reduces to the perpendicular velocity for uniform electric case when L → ∞ . 
Using this and solving Eqs. 31 and 32 for the particle velocities and orbits we get

From Eq.  35 ⟨u2
y
⟩ = w2

⟂
∕(2�) + O(V ��2

E
) can be calculated so that ⟨vy⟩ (Eq.  30) 

becomes

Integrating the velocities particle orbits are
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A major departure from the uniform electric field case is an effective renormaliza-
tion of the gyrofrequency. To leading order in the field gradient 𝛺 → 𝛺̄ =

√
𝜂𝛺 . 

Hence, even the oscillatory part of the particle orbits is dependent on the electric 
field gradient and the effective gyrofrequency becomes spatially dependent even 
when the magnetic field is uniform.

Depending on the magnitude and sign of the electric field gradient, � can be 
positive or negative. This has implications for particle orbits. Consider a weak 
electric field gradient, i.e., 𝜌∕L < 1 where � is the particle gyroradius, and 𝜂 > 0 . 
To leading order in the gradient the equation of motion may be simplified to 
v̈x = −𝜂(x)𝛺2vx + O(V ��

E
) , which shows that the particle orbit is either oscillatory or 

divergent depending on the sign of �(x) . Depending on the magnitude of the gradi-
ent, the effective gyroradius, 𝜌̄ = vt∕𝛺̄ , can be larger or smaller compared to the 
uniform electric field case for which � = 1 . This will be reflected in the averaged 
equilibrium quantities as larger or smaller temperatures and affect plasma distribu-
tion functions, as we shall discuss in more detail in Sect. 3.2. While the � → 0 limit 
leads to weak magnetization with large gyroradius resulting in weak magnetic con-
finement of the particles, � → ∞ leads to strong magnetization, which effectively is 
electrostatic confinement of the particles. This property may be especially conse-
quential to the chaotic orbits (Chen 1992) in the neighborhood of the null sheet in 
the magnetic field reversed geometry in the earth’s magnetotail when there is guid-
ing magnetic field normal to the current sheet. As discussed in Sect. 2.3, an elec-
trostatic potential self-consistently develops around the null sheet that has not been 
considered in the studies of the chaotic particle orbits in this region.

In the weak gradient limit, the higher-order derivatives of the electric field are not 
important but they become critical for stronger gradients when 𝜂 < 0 . For 𝜂 < 0 the 
equation of motion becomes v̈x = |𝜂(x)|𝛺2vx + O(V ��

E
) indicating that the restoring 

nature of the force becomes divergent and the particle accelerates along the electric 
field. Gavrishchaka (1996) studied the strong gradient limit. He showed that for strong 
gradients, multiple guiding centers can arise and the particles do not accelerate indefi-
nitely unless the electric field is linear, which is a pathological case. Higher order deriv-
atives prevent indefinite linear acceleration, which results in modified orbits that are 
no longer the ideal gyromotion. Effectively, the particle acquires a larger gyroradius 
around a new guiding center. As shown in Sect. 2, this can have major implications to 
the equilibrium properties when �i becomes small and negative in the narrow layers 
with 𝜌i > L > 𝜌e.

When the scale size of localization reduces much below the gyroradius the gyro-
averaged electric field experienced by the particle reduces until a limit is reached below 
which the electric field becomes negligible (Gavrishchaka 1996). Consequently, the 
particle � × � motion is drastically reduced if not eliminated. In plasmas this can lead to 
an interesting regime when 𝜌i ≫ L > 𝜌e in which the ions do not experience the � × � 
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drift but the electrons do. For short time scale processes, such that 𝛺i ≪ 𝜔 < 𝛺e , the 
ions effectively behave as an unmagnetized fluid while the electrons remain magnet-
ized. This gives rise to a Hall current even in a collisonless uniform plasma. In plasmas 
undergoing compression, or relaxing from it, the scale size of the electric field varies in 
time, which affects the particle orbits differently at different stages of compression or 
relaxation. These changes in particle orbits affect the collective dynamics resulting in 
the observed spectral characteristic that includes broadband emission as we discuss in 
Sect. 3.3.

3.2 � Analytical distribution function

To understand the ramifications of the orbit modification discussed in Sect.  3.1 on 
plasma collective effects it is necessary to develop a kinetic formalism to analyze the 
stability of plasmas including localized DC electric fields. For doing so we must obtain 
a representative zeroth order distribution function appropriate for the initial equilibrium 
state characterized by a homogeneous magnetic field and an inhomogeneous electric 
field in the transverse direction. In Sect. 2, we found such a distribution function for 
arbitrary magnitude of the compression, but it is a solution that uses special functions 
and does not lend itself transparently to perturbative analysis of the stability properties, 
which is ideal for a general understanding of the plasma response to localized electric 
fields. In this Section we construct an analytical distribution function for weak shear, 
i.e. for 𝜌∕L < 1 and 𝜂 > 0 , using the constants of motion H(x) and the guiding center 
position � , which will then be perturbed in Sect. 3.3 to understand the stability of the 
Vlasov equilibrium state of a compressed plasma. Consider the equilibrium distribution 
function introduced by Ganguli et al. (1988):

where N = n0(�t∕(2�))
3∕2 , �t = 1∕v2

t
 , H‖(�) = (vz − V‖(�))2∕2 , vt =

√
T∕m is the 

thermal velocity, and V‖(�) is an inhomogeneous drift along the magnetic field. In 
constructing the distribution function two requirements are imposed: (1) the veloc-
ity integrated distribution function should produce a constant density so that a static 
electric field generated in a quasi-neutral plasma without a significant density gra-
dient can be studied. However, a density gradient, as prevalent in the compressed 
layers discussed in Sect. 2 , can be included through n0(�) when necessary, and (2) 
although any function constructed out of constants of the motion is a Vlasov solu-
tion, the particular choice must reduce to the fluid limit when the temperature T → 0 
. The importance of the latter will become apparent in Sect. 3.3.

In the weak compression limit when 𝜖 = 𝜌∕L < 1 and for V‖(�) = 0 the distribu-
tion function can be simplified. Using vy = uy + ⟨vy⟩ in the argument of distribution 

(39)f0(H(x), �) =
N√
�(�)

g(�)e−�tH(x)e−�tH‖(�),

(40)
g(�) =e

�t

[
e

m
�0(�)+

V2
E

2

]

,
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function Eq. 39 and expanding the argument around the guiding center position it 
can be simplified to,

where terms up to O(V �
E
) are retained. For a uniform electric field, i.e., V �

E
= 0 , � = 1 

and w2
⟂
= v2

x
+ (vy − V0

E
)2 . Equation 41 reduces to a Maxwellian distribution with vy 

shifted by a constant V0
E
 velocity. Since the � × � drift is identical for both electrons 

and ions in collisionless plasma there is no relative drift between the species to feed 
energy to waves and hence the distribution is stable. This shows that global com-
pression results in a deviation from a Maxwellian distribution through the velocity 
gradient, which is a source of free energy for waves. While pressure gradients could, 
in principle, be another source of free energy, temperature and density can arise in 
opposite direction to maintain a low pressure gradient as often found in compressed 
layers (Ohtani et al. 2004; Runov et al. 2011; Schmid et al. 2015; Zhao et al. 2018; 
Chen et al. 2020). However, in Sect. 2 we saw that compression intensifies the veloc-
ity shear that makes the velocity distribution increasingly non-Maxwellian. Thus, in 
a collisionless environment compression triggers a relaxation mechanism to reach 
a steady state through the emission of waves by dissipating the velocity gradient. 
The dependence of the distribution function on the spatial gradient of the veloc-
ity through the parameter � and its asymmetric appearance in the distribution func-
tion is noteworthy. It shows that the temperature in the y direction is preferentially 
affected by the localized electric field across the magnetic field in the x direction, 
which introduces an asymmetry and breaks the gyrotropy of the distribution func-
tion. Agyrotropic distributions are found in the compressed layers, e.g. Chen et al. 
(2020). This may result in a difference in the temperature in the x and y directions 
orthogonal to the magnetic field (Ganguli et al. 2018).

In the following sections, we will analyze how the electric field gradient can 
excite broadband waves that can relax the gradients and hence the compression.

Transforming to the cylindrical coordinates ( w
⟂
 , � , vz ) by using the Jacobian:

the velocity integrals can be performed to obtain n0(x) = n0(1 + O(�2)) (Ganguli 
et al. 1988). This shows that a large localized static electric field can be maintained 
in a quasi-neutral plasma across the magnetic field with negligible density gradient, 
as is observed in the earth’s auroral region (Mozer et al. 1977).

3.3 � Stability of the Vlasov equilibrium

Electric fields encountered in both laboratory and natural plasmas are nonuni-
form, albeit with varying degree of nonuniformity. For example, in Sect.  2, 
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we showed that the ambipolar electric field that develops self-consistently in a 
compressed plasma is highly nonuniform. In Sect. 3.2, we established that such 
electric fields make the equilibrium distribution function non-Maxwellian and 
therefore introduces a source of free energy for waves. In collisionless plasmas 
these waves are a natural response to compression since they relax the shear in 
the electric field so that a steady state can be achieved. Due to the strong spatial 
variability across the magnetic field the plane wave or WKB approximations will 
break down. Also, some of the modes due to transverse flows discussed below 
are essentially nonlocal in nature with no local limit. Hence, the analysis of these 
waves must be treated as an eigenvalue problem. Their dispersion relation is usu-
ally a differential or an integral equation. In the following we highlight the key 
aspects of the derivation of the eigenvalue condition and refer the readers to Gan-
guli et al. (1988) for details.

Linearizing the analytical equilibrium distribution given in Eq.  39 with a 
nonuniform density, N(�) , we get f (x, �, t) = f0(x, �) + f1(x, �, t) . Since the inho-
mogeneity is in the x-direction the fluctuating quantities, e.g., the electrostatic 
potential, are periodic in y- and z- directions but localized in the x-direction, 
i.e., �(r�, t) = exp[−i(�t� − kyy

� − kzz
�)]�(x�) where �(x�) = ∫ dk�

x
exp(ikxx

�)�k(k
�
x
) . 

Then, the perturbed density fluctuation may be obtained as n1(x) = ∫ d3� f1(x, �) . 
Using the orbits given in Eqs. 37, 38 it can be shown that,

where Jm(�) are Bessel functions, �� = k�
⟂
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√
𝜂𝛺 , and 𝜉 = x + uy∕𝛺 . Vg is the bulk fluid drift in the 

plasma and is given by

so that,

where �1 = � − kyVE(�) is the local Doppler shifted frequency, �2 = kyV
��
E
(�)�2∕2�2 

is a frequency that is introduced due to the second derivative, i.e. the curvature, of 
the electric field, �∗ = ky��n�∕� is the diamagnetic drift frequency, and �n = �∕Ln 
where the density gradient scale size Ln = [(dn∕dx)∕n]−1.
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A number of noteworthy features arise compared to the uniform electric field 
case. Unlike the trivial case when a global Doppler shift is appropriate, in the 
nonuniform case a local doppler shift arises and no global transformation can 
eliminate this spatially dependent shift. Because of the spatial inhomogeneity the 
plane wave assumption in the direction of the inhomogeneity is no longer pos-
sible. Higher harmonics of quantized eigenstates are possible, which can broaden 
the frequency and wave vector bandwidth of the emissions. The transverse elec-
tric field becomes an irreducible feature defining the bulk plasma and affects its 
dielectric properties including the normal modes of the system. New time scales, 
represented by the frequencies �1 and �2 , are introduced. A resonance with the 
bulk plasma flow arises that can affect the fluid (macro) stability. Landau and 
cyclotron resonances with individual particles are affected through orbit modi-
fications altering the kinetic (micro) stability of the plasma. Consequently, the 
transverse electric field can affect both the real and imaginary parts of the dis-
persion relation and therefore affect both the real and imaginary parts of the fre-
quency of oscillations. This can vastly alter the known waves that characterize a 
plasma with uniform magnetic field and their nonlinear behavior. Under certain 
conditions the transverse electric field can suppress some waves while in others 
waves can be reinforced (Gavrishchaka et al. 1996). In addition, an entirely new 
class of oscillation becomes possible due to an inhomogeneity in the wave energy 
density introduced by the variable Doppler shift (Ganguli et al. 1985).

Quasi neutrality, i.e., 
∑

�
∫ dkx exp(ikxx)n1�(kx) = 0 , gives the general dis-

persion condition for the waves, in the electrostatic approximation, which is an 
integral equation and cumbersome to solve. However, for weak gradients, i.e. 
𝜌∕L < 1 , � ∼ 1 , and kx ≃ k�

x
 , some simplifications are possible. For example, 

𝜎̂� ∝ (𝜌∕L)2 ≪ 1 so we may use J0(𝜎̂) ∼ J0(𝜎̂
�) ∼ 1 and ignore terms higher than 

m = m� = 0 . Furthermore, kx ≃ k�
x
 implies �� ≃ � and �� ≃ � . In the O(�∕L)2 term 

in the denominator of Eq. 44 we may replace w2
⟂
 , that appears in ⟨vy⟩ , by 2v2

t
 . This 

simplifies F considerably to

It is interesting to note that the electric field curvature related frequency, �2 , that 
appears in the numerator of Eq. 47 originates from the fluid plasma flow, while the 
one in the denominator originates from the individual particle orbit due to its kinetic 
behavior and will be absent in the fluid framework. With these simplifications and 
transforming coordinates from Cartesian, (x, vx, vy, vz) , to cylindrical, (�,w

⟂
,�, vz) , 

the velocity integrals can be readily performed to obtain the density fluctuations:
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where Z(�) = (�)−1∕2 ∫ ∞

−∞
dt exp(−t2)∕(t − �) is the plasma dispersion function, 

𝛤n(b̄) = exp(−b̄)In(b̄) , b̄ = (k
⟂
𝜌)2 , and In(b̄) is the modified Bessel function. The 

weak gradient condition allows the expansion 𝛤l(b̄) = 𝛤l(b) − 𝛤 �
l
(b)𝜌2k2

x
+ O((𝜌kx)

4) , 
where b = (ky�)

2 so that the remaining integrals can be easily performed to obtain

which, in conjunction with the quasi-neutrality condition or the Poisson equation, 
provides the electrostatic dispersion eigenvalue condition in the form of a second 
order differential equation. We analyze the details of the electrostatic modes because 
the wave power in compressed layers are generally found to be concentrated in the 
electrostatic regime. This may be because inhomogeneity forces the eigenstates 
to the gradient scale size, which are comparable to the electron skin depth. This 
makes the wavelengths of the spontaneous emissions from the compressed layers 
comparable to the electron skin depth, which emphasizes the electrostatic character. 
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Fig. 17   Kinetic solutions (for three values of k‖∕k⟂ ) showing that the KH modes are strongly Landau 
damped. The parameters used are � = �i∕L = .1 , � = Ti∕Te = 5 , V̄E = V0E∕vti = 2 , � = mi∕me = 1837 , 
and no density gradient
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However, since some power is also found in the electromagnetic regime, the deriva-
tion has also been generalized to the electromagnetic regime using a fluid model for 
the ions (Peñano and Ganguli 1999, 2000, 2002).

3.3.1 � Low frequency limit: fully magnetized ions and electrons

We first consider the linear plasma response to a weak compression where the 
electric field scale size L > 𝜌i . As discussed in Sect.  3.1, in this case both ions 
and electrons experience identical electric field magnitude since on average they 
sample the electric field throughout their gyro-motion. Hence, to the zeroth order, 
their � × � drift will be identical. Under this condition the fluctuating density 
for both the ions and the electrons is given by Eq. 49 with respective mass and 
charge, which leads to the electrostatic dispersion relation under the quasi neu-
trality condition, 

∑
� q�n1� = 0 . Ignoring terms of the order of (me∕mi)

2 and con-
sidering low frequency waves 𝜔1 < 𝜔LH = 𝜔pi∕(1 + 𝜔2

pe
∕𝛺2

e
)1∕2 , where �LH is the 

lower-hybrid frequency, the n = 0 cyclotron harmonic term for the electrons is 
sufficient. Then, the eigenvalue condition is

where

and � = Ti∕Te , � = mi∕me . There are two branches of oscillations driven by the 
electric field in this equilibrium configuration (Ganguli et al. 1988). These branches 
do not require a density gradient so in the following analysis we set �∗ = 0.

Kelvin–Helmholtz instability branch
 For low frequencies, such that 𝜔1 ≪ n𝛺i , the n = 0,±1 terms for the ions are 

sufficient in Eq. 50. This gives the kinetic generalization of the dispersion relation 
for the Kelvin–Helmholtz (KH) modes. Kinetic solutions of Eq.  50 in this limit 
with E(x) = E0sech

2(x∕L) , L = 10�i , shown in Fig. 17, indicate that the KH mode is 
strongly Landau damped.

The KH instability is the quintessential shear flow driven instability invoked in 
innumerable applications in the fluid phenomenology both in space and laboratory 
plasmas. It is extensively invoked in large-scale fluid models in space plasmas. If 
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long wavelengths, i.e., k‖ → 0 , or cold plasma, i.e., T → 0 , can be realized then this 
may be justified. But caution must be exercised since, as evident from Fig. 17, the 
KH mode is highly sensitive to Landau damping especially for Ti ≥ Te , which is 
usually the case in the magnetosphere and the T → 0 assumption is not realistic. 
Also, because of the inhomogeneous magnetic field structure in the region, which 
may introduce geometrical constraints, very long wavelengths necessary to avoid 
Landau damping may not be possible. Even for long parallel wavelength, k‖ → 0 , 
such that the parallel phase speed of the waves is larger than the ion and electron 
thermal speeds the KH modes can be damped by finite Larmor radius (FLR) effects 
if the perpendicular wavelengths are sufficiently short, which is likely in the thin 
compressed layers. In this case, A(x) and Q(x) reduces to

The Bessel functions diminish the magnitude of the source term for the KH modes, 
which is proportional to �2 as will become clear in Eq.  55. If the perpendicular 
wavelength is also sufficiently long such that b = (ky𝜌i)

2 ≪ 1 , then �0(b) ∼ 1 − b , 
� �
0
(b) ∼ −1 , �1(b) ∼ b∕2 , and � �

1
(b) ∼ 1∕2 . With these values and in the low fre-

quency limit, 𝛺i > 𝜔1 > 𝜔2 , the order unity terms in Q(x) cancel out making the 
second order terms proportional to (�i∕L)2 as the leading order in the eigenvalue 
condition, which then yields the classical fluid KH mode equation (Raleigh 1896; 
Drazin and Howard 1966),

In producing the fluid limit the frequency �2 in the numerator of Q(x), which origi-
nates from the fluid plasma property, combines in equal part with the one in the 
denominator, which originates from the kinetic plasma property, to constitute the 
source term proportional to V ′′

E
 that feeds the KH instability.

Another kinetic effect is gyro-averaging. As a result, the fluid flow due to the 
E × B drift and its derivatives become smaller as the scale size of the velocity shear 
becomes comparable or less than an ion gyroradius. This reduces the curvature of 
the flow and hence lowers the KH source term (see Fig. 19). This shows that the 
kinetic effects are deeply entrenched in the KH mechanism, which can modify the 
source term substantially. The kinetic effects can be strong enough to stabilize the 
instability in a large portion of the parameter space allowed to it within the fluid 
framework thereby limiting its applicability. In addition Keskinen et al. (1988) and 
Satyanarayana et  al. (1987) have shown that a density gradient has a stabilizing 
effect on the KH modes.
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It is important to realize that in the fluid limit all the order unity terms exactly 
cancel each other in Eq.  50, making the otherwise negligible second-order terms 
responsible for KH instability as leading terms. This is critical to the recovery of the 
KH eigenvalue condition in the fluid limit, implying that the KH limit is sensitive to 
the choice of the initial distribution function. A number of different initial distribu-
tion functions are possible and were tried but only the particular one described by 
Eq. 39 yielded the classical KH eigenvalue condition in the fluid limit (Ganguli et al. 
1988; Ganguli 1997). Since many distribution functions are possible but not all of 
them lead to the KH modes, the robustness of the KH instability in warm plasma 
becomes questionable in comparison to the Inhomogeneous Energy Density Driven 
Instability (IEDDI) discussed below, which does not depend on a particular choice 
and therefore may be more ubiquitous.

Inhomogeneous energy density driven instability branch
The above discussion on the Kelvin–Helmholtz limit also implies that in the 

kinetic regime for shorter wavelengths such that the wave phase speed is larger than 
or of the order of the ion thermal velocity but smaller than the electron thermal 
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Fig. 18   Growth rate vs frequency for IEDDI instability as a function of b = (ky�i)
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velocity, i.e. vte > (𝜔1 − n𝛺i)∕k‖ ≥ vti , and �1 ∼ n�i the second order terms in A(x) 
and Q(x) may be neglected with respect to the order unity terms. This regime leads 
to a different branch of oscillations arising due to the inhomogeneity in the wave 
energy density introduced by the velocity shear (Ganguli et al. 1985). Unlike the KH 
instability the IEDDI can be enhanced by a density gradient (Ganguli et al. 1988; 
Liu et al. 2018; Ilyasov et al. 2015). Figure 18 shows the typical linear spectrum of 
the IEDDI. The background electric field profile used is E(x) = E0sech

2(x∕L) with 
L = 3.3�i , � = 5 , VE∕vti = 0.1 , and k‖ = 0.011k

⟂
 . The spectrum remains relatively 
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Fig. 19   Left column shows profiles of the electric field for different values of a with � = 0.3 . The middle 
column shows the profile of the second derivative normalized to the ion thermal gyroradius. The column 
on the right indicates the gyro-averaged second derivative
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unaffected for an electric field with a top hat profile (Fig. 19), although the growth 
rates reduce as the field profile becomes smoother. This is because the IEDDI does 
not depend on the local value of a specific derivative of the electric field like the KH 
mode.

To understand the general characteristics of the two (KH and IEDDI) branches 
of oscillations we have considered a generic electric field profile:

where A = 1∕ sinh2(x0∕a) , x0 = L∕2 , � = �i∕L . At x = x0 the value of E(x) reduces 
to E0∕2 . For a = x0∕ sinh

−1(1) , A = 1 and E(x) = E0sech
2(x∕a) . For a → 0 the pro-

file becomes a top-hat profile. This profile is characterized by two scale lengths, L 
and a. In the natural environment, especially under compression, the static electric 
fields are likely to be generated with multiscale profiles. This also becomes appar-
ent from our equilibrium studies in Sect. 2. In Eq. 56 while L determines the overall 
extent of the localization of the electric field, a determines its local gradient. For 
A → 1 , the scale lengths a and L become comparable. The first column of Fig. 19 
shows the transition of the electric field profile in Eq. 56 from a top hat to a smooth 
sech2(x) as a function of increasing a. The second and the third columns of Fig. 19 
show the second derivative and the gyro-averaged second derivative of the electric 
field. For a → 0 the gyro-averaged second derivative of the electric field becomes 
smaller compared to the un-averaged, indicating that the source of the KH modes 
become weaker due the kinetic effect of gyro-averaging as a decreases. This has a 
stabilizing effect on the KH mode (see Eq. (56) below). On the other hand, electric 
field profiles with smaller a favors the IEDDI mechanism as it primarily depends on 
the localized nature of the electric field rather than the local value of any specific 
derivative (see Eq. (58) below). The gyro-averaging effect becomes more prominent 
as the external compression increases and the scale sizes shrink compared to the ion 
gyroradius. (For the KH instability in neutral fluids there is no gyro-averaging, since 
the particles are not charged, and this stabilizing effect does not exist in a neutral 
medium.)

As discussed in Sect.  3.3, the general eigenvalue condition for the IEDDI is 
an integral equation. For weaker shear it may be approximated to a second order 
differential equation. The numerical solution for the truncated IEDDI eigenvalue 
condition is easier in the a → 0 limit when the electric field profile is top hat like. 
It becomes difficult as the profile becomes smoother with increasing a. The poten-
tial, Q(x)/A(x), of the second order differential equation, Eq. (50), becomes stiff 
and there are a number of roots in close vicinity of each other. This poses consid-
erable difficulty in tracking the IEDDI roots by solving the differential equation. 
Potential barriers develop that obstruct the energy flux away from the negative 
energy density region created by the localized electric field that is necessary for 
the IEDDI (as elucidated in Eq. 61). This may partly be because of the truncation 
of the integral equation to second order. Ganguli et al. (1988) had to use a small 
density gradient in order to circumvent this difficulty to obtain the roots.

(56)E(x) =
E0

A sinh2(x∕a) + 1
,
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Thus, unlike the KH modes, the solution to the eigenvalue problem, Eq.  50, 
with the potential Q/A given by Eqs. 51 and 52 for the IEDDI is not trivial. As 
x → ∞ , Eq. 50 has two asymptotic solutions: one that is exponentially growing 
and the other exponentially decaying. The decaying one is the physical solution, 
but the growing one can easily contaminate numerical solutions. Furthermore, 
Q/A has poles scattered around the complex plane that can also make finding pre-
cise eigenvalues difficult.

The effects of the exponentially growing solution can be minimized signifi-
cantly by using the Riccati transform. This technique was recently applied to 
tearing instabilities and an explanation of how and why the method works was 
provided (Finn et  al. 2020). In this method the potential is transformed using 
u = ��∕� , where the prime denotes an x derivative. This gives the transformed 
equation:

which has asymptotic solutions

where the +∕− refers to growing/decaying solutions. Therefore, the decaying solu-
tion may be chosen at x → ∞ and integrated backwards, using Eq.  57, towards 
x = 0 . For modes with even parity in �(x) , i.e., ��(0) = 0 , u(x) should be zero at 
x = 0 . A complex root finder (e.g. Muller’s method or Newton’s method) finds the 
appropriate eigenvalue, � , that leads to u(0) = 0 . A close guess for an appropriate � 
is still necessary for the root finder to converge reliably.

The spiky nature of Q/A can introduce further difficulty, but as long as the 
poles do not lie exactly on the real axis, a standard numerical integrator that con-
trols accuracy will be sufficient. In the case that the poles are on the real axis (e.g. 
both the real and imaginary parts of � are zero simultaneously), a numerical inte-
grator based on Padé approximations is useful (Fornberg and Weideman 2011). 
These numerical techniques allow robust solutions to be found without the need 
to add any density gradient (as was needed in Ganguli et al. 1988).

Both the KH and IEDDI branches and their applications have been extensively 
studied in the literature and are not repeated here. Instead, below we review the 
physical mechanisms that are responsible for the two branches of oscillations.

Physical origin of the Kelvin–Helmholtz instability
Although both the branches mentioned above are sustained by the velocity gra-

dient, they rely on different mechanisms for drawing the free energy from it. This 
is best understood by analyzing the energy balance conditions. For the KH modes 
the energy quadrature can be derived as Ganguli (1997)

(57)du

dx
= −

Q

A
− u2

(58)u(x → ∞) = ±i

√
Q∞

A∞

,

(59)
�

�t ∫ dx

[|E1|2
8�

+
n0mi

2

|cE1|2
B2

+
n0mi

2
|x1|2VEV

��
E
(x)

]
= 0,
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where E1 = −iky� , x1 = v1x∕(�r − kyVE(x)) , v1x = −cE1y∕B , and �1 and �1 are the 
fluctuating electric field and velocity The first two terms of Eq. 59 are due to the 
fluctuating wave electric field. The first term represents the electrostatic wave energy 
density in vacuum, the second term is the wave-induced kinetic energy of the ions. 
The energy balance condition in Eq. 59 indicates that reduction in the equilibrium 
flow energy, i.e., (⟨VE(x + x1)⟩2 − V2

E
(x)) = �x1�2VE(x)V

��
E
(x) + O((1∕L)3) , at a given 

position x, which occurs due to time averaging by the waves, is available as the free 
energy necessary for the growth of the KH instability. The time averaging removes 
the first derivative and therefore the free energy is proportional to the second deriv-
ative of the dc electric field. Consequently, to leading order the KH instability is 
explicitly dependent on the second derivative, i.e., the curvature, of the electric field. 
This condition may be a limiting factor to the viability of the KH instability com-
pared to its sister instability, the IEDDI, which does not depend on any particular 
velocity derivative as we discuss next.

Physical origin of the IEDDI
When both the electrons and the ions are cold fluids it leads to the classical KH 

description as shown above. The ions play the crucial role while the electrons sim-
ply provide a charge neutralizing background. But for k‖ ≠ 0 , Te ≠ 0 and for waves 
with �1 ∼ n�i the electron response can be adiabatic, i.e., vte > (𝜔1 − n𝛺i)∕k‖ ≥ vti . 
In this limit ignoring the (�i∕L)2 terms in A(x) and Q(x) we obtain the eigenvalue 
condition for the IEDDI branch. To understand the physics of this branch of oscil-
lations we may assume the ion response to be fluid so that b ≪ 1 and the eigenvalue 
condition for the IEDDI reduces to

I IIII

L/2-L/2

E0

B0

x

Fig. 20   Geometry of Inhomogeneous Energy Density Driven Instability (IEDDI)
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where x̄ = x∕𝜌s , �s = cs∕�i , cs = Te∕mi , and k̄y = ky𝜌s . Following the procedure 
outlined in Ganguli (1997) we obtain the condition:

where S = (�∗�� − ���∗)∕2i is the flux and is a positive real number, � is the growth 
rate for the IEDDI, �∗ is the complex conjugate of � , and the primes indicate spatial 
derivatives. In order for Eq. 61 to be valid the second term must be negative which 
implies that the product 𝛾(𝜔r − kyVE) < 0 in at least a finite interval of space, since 
other factors are positive definite. Therefore, the necessary condition for IEDDI 
growth, i.e., 𝛾 > 0 , is that the Doppler shifted frequency (�r − kyVE) be negative in 
some region of space.

To understand the physical consequences of (𝜔r − kyVE) < 0 that can lead to 
wave growth consider the ion-cyclotron waves. The homogeneous electrostatic dis-
persion relation for the ion cyclotron waves is Drummond and Rosenbluth (1962)

The wave energy density is given by

Clearly, the ion cyclotron waves are positive energy density waves. However, intro-
duction of a uniform electric field in the x direction initiates an � × � drift in the 
y-direction and consequently there is a Doppler shift in the dynamical frequency, i.e., 
� → �1 . The energy density in the presence of the Doppler shift is UI ∝ ��1�(�) , 
which can be negative provided 𝜔𝜔1 < 0.

Now consider the simplest example of an inhomogeneous electric field geometry 
given by a piece-wise continuous configuration as shown in Fig. 20 in which a uni-
form electric field is localized in the region-I of extent L. It is clear that because of 
the localized nature of the � × � drift in region-I, the energy density in region-I can 
become negative provided the Doppler shifted frequency 𝜔1 < 0 , while it remains 
positive in region-II. A nonlocal wave packet can couple these two regions so that a 
flow of energy from region-I into region-II will enable the wave to grow. In region-I 
it is a negative energy wave while it is positive energy wave in region-II. The situa-
tion is complementary to the two-stream instability. In that case there are two waves 
one of positive energy density and the other of negative energy density at every 
location and their coupling in velocity space leads to the instability. In the IEDDI 
case there is only one wave but two regions, one in which the wave energy density is 

(60)

[
d2

dx̄2
− k̄2

y
+

(
𝜔1

𝛺i

)2

− 1

]
𝜙 = 0

(61)S +
2

𝛺2
i
∫

∞

−∞

dx̄ 𝛾(𝜔r − kyVE(x))|𝜙|2 = 0,

(62)D(𝜔) = 1 + 𝜏 − 𝛤0(b) −
∑
n>0

2𝜔2

𝜔2 − n2𝛺2
i

𝛤n(b) = 0
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negative and positive in the other. The coupling of these two regions in the configu-
ration space by a wave packet leads to the instability (Ganguli et al. 1985).

This simple idea may be quantified further using the wave-kinetic framework. 
The growth of the wave in region-I implies a loss of energy from that region. By 
conservation of energy, this must be the result of convection of energy into region-II 
in the absence of local sources or sinks. The rate of growth of the total energy deficit 
in region-I is proportional to the growth rate of the wave, the wave energy density 
UI in region-I, and the volume of region-I given by the extent in the x direction of 
region-I times a unit area A

⟂
 in the plane perpendicular to x. The rate of energy con-

vection through A
⟂
 is VgUII , where Vg is the group velocity in the x-direction and UII 

is the wave energy density in region-II, which is positive since the electric field is 
absent in this region. We can then write the power balance condition as

which implies that the growth rate of the IEDDI is � ∝ −UII∕UI . Consequently, if 
UI is negative then the growth rate is positive showing that the growth of the wave 
can be sustained by convection of energy into region-II from region-I. On the other 
hand, if UI is positive then the convection of energy out of region-I would lead to a 
negative growth rate and, therefore, to damping of the waves. This shows that if the 
wave energy density is sufficiently inhomogeneous to change its sign over a small 
distance then it can support wave growth. This is in contrast to the KH mechanism 
in which there is an exchange of energy between the medium and the wave via local 
plasma flow gradient (Eq.  59). In the IEDDI mechanism such an exchange is not 

(64)�UILA⟂
= −VgUIIA⟂

,

Fig. 21   Geometry of the ponderomotive force and nonlinear particle drift



	 Reviews of Modern Plasma Physics (2020) 4:12

1 3

12  Page 44 of 89

necessary. Instead, as described in Eq. 61, the IEDDI is dependent on energy trans-
port from one region to another such that the sign of energy density changes.

In addition to the driving mechanism described above, dissipative mechanisms 
are also present in a realistic system. If the energy gained from the dc electric field 
is larger than the energy dissipated the wave can exhibit a net growth. It is important 
to note that this phenomenon is not restricted to a resonant group of particles in 
velocity space. The only requirement is that (𝜔r − kyVE) < 0 in a localized region. 
Thus, the bulk plasma in this region can participate, which results in a broadband 
frequency spectrum.

Although we used the ion cyclotron waves as a specific example, the IEDD mech-
anism described here can affect other waves in the system and therefore represents 
a genre of instabilities in plasmas that contains a localized electric field. This makes 
the transverse electric field a unique source of free energy.

Magnetron analogy of the IEDDI
A nonlinear description of the waveparticle interaction responsible for IEDDI 

was given by Palmadesso et al. (1986). It was shown that the fluctuating wave elec-
tric field �1 leads to an average secular (ponderomotive) force F2y ∼ O(�E2

1y
) in the 

y-direction (see Fig. 21). This leads to a �2y × � drift in the x-direction, which in the 
small gyroradius limit is u2x ∝ −�(� − kyVE)

−3E2
1y

 , leading to a shift in the particle 
position in the x-direction given by �x = ∫ u2xd� ∼ E2

1y
 . As there is dc electric field 

Fig. 22   Positive feedback loop for IEDDI instability
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E0(x) in the x direction there is a potential energy gain given by E0(x)�x if 
(𝜔r − kyVE) < 0 . Since the particle motion is perpendicular to F2y there can be no 
net increase in the particle energy. Thus, the energy gained by the particles by fall-
ing in the potential of the dc electric field in the x-direction is lost to the waves in the 
y-direction. Consequently, E1y grows and F2y is further enhanced, which closes a 
positive feedback loop as shown in Fig. (22). This leads to the instability in a way 
similar to a magnetron.

The second order ion drift in the direction of the electric field constitutes a polari-
zation current that reduces the magnitude of the external electric field. Such polari-
zation current was observed in the Particle-in-Cell (PIC) simulation of the IEDDI by 
Nishikawa et al. (1988).

3.3.2 � Intermediate frequency limit: partially magnetized ions and fully magnetized 
electrons

As compression increases the self-consistent electric field becomes more intense and 
narrower in scale size. In the intermediate compression regime the scale size is nar-
rower than an ion gyroradius but larger than an electron gyroradius, i.e., 𝜌i > L > 𝜌e . 
As discussed in Sect. 3.1, the ions in this regime do not experience the electric field 
over their entire gyro-orbit. Consequently, the ions experience a lower gyro-averaged 
electric field than the electrons. For sufficiently localized electric field the ions expe-
rience vanishingly small electric field. In this regime for intermediate frequencies 
and short wavelengths, i.e., 𝛺i < 𝜔 < 𝛺e and ky𝜌i > 1 > ky𝜌e , the ions behave as an 
unmagnetized plasma species but the electrons are magnetized. The cyclotron har-
monics for the ions can be integrated to rigorously show their unmagnetized charac-
ter (Ganguli et al. 1988). Since the wave frequency is much smaller than the electron 
cyclotron frequency it will suffice to consider only the n = 0 cyclotron harmonic term 
for the electrons. Also, for simplicity, we assume that the velocity shear that the elec-
trons experience is small so that we may use � = 1 for the electrons. The ions do not 
experience a Doppler shift so the phase speed of the waves can remain larger than the 
thermal velocity, which allows the assumption of fluid ions in which the density pertur-
bation is given by Ganguli et al. (1988),

However, the electrons experience a spatially varying Doppler shift. The phase 
speed of the waves can become comparable to the electron thermal velocity at some 
locations. So for generality we use the kinetic response for the electron, which leads 
to their density perturbation:

(65)n1i(x) =
1

4�qi

�2
pi

�2

�
k2
y
+ k2‖ −

d2

dx2

�
�(x).
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Combining Eqs. 65 and 66 with the Poisson equation we get the general eigenvalue 
condition of the EIH instability in the kinetic limit that includes the electron dia-
magnetic drift.

Equation (67) shows that there are two competing terms proportional to the density 
gradient ( �∗ ) and the velocity gradient ( �1 = � − kyVE and �2 ), which can domi-
nate the evolution of compressed layers through the waves they generate. The rela-
tive dominance of the two terms in ( � − kyVE + �2 − �∗ ) in the dispersion relation 
decides which way the system will evolve. If kyVE ∼ (kyL)𝜔s ≫ 𝜔∗ then the veloc-
ity shear driven processes clearly dominate because on velocity gradient scale the 
density variation is minimal. The eigenmodes generated in the compressed layers 
generally have kyL ∼ 1 . Therefore, if the shear frequency is comparable to the dia-
magnetic drift frequency then a comparison of �2 with �∗ determines the dominant 
process as we elaborate in Figs. 25 and 26 in the following.
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Fig. 23   Eigenfunctions for Ln∕L = 1 and Ln∕L = ∞ and � = 1 with kyL chosen to maximize the growth 
rate
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In the long wavelength ( k‖ → 0 , ky → 0 ) limit Eq. 67 reduces to

Equation  68 includes the modified two-stream instability (McBride et  al. 1972), 
which was not in Fletcher et  al. (2019) since k‖ = 0 was assumed. The modified 
two-stream instability dispersion relation can be recovered if the electric field cur-
vature and the density gradient are neglected in Eq. 68. Including the density gra-
dient Eq. 68 represents the lower-hybrid drift instability Krall and Liewer (1971). 
The lower-hybrid drift modes depend upon the density gradient and hence their 
growth relaxes the density gradient. If the density gradient is ignored but V ′′

E
≠ 0 

then Eq. 68 reduces to the eigenvalue condition for the electron-ion hybrid (EIH) 
instability Ganguli et al. (1988) where the free energy is obtained from the sheared 
electron flow through fast time averaging by the perturbations Ganguli et al. (1988) 
similar to the KH modes discussed earlier. The growth of the EIH waves relaxes the 
velocity shear.

From Eq. 68 it is clear that the intermediate frequency waves depend on a double 
resonance � ≃ �LH ≃ kyVE(x) . The spatial variation of kyVE(x) is particularly impor-
tant because at some point in x the argument of the Z function in Eq. 67 can become 
of the order of unity so that Landau damping cannot be ignored unless k‖ is suf-
ficiently small. Hence, the limit k‖ → 0 where Landau damping is eliminated and 
both the EIH and LHD instability growth are maximized is used to determine the 
most likely modes that will arise in the intermediate frequency range in compressed 
plasma. The modified two stream instability, whose modification due to shear flow 
has not been studied sufficiently in the literature, requires k‖ ≠ 0 . It is included in 
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Fig. 24   Linear growth rate as a function of real frequency, colored by associated kyL value. On the left 
is the fluid case, where the electric field balances the density gradient. On the right is the limit of the 
kinetic case. Reproduced from Fig. 14 of Fletcher et al. (2019)
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the last term in Eq. 68 but its contribution is minimal because for k‖ → 0 the growth 
rate of the intermediate frequency waves is largest.

For dense plasmas of interest 𝜔pe > 𝛺e , so �LH ≃
√
(�i�e) and the first factor in 

the third term of Eq. 68 is about one. In the k‖ → 0 limit the eigenmode equation, 
Eq. 68, in dimensionless form becomes
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Fig. 25   Ratio of the two driving terms in Eq. 69 as a function of x (left) and as a function of layer width 
(right). Reproduced from Fig. 15 of Fletcher et al. (2019)
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where the width of the transition layer is equal to the ion thermal gryoradius. Red indicates that the EIH 
drive term dominates
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where x̄ = x∕L , 𝜔̄ = 𝜔∕𝜔LH , k̄ = kyL , V̄E = VE∕V0 , V0 = cE0∕B0 , �s = V0∕L�e is 
the shear parameter.

Figure 23 shows two solutions to Eq. 69 (i.e. the real and imaginary parts of the 
eigenfunctions). Figure 24 is a plot of the linear growth rate and the real frequency 
obtained from solving the eigenvalue condition given in Eq 69. The eigenfunctions 
and eigenvalues were found via a shooting method in which the large x̄ solution 
goes to zero at infinity. The density profile is n(x) = n0tanh(x∕Ln) and the electron 
flow profile by E(x) = E0sech

2(x∕L) are chosen to match the self-consistent low � 
(Ganguli et al. 2018) dipolarization front discussed in Sect. 2.2 and its parameters 
are based on the MMS observations. As the shear parameter is increased, imply-
ing higher compression, the growth rate increases. The real frequency is around the 
lower-hybrid frequency, while Doppler shifting broadens the frequency spectrum. 
The bandwidth increases with shear parameter.

In the two cases shown, the growth peaks for kyL ∼ 1 . The wavelength is much 
longer than �e since L ≫ 𝜌e . As Ln∕L is reduced, the wavelengths become shorter 
and in the limit of uniform electric field ( L → ∞ ) it is well known that ky�e ∼ 1 
(Krall and Liewer 1971). Note that these discrete eigenmodes in x are still con-
tinuously dependent on ky . The parallel wave vector, k‖ , is assumed to be zero. In 
Sect.  4.2 the nonlinear evolution of this equilibrium condition and its observable 
signatures are studied by PIC simulation and show that the spectral bandwidth 
becomes even broader nonlinearly as lower frequency waves are naturally triggered 
with increasing L.

Since Eq.  69 contains both density and electric field gradients, an interesting 
question is which one of these is responsible for the waves?

To answer this question, Fig. 25 compares the relative strength of the LHD and 
the EIH terms in Eq. 69. The left plot shows the ratio of these EIH to LHD instability 
source terms for the low beta MMS parameters (Ganguli et al. 2018; Fletcher et al. 
2019), which can be reproduced by our electrostatic equilibrium model discussed 
in Sect.  2.1 with Ri = Re = 1 , Si = Se = 0.793 , Xg1e = −0.438�i , Xg2e = −0.346�i , 
Xg1i = −0.0390�i , Xg2i = 0.850�i , n0 = 0.355 cm−3 , Te0 = 654.62 eV, Ti∕Te = 6.714 , 
and B0 = 12.55 nT. It shows that even for weak compression, as in the case consid-
ered, the EIH term is three times as large as the LHD term. In the stronger com-
pression high beta case (Fig. 26), the EIH term is more than an order of magnitude 
larger. The right plot shows the maximum of the ratio of EIH/LHD terms as the 
compression is increased. This plot was made by using the same parameters as the 
low � case and compressing and expanding the layer via choice of Xg1� and Xg2� . 
Clearly, the EIH instability dominates over the LHD instability as long as the scale 
size of the density gradient is comparable to ion gyroradius or less.

Magnetic field gradients result in a stronger EIH instability (Romero and Gan-
guli 1994), but a weaker LHD instability (Davidson et al. 1977). In Sect. 2.1, we 
showed that a gradient in the temperature can also develop, which can make the 
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pressure gradient in the layer (and hence the diamagnetic drift) weaker, but not 
significantly affect the ambipolar electric field. This also favors the EIH instabil-
ity over the LHD instability. Thus, the EIH mechanism will dominate wave gen-
eration and hence the nonlinear evolution in a compressed plasma system in the 
intermediate frequency range.

In general, the self-consistent generation of an ambipolar electric field is una-
voidable in warm plasmas with a density gradient scale size comparable to or less 
than the ion gyroradius. This raises an interesting question: How ubiquitous in 
nature is the classical LHD instability? To examine this we generalize the Fig. 25 
results to include electromagnetic effects in the equilibrium condition and compare 
the relative strengths of the two drivers of the electrostatic instability in Eq. 66: (1) 
𝛼sV̄

��
E
(x̄) , which is the shear-driven EIH instability, and (2) −L∕Ln , which is the den-

sity gradient-driven LHD instability. Using the electromagnetic equilibrium model 
of Sect. 2.2 we can investigate the magnitude of these two driving terms. In general 
for Ti∕Te > 1 , which is typical in space plasmas (particularly in the magnetotail), we 
find that the EIH instability drive dominates. In the opposite limit Te∕Ti < 1 , which 
is typical in laboratory plasmas, LHD tends to dominate. Figure 26 shows the same 
ratio of terms for different values of �e . As �e increases, the EIH term becomes more 
dominant because the ambipolar electric field intensifies with � , as shown in Fig. 10. 
For typical conditions in the magnetotail (high �e and Ti∕Te ), the EIH term is greater 
than the LHD term. The dominance of the EIH over LHD wave becomes further evi-
dent in the nonlinear analysis in Sect. 4.

3.3.3 � Higher frequency transverse flow shear driven modes

As compression increases further so that 𝜌i ≫ L ≥ 𝜌e then even higher frequency 
modes with �1 ≤ �e are possible. For these modes the ions do not play any 

Fig. 27   Geometry for parallel shear flow
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important role other than charge neutralizing background and they may be ignored. 
The dispersion relations will become similar to the KH and IEDDI discussed in 
Sect. 3.3.1 but for the electron species. By symmetry for 𝜔1 < 𝛺e the electron KH 
modes can be recovered and for �1 ∼ n�e the electron IEDDI can be recovered.

3.3.4 � Stability of the Vlasov equilibrium Including V‖(x)

In Sects. 3.3.1 through 3.3.3 we discussed the waves that are driven by the shear 
in transverse flows. The transverse gradient in the parallel flows can also sponta-
neously generate short wavelength high frequency waves within the layer that can 
relax the gradients and lead to a steady state. Large scale parallel propagating MHD 
waves (such as the kink or Alfvén modes) may also be generated due to the flux tube 
perturbation or the velocity shear (current gradients), however, these low-frequecy 
long-wavelength waves will not be effective in the relaxation of the stress that builds 
up transverse to the magnetic field as discussed in Sec. 2. Hence, they are not of 
immediate interest to us here.

As discussed in Sect. 2.2.3, large-scale magnetic field curvature can lead to a poten-
tial difference along the magnetic field. This originates because the global compression 
is strongest at a particular point and decreases away from it and hence the transverse 
electrostatic potential generated by compression also decreases proportionately away 
from this point along the magnetic field. The potential difference along the field line 
results in a magnetic field aligned electric field as sketched in Fig. 11. Non-thermal par-
ticles can be accelerated by the parallel electric field to form a beam along the magnetic 
field direction, with a transverse spatial gradient, i.e., dV‖∕dx . The gradient in the par-
allel flow is also a source for free energy. This has been established both theoretically 
(D’Angelo 1965; Lakhina 1987; Gavrishchaka et al. 1998, 2000; Ganguli et al. 2002) 
and through laboratory experiments (D’Angelo 1965; Agrimson et al. 2001, 2002; Teo-
dorescu et al. 2002a, b). Like its transverse counterpart the spatial gradient in the paral-
lel flow can also support a hierarchy of oscillations. Below we summarize the physical 
origin of these waves.

Consider a uniform magnetic field in the z direction with a transverse gradient in the 
flow along the magnetic field ( dV‖∕dx ). The background plasma condition is sketched 
in Fig. 27. Unlike the transverse flow shear, the parallel flow shear does not affect the 
particle gyro-motion, which simplifies the analysis considerably. For simplicity con-
sider a locally linear flow, i.e., V‖,�(x) = V‖,� + (dV‖,�∕dx)x where V‖,� and dV‖,�∕dx 
are constants and � represents the species and let dV‖,e∕dx = dV‖,i∕dx ≡ dV‖∕dx . 
Transforming to the ion frame (i.e., V‖,i = 0 ) so that V‖,e ≡ V‖ represents the relative 
electron-ion parallel drift. Although a nonlocal eigenvalue condition is desirable, a 
local limit exists for the parallel flow shear driven modes.

First consider the general dispersion relation for waves with 𝜔 ≪ 𝛺e , so that only 
the n = 0 cyclotron harmonic of the electrons is sufficient. For this condition the dis-
persion relation is Ganguli et al. (2002)

(70)1 +
∑
n

�n(b)Fni + �(1 + F0e) = 0,
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In the absence of shear (i.e., dV‖∕dx ≡ V �
‖ = 0 ), the dispersion relation reduces to 

the case of a homogeneous flow as discussed by Drummond and Rosenbluth (1962) 
and applied to space plasmas by Kindel and Kennel (1971).

Low frequency limit: sub-cyclotron frequency waves
We first discusss low (sub-cyclotron) frequency ion-acoustic waves for which 

only the n = 0 cyclotron harmonic term for the ions is sufficient. For long wave-
length, i.e., b ≪ 1 , �0(b) ∼ 1 , and Eq. 70 simplifies to

where �0 = �∕(
√
2�k‖�vti) , �e = (� − k‖V‖)∕(

√
2�k‖�vte) , �2 = (1 − kyV

�
‖∕k‖�i) , 

𝜎̂2 = 1 + kyV
�
‖∕(k‖𝛺i𝜇) . Assuming the ions to be fluid ( 𝜉0 ≫ 1 ) and electrons to be 

Boltzmann ( 𝜉e ≪ 1 ) and equating the real part of Eq. 73 to zero we get
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Fig. 28   Critical Drift vs temperature ratio. Blue curve is for the classical current driven electrostatic ion 
acoustic mode (CDEIA). Orange curve is for the shear modified ion acoustic-instability
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where 𝜎̂ ∼ 1 is used since the ion to electron mass ratio 𝜇 ≫ 1 . In the absence of 
shear ( dV‖∕dx = 0 , i.e. �2 = 1 ) the classical ion acoustic limit is recovered. If 𝜎2 < 0 
then Eq. 74 reduces to the dispersion relation for the D’Angelo instability (1965) for 
which the real frequency �r = 0 in the drifting ion frame. The D’Angelo instabil-
ity has been the subject of numerous space and laboratory applications (Catto et al. 
1973; Huba 1981; Gary and Schwartz 1981).

The 𝜎2 > 1 regime was addressed by Gavrishchaka et al. (1998). In this regime 
Eq. 73 indicates that it is possible to obtain a shear modified ion-acoustic (SMIA) 
wave with interesting properties. Equation 74 indicates that shear can increase the 
parallel phase speed ( �r∕k‖ ) of the ion acoustic mode by the factor � . For a large 
enough � the phase speed can be sufficiently increased so that ion Landau damp-
ing is reduced or eliminated. Consequently, a much lower threshold for the ion 
acoustic mode can be realized even for Ti > Te . The growth rate expression for the 
SMIA instability is given by Gavrishchaka et al. (1998),

The classical ion-acoustic wave growth rate is recovered for �2 = 1 . From Eq.  75 
it is clear that � can rapidly lower the ion Landau damping as seen from the expo-
nential dependence of the second term in the bracket. The critical drift is obtained 
from Eq. 75 by setting the growth rate to zero and minimizing over the propagation 
angle ( k‖∕ky ) as is plotted in Fig. 28 with dV‖∕dx = 0.1�i . It is found that even a 
small shear can reduce the critical drift for the ion acoustic instability by orders of 
magnitude and put it below that of the classical ion cyclotron wave (Drummond and 
Rosenbluth 1962) for a wide range of � = Ti∕Te but the shear modified ion acous-
tics waves propagate more obliquely than their classical counterpart. This is a major 
departure from the conclusion of Kindel and Kennel (1971); that among the waves 
driven by a field aligned current in the earth’s ionosphere the current driven ion 
cyclotron instability has the lowest threshold. Kindel and Kennel’s conclusion had 
extensively guided the interpretation of in-situ data for a long time until Gavrish-
chaka et al. reexamined the data (1999) with shear modified instabilities in mind.

Low frequency limit: ion cyclotron frequency waves
To study the ion cyclotron frequency regime we return to Eq. 70 but relax the 

constraints of low frequency and long wavelength used to study the shear modi-
fied ion acoustic waves. We first examine how a gradient in the parallel plasma flow 
affects the threshold condition for ion cyclotron waves by analyzing the expression 
for critical relative drift for the ion cyclotron waves in small and large shear lim-
its. For the marginal stability condition ( � = 0 ) the imaginary part of the dispersion 
relation, Eq. 70, is set equal to zero, that is

(74)𝜔 = kzcs𝜎∕𝜎̂ ∼ kzcs𝜎
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where �n = (� − n�i)∕(
√
2�k‖�vti).

Dividing Eq. 76 throughout by �0 and considering the electrons to be adiabatic, 
i.e., 𝜉e ≪ 1 , we get,

Under ordinary conditions (ky∕k‖)(dV‖∕dx)∕𝛺i ≪ 𝜇 , which implies that the shear 
in the electron flow is not as critical as it is in the ion flow and can be ignored. 
Since only a specific resonant cyclotron harmonic term dominates, Equation 77 can 
be simplified by considering only that resonant term in the summation to obtain an 
expression for the critical relative drift:

For no shear, V �
‖ = 0 , the critical drift reduces to

This is the critical drift for the homogeneous current driven ion cyclotron instability 
(CDICI) (Drummond and Rosenbluth 1962). Since the relative sign between the two 
terms within the bracket is positive and each term is positive definite, the critical 
drift is always greater than the wave phase speed and increases for higher harmonics 
since �r ∼ n�i.

From Eq. 78, it may appear that for small but non-negligible and positive val-
ues of (kyV �

‖∕k‖�i)(1 − n�i∕�r) there can be a substantial reduction in the critical 
drift for the current driven ion cyclotron instability because of reduction in the 
ion cyclotron damping. However, this is not possible and can be understood by 
rewriting Eq. 78 as

where the second term represents the correction to the critical drift for the current 
driven ion cyclotron instability due to shear. A necessary condition for the CDICI is 
that V‖ > 𝜔r∕k‖ . For a given magnitude of �dV‖∕dx�∕𝛺i ≪ 1 , it is clear from Eq. 80 
that the shear correction is small unless the ratio ky∕k‖ can be made large. How-
ever, as ky increases, the real frequency of the wave approaches harmonics of the ion 
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cyclotron frequency and consequently (1 − n�i∕�r) becomes small which makes 
the shear correction small. Alternately, when kz decreases the wave phase speed 
increases and the condition V‖ > 𝜔r∕k‖ is violated. Thus, for realistic (small to mod-
erate) values of the shear magnitude, the reduction in the threshold current for the 
current driven ion cyclotron instability by a gradient in the ion parallel flow is mini-
mal at best. This is unlike the current driven ion acoustic mode case as discussed in 
the previous section.

Although a realistic magnitude of shear is ineffective in reducing the threshold 
current for the ion cyclotron instability, it allows for a novel method to extract 
free energy from the spatial gradient of the ion flow, which does not involve a 
resonance of parallel phase speed with the relative drift speed. To illustrate this 
we return to Eq. 78 and consider the limit (kyV �

‖∕k‖𝛺i)(1 − n𝛺i∕𝜔r) ≫ 1 , in which 
Eq. 78 reduces to,

For 𝜔r > n𝛺i each term of Eq. 81 is still positive but the relative sign between them 
is now negative, which allows for V‖c = 0 . In this regime the ion flow gradient can 
support ion cyclotron waves. This can be understood by examining the relevant 
terms in the growth rate (Ganguli et al. 2002):

The first term in the bracket represents a balance between growth due to the relative 
field-aligned drift and electron Landau damping while the second term represents 
cyclotron damping. Provided the drift speed exceeds the wave phase speed and the 
magnitude of the first term is large enough to overcome the cyclotron damping a net 
growth for the ion cyclotron waves can be realized. This is the classical case where 
inverse electron Landau damping leads to wave growth (Drummond and Rosenbluth 
1962). For the homogeneous case (i.e., dV‖∕dx = 0 ), the second term is positive def-
inite and always leads to damping. However, if (kyV �

‖∕kz𝛺i)(1 − n𝛺i∕𝜔r) > 1 then 
the sign of the cyclotron damping can be changed and the second term can provide a 
net growth even for V‖ = 0 . This possibility for wave growth is facilitated by veloc-
ity shear via inverse cyclotron damping and favors short perpendicular and long par-
allel wavelengths, which makes the term proportional to shear large even when the 
magnitude of shear is small. A necessary condition for ion cyclotron instability due 
to inverse cyclotron damping is

where Vpy and Vpz are ion cyclotron wave phase speeds in the y and z directions.
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Another noteworthy property introduced by the ion flow gradient is in the gen-
eration of higher harmonics. From Eq. 79 we see that in the homogeneous case 
the nth harmonic requires a much larger drift than the first harmonic. However, 
for �r ∼ n�i the critical shear necessary to excite the nth harmonic of the gradi-
ent driven ion cyclotron mode, can be expressed as

(84)
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Fig. 29   First 20 ion cyclotron harmonics. a Growth rate vs frequency, b Growth rate vs ky�i , c growth 
rate vs doppler shifted frequency with VE = 0.3vti . Here Vde = 0 (current-free case), V �

d
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For short wavelengths, i.e., b ≫ 1 , �n ∼ 1∕
√
2�b and hence, to leading order, the 

critical shear is independent of the harmonic number. Consequently, a number of 
higher harmonics can be simultaneously generated by the shear magnitude neces-
sary for exciting the fundamental harmonic. This is quantitatively shown in Fig. 29 
[also in Gavrishchaka et  al. (2000)], which indicates about 20 ion cyclotron har-
monics can be generated for typical ionospheric plasma parameters. This figure also 
shows that when the Doppler broadening due to a transverse dc electric field is taken 
into account the discrete spectra around individual cyclotron harmonics overlap to 
form a continuous broadband spectrum such as those found in satellite observations. 
This remarkable ability of velocity shear to excite multiples of ion cyclotron har-
monics simultaneously via inverse cyclotron damping is similar to the ion cyclo-
tron maser mechanism (Tsang and Hafizi 1987) that results in broadband spectral 
signature. However, important differences with the ion cyclotron maser instability 
exist. The ion cyclotron maser instability is an electromagnetic non-resonant insta-
bility while we discuss the electrostatic limit of a resonant instability. Also, in this 
mechanism the background magnetic field is uniform unlike the ion cyclotron maser 
mechanism.

High frequency limit
As discussed in the previous section multiple harmonics of the ion cyclo-

tron frequencies can be generated by the shear in parallel flows. In the presence 
of a parallel sheared flow and a transverse electric field the waves generated at 
the cyclotron harmonics can overlap due to Doppler shift, which can result in 

Fig. 30   Hierarchy of compression driven waves as a function of the magnitude of the compression shown 
in the first column as shear scale size and the associated wave frequencies. Green corresponds to those 
cases which have been theoretically predicted and experimentally validated in the laboratory. Yellow 
corresponds to the cases which have been theoretically predicted but yet to be validated in a laboratory 
experiment. White indicates the cases that are expected to be there by symmetry arguments but yet to be 
rigorously analyzed
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a broadband spectrum. Romero et  al. (1992b) discussed the intermediate and 
higher frequency modes due to parallel flow shear in which ions can be assumed 
as an unmagnetized species but the electrons remain magnetized for waves in the 
frequency range 𝛺i < 𝜔 < 𝛺e and wavelengths in the range ky𝜌i > 1 > ky𝜌e.

For even shorter time scales with frequencies 𝜔 > 𝛺e both ions and electrons 
behave as unmagnetized species. Mikhailovskii (1974) has shown that flow shear in 
this regime can drive modes around the plasma frequency.

Thus, the combination of low, intermediate, and high frequency emissions that 
are generated by parallel velocity shear can also lead to a broadband spectral signa-
ture similar to that due to transverse velocity shear.

3.3.5 � Hierarchy of compression driven waves

Summarizing the survey of velocity shear driven waves in Sects. 3.3.1–3.3.4 it 
can be concluded that the linear response of a magnetized plasma to compression 
is to generate shear driven waves with frequencies and wave-vectors that scale 
as the compression. In Sect. 2, we showed that plasma compression self-consist-
ently generates ambipolar electric fields that lead to sheared flows both along and 
across the magnetic field. This establishes the causal connection of the shear-
driven waves with plasma compression. Cumulatively, the gradient in the parallel 
and perpendicular flows constitute a rich source for waves in a broad frequency 
and wave vector band. In a collisionless environment their emission is neces-
sary to relax the stress that builds up in the layer due to compression. Figure 30 
schematically shows the impressive breadth of the frequency range involved with 
these waves starting from much below the ion cyclotron frequency and stretching 
to above the electron cyclotron and plasma frequencies that can be generated by a 
magnetized plasma system undergoing compression.

In the dynamic phase, the relaxing gradient can successively excite the next 
lower frequency wave in the hierarchy when the gradient scale size is sufficiently 
relaxed to turn off the higher frequency wave, or vice-versa with a steepening 
gradient (Ganguli et al. 1994). Both relaxation and compression are longer time 
scale processes compared to the shear driven wave time scales. This can result 
in emissions in a very broad frequency band in a quasi-static background that is 
usually observed in the in-situ data. As a proof of principle a recent laboratory 
experiment has demonstrated this phenomenon in a limited frequency range that 
was possible within the constraints of a laboratory device (DuBois et  al. 2014) 
as we elaborate in Sect. 5. Frequency overlap due to Doppler shift and nonlinear 
processes, such as scattering, vortex merging, etc., can smooth out the spectrum 
and contribute to seamless frequency broadening as typically observed by satel-
lites. This naturally raises a question of how these waves affect the plasma-satu-
rated state that a satellite observes. This is the topic of discussion in the following 
section.



1 3

Reviews of Modern Plasma Physics (2020) 4:12	 Page 59 of 89  12

4 � Nonlinear evolution and feedback of the waves to global dynamics

We now examine how the linear fluctuations induced by the compression evolve, 
the dominant nonlinear processes that relax the gradients to establish a steady state, 
and the measurable signatures of the compression driven waves. For this we need 
numerical simulations. However, due to the huge disparity in space and time scales 
it is difficult to simulate the entire chain of physics in a single simulation. Hence, 
we focus on limited frequency and wavelength domains in order to understand the 
development of the spectral signature and the steady state features in the nonlinear 
stage along with other nonlinear characteristics.

4.1 � Low frequency waves in transverse sheared flows

The ion cyclotron frequency range IEDDI was first invoked to understand observa-
tions of ion cyclotron waves associated with a transverse electric field (Mozer et al. 
1977) in the auroral region in which the magnetic field aligned current was minimal 
and the background plasma density was nearly uniform. Soon after the IEDDI mech-
anism was proposed (Ganguli et al. 1985) Pritchett (1987) conducted a PIC simula-
tion using the simple top hat piecewise continuous electric field model (Fig.  20), 
which was intended as a proof-of-principle calculation of the IEDDI in the initial 
article. Because the electric field in the top hat model changes its value discon-
tinuously the simulation showed immediate decay of the electric field due to gyro-
averaging, which led Pritchett to conclude that the IEDDI does not exist and identi-
fied the fluctuations in the simulation as due to the KH instability. This initiated 
the derivation of an appropriate equilibrium distribution function in warm plasma 
that includes a sheared transverse electric field and is suitable for the initial loading 
in a computer simulation (Ganguli et al. 1988) (also briefly described in Sect. 3.2). 
This distribution function was used to obtain the general kinetic dispersion relation, 

Fig. 31   Average ion flow veloc-
ity vy(x) at �it = 0 , 160, and 
240. Reproduced from Fig. 5 of 
Nishikawa et al. (1988)
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which showed the existence of both the IEDDI and the KH branches in the proper 
parameter regimes as summarized in Sect. 3.3.1. Nishikawa et al. (1988, 1990) used 
this equilibrium distribution function to successfully simulate the IEDDI and dem-
onstrated that it was another branch of oscillation in magnetized plasmas with trans-
verse electric field distinct from the KH instability. The simulation also showed the 
development of a polarization current along the electric field direction that reduced 
the magnitude of the external electric field as the waves grew and a bursty spectrum 
of waves, which were consistent with the nonlinear IEDDI (ion magnetron) model of 
Palmadesso et al. (1986). More important to this article, as shown in Fig. 31 (repro-
duced from Nishikawa et al. (1988)), the growth of the instability relaxed the flow 
gradient by reducing its peak value and broadening its spatial extent. This estab-
lishes that the strong transverse electric field gradients that develop as a response 
to plasma compression (Sect. 2) can relax through the emission of the shear driven 
modes discussed in Sect. 3.

The IEDDI was later validated in laboratory experiments in NRL (Amatucci et al. 
1996) and elsewhere (Koepke et  al. 1994) as discussed in Sect.  5. These labora-
tory experiments consistently showed that the IEDDI fluctuations have azimuthal 
mode number m = 1 . Interestingly, Hojo et al. (1995) showed that there can be no 
m = 1 KH mode in a cylindrical geometry. The KH wave growth peaks for higher m 
numbers in a cylindrical geometry (Kent et al. 1969; Jassby 1970, 1972) while the 
IEDDI growth maximizes for m = 1 (Peñano et al. 1998). This is an experimental 
confirmation that the IEDDI is distinct from the KH instability and that they form 
separate branches of oscillations in magnetized plasma with transverse sheared 
flow. Subsequently, Pritchett (1993) also tested the Ganguli et  al. (1988) equilib-
rium model and concluded that it led to more reliable results although he could not 
resolve the IEDDI in his simulation accurately.

4.2 � Intermediate frequency waves in transverse sheared flows

In the auroral region the observed velocity shear scale size is generally larger than 
the ion gyroradius, albeit in the saturated state. This is the weak shear regime. How-
ever, as we found in Sect.  2, the scale size of the velocity shear that develops in 

Fig. 32   Spatial profiles of the 
electron cross-field flow at 
different times indicating the 
relaxation of the velocity gradi-
ent. Reproduced from Fig. 16 of 
Romero and Ganguli (1993)
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the boundary layers can be in the intermediate range, i.e., 𝜌i > L > 𝜌e . Also in this 
region wave power around the lower hybrid frequency range has been observed. The 
generation of both electrostatic and electromagnetic waves around the lower hybrid 
frequency by velocity gradient has been extensively studied. Simulations (Romero 
and Ganguli 1993) indicate that these waves produce anomalous viscosity and relax 
the velocity gradients to reach a steady state. In the following sections we study the 
nonlinear evolution of these waves leading to formation of the steady state and the 
observable signatures by numerical simulation.

4.2.1 � Plasma sheet‑lobe interface

In understanding the behavior in the compressed plasma layer formed at the plasma 
sheet-lobe interface (Sect. 2.1) (Romero et al. 1992b) used the Ganguli et al. (1988) 
equilibrium (Eq. 41) for the electrons and an unmagnetized Maxwellian distribution 
for the ions in a 2D electrostatic PIC model to simulate the spontaneous genera-
tion of the intermediate frequency EIH waves discussed in Sect. 3.3.2. The localized 
electric field used in the simulation was in the intermediate scale length defined by 
𝜌i > L > 𝜌e and was self-consistent with the density gradient. The simulation was 
motivated by the ISEE satellite observation in the plasma sheet-lobe interface as 
shown in Fig.  1. Spontaneous growth of the lower hybrid waves was seen in the 
boundary layer. The waves formed vortices as expected since vorticity develops nat-
urally in the linear perturbation if the equilibrium flow is inhomogeneous. The scale 
size of the vortices was comparable to the velocity gradient scale size. Figure 32, 
[reproduced from Romero and Ganguli (1993)], shows that the growth of the EIH 
waves relaxed the velocity gradient similar to that observed in the IEDDI simula-
tion of Nishikawa et al. (1990). Interestingly, the density gradient was not relaxed 
by the EIH instability. The difference in the two simulations was that in the Nishi-
kawa et al. (1990) simulation of ion cyclotron IEDDI the electric field was localized 
over a distance larger than �i while in the Romero and Ganguli (1993) simulation 

Fig. 33   Plasma density, n, (left) and electrostatic potential, � , (right) at t ≃ 28∕�LH . Waves in the y 
direction and vortices are both visible. Reproduced from Figure 16 of Fletcher et al. (2019)
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it was localized over a smaller distance. The inference that can be drawn from the 
two simulations is that if the initial compression is large such that L < 𝜌i , then the 
growth of the lower hybrid waves could relax the velocity gradient so that L > 𝜌i at 
steady state. While this saturates the lower hybrid waves, the flow shear will be in 
the right magnitude to trigger the lower frequency IEDDI. When IEDDI relaxes the 
gradient even further so that L ≫ 𝜌i then the KH modes could be triggered and so 
on. This nonlinear cascade to appropriate frequencies as the background gradient 
scale changes is how the shear driven modes can lead to a broadband signature of 
the emissions that are observed in the compressed plasmas (Grabbe and Eastman 
1984). In addition, the Nishikawa et al. (1990) simulation showed the coalescence 
of smaller vortices into larger ones implying that the wavelengths become larger 
with time due to nonlinear vortex merging. Thus, these lower hybrid waves have 
large wavelengths, roughly of the order of the shear scale length rather than an �e as 
expected from the LHDI, discussed in Sect. 3.3.2. The spatio-temporal scales asso-
ciated with the cascading frequencies are so large that it is difficult to simulate the 
entire bandwidth in a single simulation.

The initial Romero et al. simulation (1992b) was followed up with more detailed 
studies of the nonlinear signatures of these waves, effects of magnetic field inho-
mogeneity on these waves, as well as their contribution to viscosity and resistivity, 
which provide the steady state and feedback to the larger scale dynamics (Romero 
and Ganguli 1993, 1994).

Fig. 34   Wavelet spectrum of the electric field as a function of position near t ≃ 28∕�LH . The density gra-
dient is steepest near x∕�e = 0 . Reproduced from Figure 17 of Fletcher et al. (2019)
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4.2.2 � Dipolarization front

More recently, the Romero and Ganguli (1993) simulation model was applied to the 
DF plasmas (Fletcher et  al. 2019) and generalized to the electromagnetic regime 
(Lin et  al. 2019). The plasma parameters used in the simulation (Fletcher et  al. 
2019) were �pe∕�e = 3.59 , �e = 0.035 , me∕mi = 1∕400 , and the peak of the ambi-
polar field consistent with the density gradient is given by cE0∕B0 = 0.32vte . The 
simulation time is 175∕�LH , the spatial domain is 21�i by 21�i (1200 by 1200 cells), 
boundaries are periodic in all directions, and 537 million particles were used.

Figure 33 [from Fletcher et al. (2019)] shows a snapshot of the plasma density 
and electrostatic potential from the simulation at t ≃ 28∕�LH . These images show 
only a part of the simulation domain in order to make features more visible. Kinking 
is seen in the density. Vortices are formed on the lower density (right) side of the 
layer as well; these are visible in the potential (for example, one vortex is located 
at ( x∕�i,y∕�i)≃(1,-1.5)). Wave activity in the y direction with kyL ∼ 1 is apparent in 
both the density and the potential. The growth rate of the field energy in the simula-
tion is consistent with the growth rate found by solving Eq. 69. The mass ratio of 
the simulation is low in order to facilitate quick simulation but a physical mass ratio 
would enhance the ambipolar electric field and further drive these waves.

Figure 34 is a wavelet spectrum as a function of x position; the layer is centered 
near x∕�i = 0 . It is similar to what a satellite would measure if it were flying through 
the simulated layer or a DF would propagate past the observing satellite. There are 
broadband waves spread around and above the lower hybrid frequency. The lower 
frequency power �∕�LH ≃ 0.1 is consistent with vortices being generated and prop-
agating away from the layer.

As time passes in the simulation, the density gradient is more-or-less unaf-
fected while the electron flow in the y direction and accompanying electric field 
in the x direction is significantly relaxed, indicating the dominance of shear-driven 
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Fig. 35   Driving terms for the EIH instability and LHD instability (left) and the field energy fraction 
(right) in the simulation as a function of time. Reproduced from Fig. 18 of Fletcher et al. (2019)
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instability (EIH) over the density gradient-driven instability (LHD). Figure 35 shows 
the evolution of these two separate source terms responsible for the EIH and the 
LHD instabilities respectively (as in the numerator of the last term Eq. 69) and the 
field energy as a function of simulation time. Instability growth and wave emission 
occurs before t = 20∕�LH . The dotted black line is the theoretical linear growth pre-
dicted by Eq. 69. During the growth phase, the EIH source term (and thus the veloc-
ity shear) is clearly falling, suggesting that the shear is the source of free energy for 
the waves. The simulation reaches a saturated state at t ≃ 20∕�LH.

Fig. 36   Nonlinear spectral signature from a PIC simulation. (left) Frequency spectrum without a trans-
verse DC electric field. (right) Frequency spectrum including a transverse DC electric field. Figures 
reproduced from Fig. 3 of Ganguli et al. (2002)

Fig. 37   Electrostatic wave 
potential obtained from PIC 
simulations after �it = 40 (a), 
60 (b), 100 (c), and the cor-
responding ion velocity parallel 
to the magnetic field (d) shown 
by solid, dashed, and dot-dashed 
lines, respectively. Reproduced 
from Fig. 3 of Gavrishchaka 
et al. (2000)
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4.3 � Ion cyclotron waves in parallel sheared flows

In Sects. 4.1 and 4.2, we studied the nonlinear evolution of sheared transverse flows. 
We found that spontaneous generation of shear-driven waves relaxes the velocity 
gradient that leads to saturation. The frequency and wavelengths of these waves 
scale as the shear magnitude. Nonlinear vortex merging results in longer wave-
lengths. Relaxation of stronger shear leads to weaker shear which can then drive 
lower frequency modes. This cascade leads to the broadband spectrum of emissions 
that are often observed. Now we examine the nonlinear behavior of parallel flow 
shear driven waves.

The nonlinear evolution of the parallel flow shear driven modes discussed in 
Sect.  3.3.4 was investigated with PIC simulations by Gavrishchaka et  al. (2000). 
The simulations included full ion dynamics but used a gyrocenter approximation for 
the electrons. To clearly resolve short wavelength modes 900 particles per cell were 
used with grid size � = �D = 0.2�i and mass ratio � = 1837 . A drifting Maxwellian 
(H+, e–) plasma is initially loaded, with equal ion and electron temperatures. The 
magnetic field is slightly tilted such that k‖∕ky = 0.01 . A parallel drift velocity V‖(x) 
is assigned to ions to obtain an inhomogeneous velocity profile. The magnitude of 
the flow is initially specified and not reinforced during the simulation. To character-
ize the role of spatial gradients in the flow, the relative drift between the ions and the 
electrons, i.e., field aligned current, is kept at a minimum. Its value does not exceed 
3vti locally while on average it is negligible. Periodic boundary conditions are used 
in both x and y directions. The magnitude of shear �dV‖∕dx�max = 2�i is used for the 
simulation. For this case the simulation box size was specified by Lx = 64�D and 
Ly = 64�D.

The saturated spectral signature in the simulation without and with a uniform 
transverse electric field shown in Fig.  36. On the left is the wave spectrum with-
out a transverse electric field. In this simulation several ion cyclotron harmonics are 
excited with discrete harmonic structure. While on the right a uniform transverse dc 
electric field is included with VE = 0.8vi . The washing out of the harmonic struc-
ture and broadening of the spectrum due to overlap of the discrete spectra around 
� = 0 and multiple cyclotron harmonics becomes evident. Larger Doppler broaden-
ing either by large VE or large bandwidth, �ky , or a combination of both, could lead 
to an even broader spectrum.

The meso-scale effect of the parallel flow shear driven instability (normal-
ized by their initial values) is given in Fig.  37 (reproduced from Gavrishchaka 
et  al. (2000)). To highlight the role of shorter wavelength ion cyclotron waves 
the longer wavelengths are removed by using a (64 × 16)�d size simulation box in 
this case. Figure 37 illustrates that the effect of the ion cyclotron wave generation 
is relaxation of the flow gradient due to wave-induced viscosity. This is similar 
to the effect of the transverse shear driven waves but not as strong. This may 
be because the orbit modifications due to a localized transverse electric field is 
absent in this case. Thus the primary conclusion is that the compression gener-
ated velocity shear either in parallel or transverse flow leads to broadband emis-
sions accompanied by relaxation of the velocity gradient that leads to a steady 
state and determines the observed features that are measured by satellites.
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In the above we discussed only the part of the simulation that showed the forma-
tion of the broadband spectral signature and relaxation of the velocity shear due to 
these waves, which is central to this article. However, the simulation also explained 
a number of interesting auroral observations that are not elaborated here. For a 
detailed account of these we refer to Gavrishchaka et al. (1998, 2000) and Ganguli 
et al. (2002).

While numerical simulations can provide accurate results of the saturated states 
for the chosen specific plasma conditions they are not general enough to draw 
broad conclusions regarding an evolving plasma encompassing a variety of physics 
because there are multiple nonlinear dynamical paths that may not be realized in a 
single simulation. This is especially true in the case we discuss here where there is 
coupling between a very wide range of scales sizes and the phenomenon cascades 
over a wide range of scales with different physics that is hard to reproduce in one 
simulation. In Sect.  6 we discuss some ideas using modern machine learning and 
artificial intelligence capabilities to address this extensive cross-scale coupling. 
However, in the future, physics based comprehensive analytical models will have 
to be developed using the intuitions obtained from the limited simulations. This 
remains an open area of further research.

Fig. 38   NRL Space Physics Simulation chamber. Main chamber section (1.8 m by 5 m) is on the right. 
Source chamber (0.55 m by 2 m) is on the left
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5 � Laboratory experiments of compressed plasma behavior

In Sects. 2–4, we outlined the theoretical foundation for understanding compressed 
plasma behavior and showed evidence of its characteristics in uncontrolled natural 
plasmas from in situ data gathered from satellites. The challenge with in situ data 
is in characterization of a specific phenomenon in constantly evolving plasmas sub-
ject to uncertain external forces. As a result, typically there are many competing 
theories of space plasma phenomena that are difficult to distinguish unambiguously. 
Because of this difficulty, scaled laboratory experiments have become a valuable 
tool in understanding space plasma processes. Not every aspect of space plasmas 
can be faithfully scaled in the laboratory. Large MHD scale phenomena are espe-
cially challenging. But others, such as cause and effects of waves and various coher-
ent processes in the meso and micro scales, which are difficult to resolve by in situ 
measurements in space, are amenable to laboratory scaling. In the modern era, sat-
ellite clusters with multi-point measurements and global imaging using energetic 
neutral atom (ENA) (Roelof 1987; Henderson et al. 1997; Burch 2000; McComas 
et al. 2009) have been used to overcome some of the difficulties with resolving the 
space-time ambiguity in measurements made from a single moving platform. While 
multi-point measurements from a cluster of satellites help, they are expensive and 
there are still limitations of measurements made from a moving platform at multiple 
scales. Global imaging using ENA can resolve the space-time ambiguity but can not 
resolve the small or fast scales that are important for many geospace plasma pro-
cesses. An area where laboratory experiments can contribute substantially is in the 
understanding of the effects of highly localized regions of strong spatial variability, 
such as the strong gradients over ion or electron gyroscales associated with com-
pressed plasmas discussed in this article. These phenomena can be scaled reasona-
bly well in the laboratory. The Space Chamber at the US Naval Research Laboratory 

Table 1   Comparison of plasma parameters in the ionosphere, the Radiation Belts (RB), and the NRL 
SPSC. The last three rows (bold) are important dimensionless plasma parameters that can be reproduced 
in the NRL SPSC

Parameter Ionosphere RB(L = 2) NRL SPSC

plasma density ( cm−3) 103 − 106 ∼ 103 104 − 1012

electron temp. (eV) ∼ 0.3 ∼ 1 0.1 − 4

ion temp. (eV) ∼ 0.3 0.3 0.05
magnetic field strength (G) ∼ 0.3 ∼ 0.04 up to 750 G (SC) 

& 250 G (MC)
plasma freq. (Hz) 105 − 107 5 × 105 106 − 1010

ion gyrofrequency (Hz) ∼ 30 ( O+) ∼ 60 ( H+) ∼ 103 − 105 ( Ar+)
electron gyrofrequency (Hz) ∼ 106 ∼ 105 106 − 109
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(NRL) is especially designed for understanding space plasma phenomena, such as 
the behavior of compressed plasmas.

The NRL Space Physics Simulation Chamber (SPSC), shown in Fig.  38, con-
sists of two sections that can be operated separately or in conjunction. The main 
chamber section is 1.8 m in diameter and 5 m long, while the source chamber sec-
tion provides an additional 0.55 m-diameter, 2-m long experimental volume. The 
steady-state magnetic field strength in the main and source chamber sections can be 
controlled up to 220 G and 750 G respectively, generated by 12 independently con-
trolled water-cooled magnets capable of shaping the axial magnetic field. Each sec-
tion has a separate plasma source. The main chamber has a 1-m x 1-m hot filament 
plasma source capable of generating plasmas with a range of density n ∼ 104 − 1010 
cm−3 , electron temperature Te ∼ 0.1 − 2 eV, and ion temperature Ti ∼ 0.05 eV. The 
source chamber has a helicon source capable of generating 30-cm diameter plasmas 
with the following parameters: n ∼ 108 − 1012 cm−3 , Te ∼ 1 − 6 eV, and Ti ∼ 0.1 eV. 
When the helicon plasma transitions from the source chamber to the main chamber, 
the plasma column diameter can be increased up to the full 1.8-m diameter of the 
main chamber by controlling the ratio of magnetic field strength between the two 
chamber sections. The large plasma size yields up to  150 ion gyroradii across the 
column. Table 1 shows the ranges of normalized plasma parameters accessible in 
the NRL SPSC with comparisons to those found in the ionosphere and the radiation 
belts .

We discuss a few experiments performed in the NRL Space Chamber and else-
where that were designed to understand the effects of strong velocity and pressure 
gradients typical of compressed plasmas. As discussed in Sect.  2, the localized 
electric field can be considered a surrogate for the global compression. Thus, by 

Fig. 39   Examples of end electrode methods for producing localized radial electric fields and sheared azi-
muthal � × � flows in cylindrically symmetric laboratory plasmas
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Fig. 40   Threshold value of current density as a function of transverse, localized, dc electric (TLE) field 
strength. Current densities are normalized to the zero-TLE-strength value. Error bars represent one stand-
ard deviation. Reproduced from Fig. 2 of Amatucci et al. (1994)

Fig. 41   a Perpendicular ion 
temperature Ti∕Ti0 , b mode 
amplitude, c Doppler-shifted 
mode frequency, and (d) 
transverse electric field strength 
plotted as a function of the 
normalized ionneutral colli-
sion frequency. A transition 
from a wave-heating regime 
( 𝜈in∕𝛺i < 0.4 ) to a Joule-
heating regime ( 𝜈in∕𝛺i > 0.7 ) 
is observed as the ionneutral 
collision frequency is increased. 
Reproduced from Fig. 3 of 
Amatucci et al. (1999)
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studying the plasma response to localized electric fields we can glean the physical 
processes that characterize a compressed plasma layer.

5.1 � Low frequency limit: transverse velocity gradient

In the 1970s, the NASA S3-3 satellite observed emissions around the ion cyclotron 
frequency in uniform density plasma at auroral altitudes where spatially localized 
DC electric fields were large (Mozer et al. 1977). Kelley and Carlson (1977) reported 
intense shear in plasma flow velocity at the edge of an auroral arc associated with 
short wavelengths fluctuations, the origin of which was a mystery. They noted that, 
“A velocity shear mechanism operating at wavelengths short in comparison with the 
shear scale length, such as those observed here, would be of significant geophysical 
importance.” Kintner (1992) described the difficulty for exciting the current-driven 
ion cyclotron waves (Kindel and Kennel 1971) in the lower ionosphere where the 
magnitude of the field-aligned current is usually below the threshold and yet bulk 
heating of ions suspected due to ion cyclotron waves is detected.

In addition to space observations, there were laboratory experiments, although 
unconnected with the space observations, reporting ion cyclotron waves correlated 
to localized transverse dc electric fields (Sato et al. 1986; Alport et al. 1986). The 
generation mechanism of these ion cyclotron waves was not clear.

These observations led to theoretical analysis at NRL, described in Sect. 3.3.1, 
which suggested that the Doppler shift by a localized transverse electric field could 
make the energy density of the ion cyclotron waves negative in the electric field 
region while it is positive outside. A flow of energy between the regions with oppo-
site signs of wave energy density can lead to an instability (Ganguli et  al. 1985, 
1988). Because the necessary condition for instability is that the energy must flow 
from one region to another with opposite sign of energy density, the instability is 
essentially nonlocal. It was a promising mechanism for understanding a number 
of mysterious observations in the auroral region including low altitude ion heating 
(Ganguli et al. 1985), which was a front burner issue of the time. So, its validation 
and detailed characterization in the laboratory became an important topic.

Using a segmented disc electrode, shown in Fig. 39, in the West Virginia Univer-
sity Q-machine Amatucci et al. (1994) showed that sub-threshold field-aligned cur-
rent could support the ion cyclotron instability if a radially localized static electric 
field produced by biasing the segments is introduced (see Fig. 40). This explained 
the observation of ion cyclotron waves for sub threshold currents in the auroral 
region noted by Kintner (1992). Theoretically, however, it was shown that ion cyclo-
tron waves could exist even when a magnetic field aligned current was absent pro-
vided a strong enough transverse localized electric field was present (Ganguli et al. 
1985) such as those observed by Mozer et  al. (1977). However, it was not possi-
ble to eliminate the axial current totally in the experiment because the inner seg-
ment of the electrode was biased and drew electrons. Subsequently, Amatucci et al. 
(1998) demonstrated that by increasing the magnitude of the transverse electric field 
and virtually eliminating the axial current with biased ring electrodes (Fig. 39), the 
electrostatic ion cyclotron waves could be sustained by a sheared transverse flow 
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alone. These experiments were later followed up by Tejero et al. (2011) to confirm 
the electromagnetic IEDDI (Peñano and Ganguli 1999). These waves, besides vali-
dating the theory, were shown to be efficient in ion heating (Amatucci et al. 1998) 
as was expected (Ganguli et al. 1985). The experiment also showed that the heating 
profile was distinct from the typical Joule heating (Amatucci et al. 1999) as shown 
in Fig. 41. The scale size of the electric field, L, was greater than the ion gyroradius, 
�i , for these experiments.

Characterization of the IEDDI in the laboratory was a significant contribution 
because it clarified the role of localized electric fields in wave generation thereby 
validating the theory for the origin of these waves and led to numerous applica-
tions to understand satellite observations (Bonnell et  al. 1996; Liu and Lu 2004; 
Golovchanskaya et al. 2014a, b). In addition, it successfully addressed a major issue 
in space plasmas, i.e., ion heating in the lower ionosphere necessary to initiate the 
out flow of the heavy gravitationally bound oxygen ions observed deep inside the 
magnetosphere (Pollock et al. 1990). These experiments became anchors for a com-
prehensive ionospheric heating model (Ganguli et al. 1994) and inspired sounding 
rocket experiments to look for corroborating signatures in the ionosphere (Earle 
et al. 1989; Bonnell et al. 1996; Bonnell 1997; Lundberg et al. 2012). Subsequently, 
a comprehensive statistical survey of satellite data confirmed the importance of 
static transverse electric fields to wave generation in the ionosphere (Hamrin et al. 
2001). More importantly, these early laboratory experiments started a trend in simu-
lating space plasma phenomena in the controlled environment of the laboratory for 
detailed characterization that helped in the interpretation of in situ data and develop 
a deeper understanding of the salient physics.

5.2 � Low drequency limit: parallel velocity gradient

Another intriguing issue in the ionosphere was the observations of low frequency 
ion acoustic-like waves (Wahlund et al. 1994) in the nearly isothermal ionosphere 
where the ion acoustic waves are expected to be ion Landau damped. The ori-
gin of these low frequency waves became a much-debated issue. As discussed in 
Sect. 3.3.4, Gavrishchaka et al. (1998) showed that a spatial gradient in the magnetic 
field aligned flow could drastically lower the threshold of the ion acoustic waves 
by moving the phase speed of the waves away from Landau resonance. In addition, 
Gavrishchaka et al. (2000) also showed that higher frequency waves can be triggered 
by spatial gradients in the parallel flow with multi-harmonic ion cyclotron emis-
sions. The magnitude of the gradient required for generating either of these waves 
was very modest. These results could potentially explain a number of auroral obser-
vations (Gavrishchaka et al. 1999; Ganguli et al. 2002) including the NASA FAST 
satellite observation of multi-ion harmonic spectrum and spiky parallel electric field 
structures (Ergun et al. 1998). Thus, validation of the Gavrishchaka et al. theory in 
the laboratory became an important issue.

In a series of Q-machine experiments with inhomogeneous magnetic field aligned 
flow at the University of Iowa (Agrimson et al. 2001, 2002) and West Virginia Uni-
versity (Teodorescu et  al. 2002a, b) the existence of both the shear modified low 
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frequency and the ion cyclotron frequency range fluctuations were confirmed and 
their signatures and properties were studied. The experiments highlighted the criti-
cal role of the spatial gradient in the flow parallel to the magnetic field. A similar sit-
uation can also arise in compressed plasmas in DFs as well as the plasma sheet-lobe 
interface, as discussed in Sect. 2.2.3. The laboratory validation of the theory and the 
characterization of the instability increased the confidence in its application to other 
regions of space plasmas (Nykyri et al. 2006; Slapak et al. 2017).

Fig. 42   (top)Schematic of creating localized electric fields in laboratory experiments adapted from Ama-
tucci et al. (1994). On the right is a large plasma source. In front (to the left in the figure) of the large 
plasma source is a blocking disk that prevents plasma from the large source to stream down the center of 
the chamber. On the left is a smaller source that can fill in plasma at the center. By biasing the end plates 
an electric field can be created between the two plasmas. (bottom) Measured density vs radial position in 
the NRL Space Physics Simulation Chamber for different filament current settings on the plasma source 
illustrating the experimental control over the plasma density. (bottom) Reproduced from Fig. 3 of Ama-
tucci et al. (2003)
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Other low frequency waves due to parallel inhomogeneous flows with a density 
gradient were investigated in laboratory experiments by Kaneko et al. (2003, 2005). 
They also theoretically analyzed the case and showed that drift waves can be both 
destabilized and stabilized by velocity shear in the parallel ion flow depending on 
the plasma conditions and shear strength in the parallel flow. Similar conclusions 
regarding the drift wave behavior in plasma with perpendicular flow shear was dis-
cussed by Gavrishchaka (1996).

Fig. 43   Stack plot of the FFT 
Amplitude vs Frequency as 
the electric bias is increased 
(up in the figure) showing that 
the EIH wave power increases 
as the applied electric field is 
increased. Reproduced from 
Fig. 8a of Amatucci et al. (2003)

Fig. 44   Log of �∕�i is plotted as a function of the ratio �i∕L which was varied experimentally by con-
trolling the magnitude of the magnetic field in ALEXIS. Reproduced from Fig. 5 of DuBois et al. (2014)
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5.3 � Intermediate frequency limit: transverse velocity gradient

As described in Sect. 2.1, during geomagnetically active periods, global compres-
sion of the magnetosphere by the solar wind stretches the Earth’s magnetotail and 
a pressure gradient builds up between the low-pressure lobe and the high-pressure 
plasma sheet. The boundary between these regions exhibits a complex structure, 
which includes thin layers of energetic electrons confined to the outermost region of 
the plasma sheet (Forbes 1981; Parks et al. 1984). Localized static electric fields in 
the north-south direction are observed during crossings into the plasma sheet from 
the lobes (Cattell et al. 1982; Orsini et al. 1984) but their cause and effect was not 
known. Also, enhanced electrostatic and electromagnetic wave activity is detected at 
the boundary layer (Grabbe and Eastman 1984; Parks et al. 1984; Cattell et al. 1986; 
Angelopoulos et al. 1989).

To understand the plasma sheet-lobe equilibrium properties, a kinetic descrip-
tion of the boundary layer was developed by Romero et al. (1990), as described in 
Sect. 2.1.1. It showed that with increasing activity level, as the boundary layer scale 
size approaches an ion gyrodiameter, an ambipolar electric field develops across the 
magnetic field, which intensifies with the global compression. As shown in Sect. 3, 
for small enough L, ions effectively behave as an unmagnetized species for interme-
diate scales ( 𝛺i < 𝜔 < 𝛺e and k

⟂
𝜌i > 1 > k

⟂
𝜌e ) and an instability appears around 

the lower hybrid frequency. The wavelength of this instability scales as k
⟂
L ∼ 1 

where L ≫ 𝜌e (Ganguli et al. 1988), which distinguishes it from the lower-hybrid-
drift instability with k

⟂
�e ∼ 1 scaling. Hence, laboratory validation and characteri-

zation of the EIH waves discussed in Sect. 3.3.2 became an important topic.
While the basic physics of the EIH instability was verified in Japan by Matsub-

ara and Tanikawa (2000) using a segmented end plate to create the localized radial 
electric field and then in India by Kumar et al. (2002), their experimental geometry 
did not correspond to the reality of the lobe-plasma sheet system. The challenge 
was to produce the conditions of a stretched magnetotail in the lab where the dense 
plasma sheet is surrounded by tenuous lobe plasma as shown in Fig. 1a of Sect. 2.1. 
Amatucci et al. (2003) introduced an innovative way to achieve this by using inter-
penetrating plasmas produced by independent sources with controllable plasma 
potentials and densities sketched in Fig. 42. This set up was more representative of 
the realistic plasma sheet-lobe configuration with a boundary layer of scale size on 
the order or less than an ion gyroradius. The experiment demonstrated spontaneous 
generation of lower hybrid waves as shown in Fig. 43.

Subsequently, DuBois et  al. (2013, 2014) used the Amatucci method in the 
Auburn University Auburn Linear Experiment for Instability Studies (ALEXIS) 
device and varied the magnetic field to scale the ion gyroradius from larger to 
smaller than the electric field scale size thereby effectively simulating the varia-
tion of stress that characterizes the relaxation phase of a stressed magnetotail. This 
showed the generation of a broadband emission starting from the lower hybrid fre-
quency to less than ion cyclotron frequency differing by 5 orders of magnitudes in a 
single experiment, as shown in Fig. 44.

The DuBois et  al. experiment was a proof of principle of the theory (Ganguli 
et al. 1994) which had posited that a compressed boundary layer can relax through 
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the emission of a hierarchy of electric field-driven waves starting from above the 
electron gyrofrequency to much below the ion gyrofrequency and could be the pri-
mary source for the observed broadband electrostatic noise. Tejero et al. (2011) and 
Enloe et al. (2017) have subsequently shown that the plasma compression can also 
produce electromagnetic emissions but the wave power is primarily concentrated 
in the electrostatic regime (Ganguli et al. 2014), consistent with the in situ obser-
vations (Angelopoulos et  al. 1989). These laboratory experiments have elucidated 
the subtler aspects of the magnetotail dynamics, which would be difficult to discern 
from in situ measurements alone. They also inspired new experimental research in 
the laboratory to understand the physics of the dipolarization fronts.

6 � Comprehensive modeling of space plasma environment

Besides academic interests, the practical goal of developing a deeper understanding 
of space plasma processes is to improve the accuracy of space weather forecasting. 
The challenge in a physics-based forecasting model is in accounting for the physics 
at multiple scales in a global model. As discussed in this article, spatiotemporal pro-
cesses in the space plasma environment are multi-scale. It is not feasible to model 
the wide range of scales from first principles, because of computational limitations 
and lack of detailed initial and or boundary conditions. Hence, success of simula-
tions, forecasting, and interpretation of multi-scale spatiotemporal dynamics criti-
cally depends on a realistic formulation including the coupling of physical models 
describing processes on micro- and macro scales. Small-scale kinetic processes 
could significantly influence larger-scale dynamics, at least in their immediate 
neighborhood, which may be of practical interest. However, introduction of small-
scale kinetic effects as anomalous coefficients into larger-scale fluid simulations 
without running small-scale simulations involves empirical adjustments of coupling 
parameters taking into account simulation stability and other considerations. Some 
attempts in magnetosphere-ionosphere coupling has been made based on this con-
cept (Ganguli and Palmadesso 1987; Ganguli et  al. 1988). Similarly, one can use 
coarse-grain analogue models with just a few main elements (Surjalal Sharma 1995; 
Klimas et al. 1996) whose characteristics are also inferred from deeper multi-scale 
physical models. Still such physics-based models may not be accurate enough for 
certain practical applications. Recent developments in artificial intelligence (AI) and 
machine learning (ML) offers a new vista for deeper understanding and forecasting 
in the space plasma environment.

Alternatively, applied modeling of a wide range of complex systems including 
space weather forecasting are based on data-driven statistical and ML approaches 
(Gleisner et al. 1996; Gavrishchaka and Ganguli 2001a, b; Camporeale 2019; Gopi-
nath and Prince 2019). Such empirical approaches could offer practical solutions 
with good accuracy given enough training data covering key regimes of the con-
sidered systems are available. However, performance of standard ML approaches 
could quickly deteriorate with severe data limitations, high dimensionality and non-
stationarity (Gavrishchaka et al. 2018, 2019). Domain-expert knowledge including 
physical models based on deeper understanding of the considered complex system, 
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such as the kinetic processes discussed in this article, could play a key role in appli-
cations with severe incompleteness of training data because of natural dimensional-
ity reduction and usage of domain-specific constraints (Gavrishchaka et  al. 2018, 
2019; Banerjee and Gavrishchaka 2007). Typical practical example of the domain 
knowledge incorporation into ML solution is selection of model inputs and driv-
ers using physics-based considerations (Gleisner et al. 1996; Gavrishchaka and Gan-
guli 2001a, b; Gavrishchaka et al. 2019). This procedure of augmenting purely data 
driven models with physics based models is a step towards gaining physical insight 
into the system.

The most successful modern ML frameworks such as deep learning (DL) based 
on deep neural networks (DNNs) and boosting-based ensemble learning offer even 
more opportunities for efficient synergetic combination with domain-expert knowl-
edge (LeCun et al. 2015; Deng and Yu 2014; Hinton and Salakhutdinov 2006; Scha-
pire 1992; Friedman et al. 2000; Chen and Guestrin 2016; Gavrishchaka et al. 2018, 
2019). First, similar to natural sciences, both techniques actively use advantages of 
hierarchical data and knowledge representations that are capable of crucial reduction 
of dependency on the training data size. This is achieved by layer-by-layer learn-
ing with automated hierarchical feature discovery and dimensionality reduction in 
DNNs and the intrinsically hierarchical nature of boosting algorithms where it builds 
a global-scale model at the first iteration and focuses on more detailed modeling of 
sub-populations, sub-scales and sub-regimes in subsequent iterations (LeCun et al. 
2015; Deng and Yu 2014; Hinton and Salakhutdinov 2006; Schapire 1992; Fried-
man et al. 2000; Gavrishchaka 2006; Gavrishchaka et al. 2018, 2019). For example, 
in Section 2 we showed that global compression leads to ambipolar effects on ion 
and electron gyroscales that generate spatially localized transverse electric fields. In 
Sect. 3 we showed the linear plasma response to such electric fields, which are much 
smaller scale features. In Sect. 4 we showed the nonlinear evolution of these electric 
fields and ultimately their saturation to generate macroscopic measurable features 
of the larger scale dynamics that satellites measure. These micro-macro coupling 
processes could be iteratively incorporated into global models to produce a more 
comprehensive model of the space plasma dynamics than currently possible. Such 
hierarchical physics-based knowledge could significantly improve accuracy in space 
weather forecasting capability. The described nature of these algorithms creates 
different channels for efficient integration of many pieces of domain-expert knowl-
edge including physics-based models, scaling and constraints. For example, collec-
tion of simplified physical models with a few adjustable empirical parameters, e.g. 
anomalous coefficients capturing small-scale effects, could be used as base mod-
els in boosting algorithms to create ensemble of interpretable models with boosted 
accuracy and stability compared to a single model (Gavrishchaka et al. 2018, 2019; 
Banerjee and Gavrishchaka 2007). Alternatively, simplified physical models cap-
turing multi-scale effects in an approximate manner can be used to generate large 
amounts of synthetic data for all possible regimes. Later actual data can be aug-
mented by this synthetic data to allow a DL framework to discover robust representa-
tions that can be used to train or fine-tune DNNs or other ML models (Gavrishchaka 
et al. 2019). Synergetic combination of ML algorithms and physics-based models, 
such as those discussed in this article and global MHD models, could be especially 
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useful for representation and detection of rare events and regimes (Senyukova and 
Gavrishchaka 2011; Miao et  al. 2020). Further advancements in discovery of sta-
ble and accurate hybrid solutions in complex systems modeling can be achieved by 
leveraging methods from computational topology which showed promising results 
in a wide range of applications (Carlsson 2009; Edelsbrunner 2014; Garland et al. 
2016; Miao et al. 2020). Until such a time when global models can capture detailed 
physics at all scale sizes, such hybrid modeling may be necessary for accurate space 
weather forecasting.

7 � Discussion and conclusions

In this review article we have analyzed the behavior of compressed plasmas in a 
magnetic field, which is a configuration often encountered both in natural and labo-
ratory plasmas. Compression creates stress, or gradients, in the background plasma 
parameters. When the scale size of the gradient across the magnetic field becomes 
comparable to an ion gyrodiameter a self-consistent static electric field is generated 
due to ambipolar kinetic effects. This electric field is highly inhomogeneous. Hence, 
the localized Doppler shift due to the � × � flow cannot be transformed away, which 
affects the dieletric properties of the plasma including the normal modes. In addi-
tion, it affects the individual particle orbits as well as shears the mean flow veloci-
ties both transverse and along the magnetic field. Velocity shear is a source of free 
energy for plasma fluctuations. Consequently, a compressed plasma system achieves 
a higher energy state compared to its relaxed counterpart. The electric field gradi-
ent, and by causality the velocity shear, that develops scales with the magnitude of 
compression. Thermodynamic properties compel the plasma to seek a lower energy 
state. In response, in a collisionless medium spontaneous generation of emissions 
follow that dissipate the velocity shear and returns the plasma to a relaxed lower 
energy state. This makes compressed plasmas to be active regions with characteristic 
emissions. In the space environment, these regions are relatively easy to detect and 
measure due to large plasma fluctuations. The spectral signature of the emissions 
is typically found to be broadband in frequency with power mostly concentrated in 
the electrostatic regime. This may be due to the inhomogeneity forcing eigenstates 
to its scale size, which is comparable or smaller than the electron skin depth. Con-
sequently, the wavelength of the emissions is comparable or smaller than the elec-
tron skin depth, which emphasizes the electrostatic character. Hence, they have often 
been referred to as the broadband electrostatic noise (BEN) in the literature. But 
they are also accompanied by some electromagnetic component (Angelopoulos et al. 
1989). As we discussed in Sects. 3 and 4, the velocity shear has the unique ability to 
produce such broadband signatures in which the power is mostly in the electrostatic 
regime but with some electromagnetic power as well. The intensity and bandwidth 
of the emissions, which scale as the velocity shear, is a diagnostic of the level of 
compression imposed on the plasma. This is evident from in situ measurements in 
space plasmas where broadband emissions are a hallmark of compressed plasmas 
found in boundary layers.
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Although we used the framework provided here to analyze natural plasma pro-
cesses, it is general and applicable to laboratory experiments as well as to active 
experiments in space. For example, compressed plasma layers can be generated 
locally in the ionosphere by the ionization of exhausts or effluents discharged from 
rockets (Bernhardt et al. 1995) or by active chemical release experiments (Ganguli 
et  al. 1992; Scales et  al. 1992). In the NASA sponsored Nickel Carbonyl Release 
Experiment (NICARE) (Argo et  al. 1992) the introduction of electron capturing 
agents, such as CF3Br, SF6, Ni(CO)4, etc., in the ionosphere created an electron 
depleted region in the ionosphere surrounded by natural oxygen-electron plasma. 
This generated a boundary layer of positive ions, negative ions, and electron 
plasma with strong spatial gradients in their densities. Experimental data indicated 
a large enhancement of noise level concurrent with the formation of the negative 
ion plasma. This resulted in a situation similar to the natural boundary layers, dis-
cussed in Sect. 2, in which the negative ion population inside the electron-depleted 
region diminished to zero outside, while the electron population did the opposite in 
a narrow boundary layer (Ganguli et al. 1992). Quasi-neutrality between the elec-
tron, negative ions, and positive oxygen ions led to a strong self-consistent electro-
static potential in the boundary layer that separated the negative ion plasma from the 
ambient oxygen-electron plasma. Hybrid simulations showed the formation of the 
boundary layer with a localized radial electric field in the intermediate ( 𝜌i > L > 𝜌e ) 
scale size and spontaneous generation of shear driven EIH waves that relaxed the 
boundary layer (Scales et al. 1994, 1995).

Laboratory experiments of plasma expansion due to laser ablation, in which the 
laser front acts as a piston to compresses the plasma, shows interesting similarity 
with the physics of the dipolarization fronts we discussed in Sect.  2. Dipolariza-
tion fronts, characterized by a pressure gradient over a narrow plasma layer com-
parable to an ion gyroradius, are created in the aftermath of magnetic reconnection 
when a stretched magnetic field snaps back towards a dipolar configuration. In a 
laser ablated plasma expansion across an external magnetic field similar density gra-
dient structures with scale size comparable to an ion gyroradius accompanied with 
a cross-magnetic field flow are observed (Mostovych et al. 1989). Due to the pis-
ton-like action of the laser front both ions and electrons move with nearly the same 
speed across the magnetic field and hence the cross field current is negligible but 
there is a gradient in the intermediate scale size in the plasma flows that are gen-
erated. Furthermore, as in the dipolarization front, waves around the lower hybrid 
frequency are seen, which were thought to be the lower hybrid drift waves (Krall 
and Liewer 1971) because of their association with the density gradient just as in 
the dipolarization front case. However, the wavelength of the lower hybrid waves 
was found to be much longer than the electron gyroradius and comparable to the 
scale size of the cross-field flow. As we discussed in section 3, the long wavelength 
signature is not consistent with the lower hybrid drift waves but similar to that 
expected from the EIH waves, which depend on the gradient in the flow and not on 
a cross-field current. Long wavelengths are generated by nonlinear vortex merging 
(see Sect. 4). Peyser et al. (1992) analyzed a number of experimental cases and com-
pared the data with theoretical models. They concluded that the waves were likely 
to be the EIH waves; for similar reasons argued for the origin of the emissions in 
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a dipolarization front in Sects. 3 and 4. However, due to the inability in the experi-
ment to measure the details of the parameters, unambiguous characterization of the 
origin of the waves in laser ablated plasma jets was not possible. More recent laser 
ablation experiments have shown the generation of waves around the lower hybrid 
frequency (Niemann et al. 2013) and their origin is still an open issue.

As in the boundary layers discussed in this article, in magnetic confinement 
fusion experiments the interaction of multiple-scales is thought to be involved in 
many processes. In particular, in tokamaks there are gradients of magnetic shear, 
plasma temperatures, densities and flows that are all sources of free energy for 
fluctuations both large-scale (e.g., tearing modes or ballooning modes) and short 
scale fluctuations on the gyroradius scale-size (e.g., electron and ion tempera-
ture gradient driven turbulence). The interactions are mediated by mesoscales 
(e.g., transport barriers and zonal flows). There is a rich tradition of studying the 
interaction between these disparate scales (e.g., Thyagaraja et al. 2005; Muraglia 
et al. 2009; McDevitt and Diamond 2006; Bonanomi et al. 2018), whereas in geo-
space plasmas these kinds of studies are few in number. In this article we have 
attempted to emphasize the need for such studies. Fortunately, with the advent of 
high performance computing and small swarms of high resolution satellites, this 
is beginning to change.

While the plasma response to velocity shears in both perpendicular and paral-
lel flows has been studied separately their combined effect has not been analyzed. 
In nature it is likely that that the velocity shear is in an arbitrary direction due to 
magnetic field geometry. In Sect. 2.2.3, we showed in a simple case how this may 
be possible. But in that case the scale size of the magnetic field variation was 
orders of magnitude larger than the electric field variation, which allowed us to 
cleanly separate the two scale sizes and study them individually. Effectively, this 
reduced the problem to one dimension. This may not always be possible in other 
instances in nature or in laboratory. In general, the linear response will involve 
two or three dimensional eigenvalue conditions, which are more difficult to solve. 
There have been some attempts to address the combined effect of parallel and 
transverse velocity shear [e.g., Kaneko et  al. (2007)] but this topic remains an 
interesting area of research and deserves further attention. In addition, manifes-
tation of the velocity shear effect in a multi-species plasma, which is likely to 
prevail in some regions in space, is another interesting future research topic since 
shear effect is mass dependent and hence affects different species differently, 
which introduces relative differences in properties between species (Gavrishchaka 
et al. 1997).

A common feature in the nonlinear evolution of a compressed plasma system 
is that spontaneous generation of shear driven waves relaxes the velocity gradient 
generated by the compression so that a balance can be achieved. This balance, 
or the steady state, defines the electromagnetic plasma environment. In addition, 
the shear driven waves contribute to viscosity and resistivity as feedback to the 
global physics and modify the meso scale plasma features. Thus, the union of the 
small and large scale physics is the reality that a satellite measures, which under-
scores the importance of understanding both the small and large scale processes 
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and the coupling between them as we have attempted to show through natural 
examples in the earth’s neighborhood plasma environment.
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